तर्क स्तर: Difference between revisions
Line 37: | Line 37: | ||
दो तार्किक अवस्थाओं को आमतौर पर दो अलग-अलग वोल्टेज द्वारा दर्शाया जाता है, लेकिन कुछ तर्कसंकेतो ,जैसे [[डिजिटल वर्तमान लूप इंटरफ़ेस|डिजिटल धारा लूप अंतराफलक]] और [[वर्तमान-मोड तर्क|धारा विधा तर्क]] में दो अलग-अलग [[विद्युत प्रवाह|धाराओं]] का उपयोग किया जाता है। प्रत्येक तर्क कुल के लिए उच्च और निम्न सीमाएँ निर्दिष्ट हैं। निम्न देहली के नीचे होने पर, संकेत "कम" होता है। उच्च दहली से ऊपर होने पर, संकेत "उच्च" होता है। मध्यवर्ती स्तर अपरिभाषित हैं, जिसके परिणामस्वरूप अत्यधिक कार्यान्वयन-विशिष्ट परिपथ व्यवहार होता है। | दो तार्किक अवस्थाओं को आमतौर पर दो अलग-अलग वोल्टेज द्वारा दर्शाया जाता है, लेकिन कुछ तर्कसंकेतो ,जैसे [[डिजिटल वर्तमान लूप इंटरफ़ेस|डिजिटल धारा लूप अंतराफलक]] और [[वर्तमान-मोड तर्क|धारा विधा तर्क]] में दो अलग-अलग [[विद्युत प्रवाह|धाराओं]] का उपयोग किया जाता है। प्रत्येक तर्क कुल के लिए उच्च और निम्न सीमाएँ निर्दिष्ट हैं। निम्न देहली के नीचे होने पर, संकेत "कम" होता है। उच्च दहली से ऊपर होने पर, संकेत "उच्च" होता है। मध्यवर्ती स्तर अपरिभाषित हैं, जिसके परिणामस्वरूप अत्यधिक कार्यान्वयन-विशिष्ट परिपथ व्यवहार होता है। | ||
उपयोग किए जाने वाले वोल्टेज स्तरों में कुछ सहिष्णुता की अनुमति देना सामान्य है, उदाहरण के लिए, 0 से 2 वोल्ट तर्क 0 का, और 3 से 5 वोल्ट तर्क 1 का प्रतिनिधित्व कर सकते हैं। 2 से 3 वोल्ट का वोल्टेज अमान्य होगा जो केवल दोषपूर्ण स्थिति में या तर्क स्तर के संक्रमण के दौरान होता है। हालाँकि, कुछ | उपयोग किए जाने वाले वोल्टेज स्तरों में कुछ सहिष्णुता की अनुमति देना सामान्य है, उदाहरण के लिए, 0 से 2 वोल्ट तर्क 0 का, और 3 से 5 वोल्ट तर्क 1 का प्रतिनिधित्व कर सकते हैं। 2 से 3 वोल्ट का वोल्टेज अमान्य होगा जो केवल दोषपूर्ण स्थिति में या तर्क स्तर के संक्रमण के दौरान होता है। हालाँकि, कुछ तर्क परिपथ ऐसी स्थिति का पता लगा सकते हैं, जो अधिकांश उपकरण अपरिभाषित या उपकरण-विशिष्ट तरीके से संकेत को केवल उच्च या निम्न के रूप में व्याख्या करेंगे। कुछ तर्क उपकरणों में [[श्मिट ट्रिगर]] निविष्ट सम्मिलित होते हैं, जिनका व्यवहार देहली क्षेत्र में बेहतर परिभाषित होता है और निविष्ट वोल्टेज में छोटे बदलाव के लिए लचीलापन बढ़ाता है। परिपथ अभिकल्पक की समस्या उन परिस्थितियों से बचना है जो मध्यवर्ती स्तरों का उत्पादन करती हैं, ताकि परिपथ अनुमानित रूप से व्यवहार करे। | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 47: | Line 47: | ||
| {{anchor|TTL}}[[Transistor-transistor logic|TTL]]<ref name=AAC/> || 0 V to 0.8 V || 2 V to V<sub>CC</sub> || V<sub>CC</sub> = 5 V ±5% (7400 commercial family) or ±10% (5400 military family) | | {{anchor|TTL}}[[Transistor-transistor logic|TTL]]<ref name=AAC/> || 0 V to 0.8 V || 2 V to V<sub>CC</sub> || V<sub>CC</sub> = 5 V ±5% (7400 commercial family) or ±10% (5400 military family) | ||
|} | |} | ||
लगभग सभी डिजिटल | लगभग सभी डिजिटल परिपथ सभी आंतरिक संकेतों के लिए एक सुसंगत तर्क स्तर का उपयोग करते हैं। हालाँकि, वह स्तर एक प्रणाली से दूसरी प्रणाली में भिन्न होता है। किन्हीं दो लॉजिक परिवारों को आपस में जोड़ने के लिए अक्सर विशेष तकनीकों की आवश्यकता होती है जैसे कि अतिरिक्त पुल-अप रेसिस्टर्स या उद्देश्य-निर्मित इंटरफ़ेस परिपथ जिन्हें [[स्तर शिफ्टर]]्स के रूप में जाना जाता है। एक लेवल शिफ्टर एक डिजिटल परिपथ को जोड़ता है जो एक लॉजिक लेवल का उपयोग दूसरे डिजिटल परिपथ में करता है जो दूसरे लॉजिक लेवल का उपयोग करता है। अक्सर दो स्तर के शिफ्टर्स का उपयोग किया जाता है, प्रत्येक सिस्टम में एक: एक [[लाइन चालक]] आंतरिक लॉजिक स्तरों से मानक इंटरफ़ेस लाइन स्तरों में परिवर्तित होता है; एक लाइन रिसीवर इंटरफ़ेस स्तरों से आंतरिक वोल्टेज स्तरों में परिवर्तित होता है। | ||
उदाहरण के लिए, ट्रांजिस्टर-ट्रांजिस्टर तर्क स्तर CMOS से भिन्न होते हैं। आम तौर पर, एक टीटीएल आउटपुट [[सीएमओएस]] इनपुट द्वारा तर्क 1 के रूप में विश्वसनीय रूप से पहचाने जाने के लिए पर्याप्त रूप से उच्च नहीं बढ़ता है, खासकर अगर यह केवल एक उच्च-इनपुट-प्रतिबाधा सीएमओएस इनपुट से जुड़ा है जो महत्वपूर्ण वर्तमान स्रोत नहीं करता है। इस समस्या को उपकरणों के 74HCT परिवार के आविष्कार द्वारा हल किया गया था जो CMOS तकनीक का उपयोग करता है लेकिन TTL इनपुट लॉजिक स्तर। ये | उदाहरण के लिए, ट्रांजिस्टर-ट्रांजिस्टर तर्क स्तर CMOS से भिन्न होते हैं। आम तौर पर, एक टीटीएल आउटपुट [[सीएमओएस]] इनपुट द्वारा तर्क 1 के रूप में विश्वसनीय रूप से पहचाने जाने के लिए पर्याप्त रूप से उच्च नहीं बढ़ता है, खासकर अगर यह केवल एक उच्च-इनपुट-प्रतिबाधा सीएमओएस इनपुट से जुड़ा है जो महत्वपूर्ण वर्तमान स्रोत नहीं करता है। इस समस्या को उपकरणों के 74HCT परिवार के आविष्कार द्वारा हल किया गया था जो CMOS तकनीक का उपयोग करता है लेकिन TTL इनपुट लॉजिक स्तर। ये उपकरण केवल 5 V पावर सप्लाई के साथ काम करते हैं। | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 83: | Line 83: | ||
== 3-राज्य तर्क == | == 3-राज्य तर्क == | ||
[[तीन-राज्य तर्क]] में, एक आउटपुट | [[तीन-राज्य तर्क]] में, एक आउटपुट उपकरण तीन संभावित अवस्थाओं में से एक में हो सकता है: 0, 1, या Z, अंतिम अर्थ [[उच्च प्रतिबाधा]] के साथ। यह वोल्टेज या तर्क स्तर नहीं है, लेकिन इसका मतलब है कि आउटपुट कनेक्टेड परिपथ की स्थिति को नियंत्रित नहीं कर रहा है। | ||
==4-मूल्य तर्क == | ==4-मूल्य तर्क == | ||
Line 92: | Line 92: | ||
== बहु-स्तरीय सेल == | == बहु-स्तरीय सेल == | ||
सॉलिड-स्टेट स्टोरेज | सॉलिड-स्टेट स्टोरेज उपकरण में, [[बहु स्तरीय सेल]] मल्टीपल वोल्टेज का उपयोग करके डेटा स्टोर करता है। एक सेल में एन बिट्स को स्टोर करने के लिए उपकरण को विश्वसनीय रूप से अलग करने की आवश्यकता होती है<sup>n</sup> विशिष्ट वोल्टेज स्तर। | ||
== [[लाइन कोड]]िंग == | == [[लाइन कोड]]िंग == |
Revision as of 14:20, 28 February 2023
अंकीय परिपथ में, एक तर्क स्तर स्थिति (कंप्यूटर विज्ञान) की एक परिमित संख्या में से एक है जो एक डिजिटल संकेत (इलेक्ट्रॉनिक्स) में रह सकता है। तर्क स्तर आमतौर पर संकेत और ग्राउंड (बिजली) के बीच वोल्टेज अंतर द्वारा दर्शाए जाते हैं, हालांकि अन्य मानक भी मौजूद हैं। प्रत्येक स्थिति का प्रतिनिधित्व करने वाले वोल्टेज स्तरों की सीमा उपयोग किए जा रहे तर्क कुल पर निर्भर करती है।
विभिन्न परिपथो के बीच संगतता की अनुमति देने के लिए एक तर्क-स्तर शिफ्टर का उपयोग किया जा सकता है।
2-स्तरीय तर्क
द्वि आधारी तर्क में दो स्तर "उच्च" तर्क और "निम्न" तर्क होते हैं, जो आम तौर पर क्रमशः द्विआधारी संख्या 1 और 0 के अनुरूप होते हैं या सत्य मान क्रमशः 'सत्य' और 'असत्य' होते हैं। अंकीय परिपथ प्रारुप या विश्लेषण के लिए इन दो स्तरों में से एक के साथ संकेतों का उपयोग बूलियन बीजगणित में किया जा सकता है।
सक्रिय स्थिति
तर्क स्थिति का प्रतिनिधित्व करने के लिए या तो उच्च या निम्न वोल्टेज स्तर का उपयोग स्वैच्छिक है। दो विकल्प सक्रिय उच्च (सकारात्मक तर्क) और सक्रिय निम्न (नकारात्मक तर्क) हैं। सक्रिय-उच्च और सक्रिय-निम्न अवस्थाओं को विल में मिलाया जा सकता है, उदाहरण के लिए, एक रीड ओनली मेमोरी एकीकृत परिपथ में एक चिप वरण संकेत हो सकता है जो निम्न सक्रिय है, लेकिन डेटा और एड्रेस बिट्स पारंपरिक रूप से उच्च सक्रिय हैं। कभी-कभी सक्रिय स्तर के विकल्प को उलट कर एक तर्क प्रारूप को सरल बनाया जाता है (डी मॉर्गन के नियम देखें)।
तर्क स्तर | सक्रिय-उच्च संकेत | सक्रिय-कम संकेत |
---|---|---|
"उच्च" तर्क | 1 | 0 |
"निम्न" तर्क | 0 | 1 |
एक सक्रिय-कम संकेत का नाम ऐतिहासिक रूप से इसके ऊपर एक बार के साथ लिखा जाता है ताकि इसे सक्रिय-उच्च संकेत से अलग किया जा सके। उदाहरण के लिए, नाम Q "क्यू बार" या "क्यू नॉट" पढ़ा जाता है, एक सक्रिय-निम्न संकेत का प्रतिनिधित्व करता है। आमतौर पर उपयोग किए जाने वाले कन्वेंशन हैं,
- ऊपर एक बार (Q)
- एक अग्रणी स्लैश (/Q)
- एक लोअर-केस n उपसर्ग या प्रत्यय (nQ या Q_n)
- एक अनुगामी # (Q#), या
- एक "_B" या "_L" प्रत्यय (Q_B या Q_L)।[1]
इलेक्ट्रॉनिक्स में कई नियंत्रण संकेत सक्रिय-निम्न संकेत हैं [2] (आमतौर पर लाइनों का पुनर्नियोजन चिप वरण लाइनों की तरह करें)। टीटीएल जैसे तर्क कुल स्रोत की तुलना में अधिक धारा प्रवाहित कर सकते हैं, इसलिए अपव्यय और रव अग्राहिता में वृद्धि होती है। यदि तर्क गेट संग्राहक/ओपन ड्रेन ऊर्ध्व प्रतिरोधक के साथ हैं तो यह तारकृत-या तर्क की भी अनुमति देता है । इसके उदाहरण I²C बस और नियंत्रक क्षेत्र नेटवर्क (सीएएन), और पीसीआई लोकल बस है।
कुछ संकेतों का दोनों स्थितियों में अर्थ होता है और संकेतन ऐसा संकेत दे सकता है। उदाहरण के लिए, पठन/लेखन की रेखा को R/W नामित करना आम बात है, यह दर्शाता है कि पढ़ने के मामले में संकेत उच्च है और लिखने के मामले में कम है .
तर्क वोल्टेज स्तर
दो तार्किक अवस्थाओं को आमतौर पर दो अलग-अलग वोल्टेज द्वारा दर्शाया जाता है, लेकिन कुछ तर्कसंकेतो ,जैसे डिजिटल धारा लूप अंतराफलक और धारा विधा तर्क में दो अलग-अलग धाराओं का उपयोग किया जाता है। प्रत्येक तर्क कुल के लिए उच्च और निम्न सीमाएँ निर्दिष्ट हैं। निम्न देहली के नीचे होने पर, संकेत "कम" होता है। उच्च दहली से ऊपर होने पर, संकेत "उच्च" होता है। मध्यवर्ती स्तर अपरिभाषित हैं, जिसके परिणामस्वरूप अत्यधिक कार्यान्वयन-विशिष्ट परिपथ व्यवहार होता है।
उपयोग किए जाने वाले वोल्टेज स्तरों में कुछ सहिष्णुता की अनुमति देना सामान्य है, उदाहरण के लिए, 0 से 2 वोल्ट तर्क 0 का, और 3 से 5 वोल्ट तर्क 1 का प्रतिनिधित्व कर सकते हैं। 2 से 3 वोल्ट का वोल्टेज अमान्य होगा जो केवल दोषपूर्ण स्थिति में या तर्क स्तर के संक्रमण के दौरान होता है। हालाँकि, कुछ तर्क परिपथ ऐसी स्थिति का पता लगा सकते हैं, जो अधिकांश उपकरण अपरिभाषित या उपकरण-विशिष्ट तरीके से संकेत को केवल उच्च या निम्न के रूप में व्याख्या करेंगे। कुछ तर्क उपकरणों में श्मिट ट्रिगर निविष्ट सम्मिलित होते हैं, जिनका व्यवहार देहली क्षेत्र में बेहतर परिभाषित होता है और निविष्ट वोल्टेज में छोटे बदलाव के लिए लचीलापन बढ़ाता है। परिपथ अभिकल्पक की समस्या उन परिस्थितियों से बचना है जो मध्यवर्ती स्तरों का उत्पादन करती हैं, ताकि परिपथ अनुमानित रूप से व्यवहार करे।
Technology | L voltage | H voltage | Notes |
---|---|---|---|
CMOS[3] [4] | 0 V to 30% VDD | 70% VDD to VDD | VDD = supply voltage |
TTL[3] | 0 V to 0.8 V | 2 V to VCC | VCC = 5 V ±5% (7400 commercial family) or ±10% (5400 military family) |
लगभग सभी डिजिटल परिपथ सभी आंतरिक संकेतों के लिए एक सुसंगत तर्क स्तर का उपयोग करते हैं। हालाँकि, वह स्तर एक प्रणाली से दूसरी प्रणाली में भिन्न होता है। किन्हीं दो लॉजिक परिवारों को आपस में जोड़ने के लिए अक्सर विशेष तकनीकों की आवश्यकता होती है जैसे कि अतिरिक्त पुल-अप रेसिस्टर्स या उद्देश्य-निर्मित इंटरफ़ेस परिपथ जिन्हें स्तर शिफ्टर्स के रूप में जाना जाता है। एक लेवल शिफ्टर एक डिजिटल परिपथ को जोड़ता है जो एक लॉजिक लेवल का उपयोग दूसरे डिजिटल परिपथ में करता है जो दूसरे लॉजिक लेवल का उपयोग करता है। अक्सर दो स्तर के शिफ्टर्स का उपयोग किया जाता है, प्रत्येक सिस्टम में एक: एक लाइन चालक आंतरिक लॉजिक स्तरों से मानक इंटरफ़ेस लाइन स्तरों में परिवर्तित होता है; एक लाइन रिसीवर इंटरफ़ेस स्तरों से आंतरिक वोल्टेज स्तरों में परिवर्तित होता है।
उदाहरण के लिए, ट्रांजिस्टर-ट्रांजिस्टर तर्क स्तर CMOS से भिन्न होते हैं। आम तौर पर, एक टीटीएल आउटपुट सीएमओएस इनपुट द्वारा तर्क 1 के रूप में विश्वसनीय रूप से पहचाने जाने के लिए पर्याप्त रूप से उच्च नहीं बढ़ता है, खासकर अगर यह केवल एक उच्च-इनपुट-प्रतिबाधा सीएमओएस इनपुट से जुड़ा है जो महत्वपूर्ण वर्तमान स्रोत नहीं करता है। इस समस्या को उपकरणों के 74HCT परिवार के आविष्कार द्वारा हल किया गया था जो CMOS तकनीक का उपयोग करता है लेकिन TTL इनपुट लॉजिक स्तर। ये उपकरण केवल 5 V पावर सप्लाई के साथ काम करते हैं।
Supply voltage | Technology | Logic families (examples) | Reference |
---|---|---|---|
5V, 10V, 15V | Metal CMOS | 4000, 74C | [4] |
5V | TTL | 7400, 74S, 74LS, 74ALS, 74F, 74H | [5] |
5V | BiCMOS | 74ABT, 74BCT | |
5V | CMOS (TTL I/O) | 74HCT, 74AHCT, 74ACT | [6] |
3.3V, 5V | CMOS | 74HC, 74AHC, 74AC | [5][6] |
5V | LVCMOS | 74LVC, 74AXP | [7] |
3.3V | LVCMOS | 74LVC, 74AUP, 74AXC, 74AXP | [7] |
2.5V | LVCMOS | 74LVC, 74AUP, 74AUC, 74AXC, 74AXP | [7] |
1.8V | LVCMOS | 74LVC, 74AUP, 74AUC, 74AXC, 74AXP | [7] |
1.5V | LVCMOS | 74AUP, 74AUC, 74AXC, 74AXP | [7] |
1.2V | LVCMOS | 74AUP, 74AUC, 74AXC, 74AXP | [7] |
3-मूल्य तर्क
हालांकि दुर्लभ, त्रिगुट कंप्यूटर 3 वोल्टेज स्तरों का उपयोग करते हुए आधार 3 तीन-मूल्यवान तर्क|तीन-मूल्यवान या त्रिगुट तर्क का मूल्यांकन करते हैं।
3-राज्य तर्क
तीन-राज्य तर्क में, एक आउटपुट उपकरण तीन संभावित अवस्थाओं में से एक में हो सकता है: 0, 1, या Z, अंतिम अर्थ उच्च प्रतिबाधा के साथ। यह वोल्टेज या तर्क स्तर नहीं है, लेकिन इसका मतलब है कि आउटपुट कनेक्टेड परिपथ की स्थिति को नियंत्रित नहीं कर रहा है।
4-मूल्य तर्क
चार मूल्यवान तर्क एक चौथा राज्य जोड़ता है, एक्स (परवाह नहीं), जिसका अर्थ है कि संकेत का मूल्य महत्वहीन और अपरिभाषित है। इसका मतलब है कि एक इनपुट अपरिभाषित है, या कार्यान्वयन सुविधा के लिए एक आउटपुट संकेत चुना जा सकता है (देखें Karnaugh map § Don't cares).
9-स्तर तर्क
IEEE 1164 इलेक्ट्रॉनिक डिजाइन स्वचालन में उपयोग के लिए 9 लॉजिक स्टेट्स को परिभाषित करता है। मानक में मजबूत और कमजोर संचालित संकेत, उच्च प्रतिबाधा और अज्ञात और गैर-प्रारंभिक अवस्थाएं शामिल हैं।
बहु-स्तरीय सेल
सॉलिड-स्टेट स्टोरेज उपकरण में, बहु स्तरीय सेल मल्टीपल वोल्टेज का उपयोग करके डेटा स्टोर करता है। एक सेल में एन बिट्स को स्टोर करने के लिए उपकरण को विश्वसनीय रूप से अलग करने की आवश्यकता होती हैn विशिष्ट वोल्टेज स्तर।
लाइन कोडिंग
डिजिटल लाइन कोड डेटा को अधिक कुशलता से एन्कोड और ट्रांसमिट करने के लिए दो से अधिक राज्यों का उपयोग कर सकते हैं। उदाहरणों में MLT-3 एन्कोडिंग और स्पंद-आयाम मॉडुलन वेरिएंट शामिल हैं जिनका उपयोग इथरनेट द्वारा मुड़ जोड़ी पर किया जाता है। उदाहरण के लिए, 100BASE-TX तीन विभेदक संकेतन वोल्टेज स्तरों (-1V, 0V, +1V) का उपयोग करके डेटा को एनकोड करता है, और 1000BASE-T पाँच डिफरेंशियल वोल्टेज स्तरों (-2V, -1V, 0V, +1V, +2V) का उपयोग करके डेटा को एनकोड करता है। . एक बार प्राप्त होने के बाद, लाइन कोडिंग को वापस बाइनरी में बदल दिया जाता है।
यह भी देखें
- तर्क परिवार
- डिजिटल वर्तमान लूप इंटरफ़ेस
संदर्भ
- ↑ "Coding Style Guidelines" (PDF). Xilinx. Retrieved 2017-08-17.
- ↑ Balch, Mark (2003). Complete Digital Design: A Comprehensive Guide To Digital Electronics And Computer System Architecture. McGraw-Hill Professional. p. 430. ISBN 978-0-07-140927-8.
- ↑ 3.0 3.1 "Logic signal voltage levels". All About Circuits. Retrieved 2015-03-29.
- ↑ 4.0 4.1 "HEF4000B Family Specifications" (PDF). Philips Semiconductors. January 1995. Archived from the original (PDF) on March 4, 2016.
Parametric limits are guaranteed for VDD of 5V, 10V, and 15V.
- ↑ 5.0 5.1 "AppNote 319 - Comparison of MM74HC to 74LS, 74S and 74ALS Logic" (PDF). Fairchild Semiconductor. June 1983. Archived (PDF) from the original on October 24, 2021.
- ↑ 6.0 6.1 "AHC/AHCT Designer's Guide" (PDF). Texas Instruments. September 1998. Archived (PDF) from the original on April 13, 2018.
Technical Comparison of AHC / HC / AC (CMOS I/O) and AHCT / HCT / ACT (TTL I/O) Logic Families
- ↑ 7.0 7.1 7.2 7.3 7.4 7.5 "Little Logic Guide" (PDF). Texas Instruments. 2018. Archived (PDF) from the original on April 3, 2021.
Logic Voltage Graph (page4)