समूह वलय: Difference between revisions

From Vigyanwiki
(Created page with "{{about|the algebraic group ring of a group|the case of a topological group|group algebra of a topological group}} बीजगणित में, एक समूह व...")
 
No edit summary
Line 1: Line 1:
{{about|the algebraic group ring of a group|the case of a topological group|group algebra of a topological group}}
{{about|the algebraic group ring of a group|the case of a topological group|group algebra of a topological group}}
[[बीजगणित]] में, एक समूह वलय एक मुक्त मॉड्यूल है और साथ ही एक वलय (गणित), किसी दिए गए वलय और किसी दिए गए [[समूह (गणित)]] से प्राकृतिक तरीके से निर्मित होता है। एक नि: शुल्क मॉड्यूल के रूप में, इसकी स्केलर्स की अंगूठी दी गई अंगूठी है, और इसका आधार दिए गए समूह के तत्वों का सेट है। एक वलय के रूप में, इसका योग नियम मुक्त मॉड्यूल का है और इसका गुणन दिए गए समूह कानून के आधार पर रैखिकता द्वारा विस्तारित होता है। कम औपचारिक रूप से, एक समूह की अंगूठी समूह के प्रत्येक तत्व को किसी दिए गए अंगूठी से भार कारक जोड़कर, दिए गए समूह का एक सामान्यीकरण है।
[[बीजगणित]] में, एक समूह वलय तथा एक मुक्त मॉडुलेटर है और साथ ही   दिए गए वलय किसी [[समूह (गणित)]] से प्राकृतिक तरीके से निर्मित होता है। एक नि: शुल्क मॉडरेटर के रूप में, अदिश रॉशि की अंगूठी दी गई है और इसका आधार दिए गए समूह के तत्वों का सेट है। एक वलय के रूप में इसका योग नियम मुक्त मॉडुलेटर का है और इसका गुणन दिए गए समूह कानून के आधार पर रैखिकता द्वारा विस्तारित होता है। कम औपचारिक रूप से एक समूह की अंगूठी को समूह के प्रत्येक तत्व को किसी दिए गए अंगूठी भार को जोड़कर दिए गए समूह का एक सामान्यीकरण है।


यदि वलय क्रमविनिमेय है तो समूह वलय को समूह बीजगणित भी कहा जाता है, क्योंकि यह वास्तव में दी गई वलय के ऊपर एक वलय पर बीजगणित है। एक क्षेत्र के ऊपर एक समूह बीजगणित में [[हॉफ बीजगणित]] की एक और संरचना होती है; इस मामले में, इसे एक [[समूह हॉफ बीजगणित]] कहा जाता है।
यदि वलय क्रमविनिमेय है तो समूह वलय को समूह बीजगणित भी कहा जाता है यह वास्तव में दी गई वलय की संरचना के रूप में बीजगणित पर आधारित है। एक समूह बीजगणित में [[हॉफ बीजगणित]] की एक और संरचना होती है; इस जगह में, इसे एक [[समूह हॉफ बीजगणित]] कहा जाता है।


समूह के छल्ले का उपकरण [[समूह प्रतिनिधित्व]] के सिद्धांत में विशेष रूप से उपयोगी है।
समूह के छल्ले का उपकरण [[समूह प्रतिनिधित्व]] के सिद्धांत में विशेष रूप से उपयोगी है।

Revision as of 11:53, 16 February 2023

बीजगणित में, एक समूह वलय तथा एक मुक्त मॉडुलेटर है और साथ ही दिए गए वलय किसी समूह (गणित) से प्राकृतिक तरीके से निर्मित होता है। एक नि: शुल्क मॉडरेटर के रूप में, अदिश रॉशि की अंगूठी दी गई है और इसका आधार दिए गए समूह के तत्वों का सेट है। एक वलय के रूप में इसका योग नियम मुक्त मॉडुलेटर का है और इसका गुणन दिए गए समूह कानून के आधार पर रैखिकता द्वारा विस्तारित होता है। कम औपचारिक रूप से एक समूह की अंगूठी को समूह के प्रत्येक तत्व को किसी दिए गए अंगूठी भार को जोड़कर दिए गए समूह का एक सामान्यीकरण है।

यदि वलय क्रमविनिमेय है तो समूह वलय को समूह बीजगणित भी कहा जाता है यह वास्तव में दी गई वलय की संरचना के रूप में बीजगणित पर आधारित है। एक समूह बीजगणित में हॉफ बीजगणित की एक और संरचना होती है; इस जगह में, इसे एक समूह हॉफ बीजगणित कहा जाता है।

समूह के छल्ले का उपकरण समूह प्रतिनिधित्व के सिद्धांत में विशेष रूप से उपयोगी है।

परिभाषा

G को एक समूह होने दें, जिसे गुणात्मक रूप से लिखा गया हो, और R को एक वलय होने दें। R पर G का समूह वलय, जिसे हम R[G] (या केवल RG) द्वारा निरूपित करेंगे, मैपिंग का सेट है f : GR समर्थन का (गणित) # सामान्यीकरण (एफ (जी) केवल बहुत से तत्वों जी के लिए गैर शून्य है), जहां आर में एक स्केलर α के मॉड्यूल स्केलर उत्पाद αf और मैपिंग एफ को मैपिंग के रूप में परिभाषित किया गया है , और दो मैपिंग f और g के मॉड्यूल समूह योग को मैपिंग के रूप में परिभाषित किया गया है . योगात्मक समूह R [G] को एक रिंग में बदलने के लिए, हम f और g के उत्पाद को मैपिंग के रूप में परिभाषित करते हैं

योग वैध है क्योंकि f और g परिमित समर्थन के हैं, और वलय स्वयंसिद्धों को आसानी से सत्यापित किया जाता है।

संकेतन और शब्दावली में कुछ बदलाव उपयोग में हैं। विशेष रूप से, मैपिंग जैसे f : GR कभी-कभी जी के तत्वों के औपचारिक रैखिक संयोजनों के रूप में लिखा जाता है, आर में गुणांक के साथ:[1]

या केवल

जहां यह भ्रम पैदा नहीं करता है।[2] ध्यान दें कि यदि वलय R वास्तव में एक क्षेत्र K है, तो समूह वलय RG की मॉड्यूल संरचना वास्तव में K के ऊपर एक सदिश स्थान है।

उदाहरण

1. चलो G = C3, ऑर्डर 3 का चक्रीय समूह, जनरेटर के साथ और पहचान तत्व 1G. 'सी' [जी] का एक तत्व आर के रूप में लिखा जा सकता है

जहां जेड0, साथ1 और जेड2 सी में हैं, जटिल संख्याएं। यह चर में बहुपद वलय के समान है ऐसा है कि यानी सी [जी] रिंग सी के लिए आइसोमोर्फिक है []/.

एक अलग तत्व एस के रूप में लिख रहा हूँ , उनका योग है

और उनका उत्पाद है

ध्यान दें कि पहचान तत्व 1G जी के गुणांक रिंग (इस मामले में 'सी') के 'सी' [जी] में एक विहित एम्बेडिंग को प्रेरित करता है; हालांकि सख्ती से 'सी' [जी] के गुणक पहचान तत्व 1⋅1 हैG जहां पहला 1 'सी' से और दूसरा जी से आता है। योज्य पहचान तत्व शून्य है।

जब जी एक गैर-कम्यूटेटिव समूह होता है, तो शर्तों को गुणा करते समय समूह तत्वों के क्रम को बनाए रखने के लिए सावधानी बरतनी चाहिए (और गलती से उन्हें कम्यूट नहीं करना चाहिए)।

2. एक अलग उदाहरण एक वलय R पर लॉरेंट बहुपदों का है: ये R पर अनंत चक्रीय समूह 'Z' के समूह वलय से अधिक या कम नहीं हैं।

3. चलो क्यू तत्वों के साथ चतुष्कोणीय समूह हो . समूह वलय RQ पर विचार करें, जहाँ R वास्तविक संख्याओं का समुच्चय है। इस समूह वलय का एक मनमाना तत्व रूप का है

कहाँ एक वास्तविक संख्या है।

गुणन, जैसा कि किसी अन्य समूह वलय में होता है, को समूह संचालन के आधार पर परिभाषित किया जाता है। उदाहरण के लिए,

ध्यान दें कि RQ R पर चतुष्कोणों के तिरछे क्षेत्र के समान नहीं है। ऐसा इसलिए है क्योंकि चतुष्कोणों का तिरछा क्षेत्र वलय में अतिरिक्त संबंधों को संतुष्ट करता है, जैसे कि , जबकि ग्रुप रिंग RQ में, के बराबर नहीं है . अधिक विशिष्ट होने के लिए, समूह वलय RQ का वास्तविक सदिश स्थान के रूप में आयाम 8 है, जबकि चतुष्कोणों के तिरछा क्षेत्र का वास्तविक सदिश स्थान के रूप में आयाम 4 है।

4. गैर-अबेलियन समूह वलय का एक और उदाहरण है कहाँ 3 अक्षरों पर सममित समूह है। यह एक अभिन्न डोमेन नहीं है क्योंकि हमारे पास है जहां तत्व ट्रांसपोज़िशन-एक क्रमचय है जो केवल 1 और 2 को स्वैप करता है। इसलिए अंतर्निहित रिंग एक अभिन्न डोमेन होने पर भी समूह रिंग को एक अभिन्न डोमेन नहीं होना चाहिए।

कुछ बुनियादी गुण

1 का उपयोग करके वलय R की गुणात्मक पहचान को निरूपित करें, और समूह इकाई को 1 से निरूपित करेंG, रिंग R [G] में R के लिए एक सबरिंग आइसोमोर्फिक होता है, और इसके उल्टे तत्वों के समूह में G के लिए एक उपसमूह आइसोमोर्फिक होता है। {1 के संकेतक फ़ंक्शन पर विचार करने के लिएG}, जो सदिश f द्वारा परिभाषित है

एफ के सभी स्केलर गुणकों का सेट आर [जी] आइसोमोर्फिक से आर का एक सबरिंग है। और यदि हम जी के प्रत्येक तत्व को {एस} के सूचक समारोह में मैप करते हैं, जो वेक्टर एफ द्वारा परिभाषित किया गया है

परिणामी मैपिंग एक इंजेक्शन समूह समरूपता है (आर [जी] में गुणन के संबंध में, जोड़ नहीं)।

यदि R और G दोनों क्रमविनिमेय हैं (अर्थात् R क्रमविनिमेय है और G एक आबेली समूह है), तो R[G] क्रमविनिमेय है।

यदि H, G का एक उपसमूह है, तो R[H], R[G] का एक उपसमूह है। इसी प्रकार, यदि S, R का एक उपवलय है, तो S[G], R[G] का एक उपवलय है।

यदि जी 1 से अधिक क्रम का परिमित समूह है, तो आर [जी] में हमेशा शून्य विभाजक होते हैं। उदाहरण के लिए, क्रम |g| के G के तत्व g पर विचार करें = एम> 1। फिर 1 - जी एक शून्य विभाजक है:

उदाहरण के लिए, ग्रुप रिंग Z[S पर विचार करें3] और क्रम 3 का अवयव g=(123). इस मामले में,

एक संबंधित परिणाम: यदि समूह बजता है प्रधान वलय है, तो G की कोई गैर-पहचान परिमित सामान्य उपसमूह नहीं है (विशेष रूप से, G अनंत होना चाहिए)।

प्रमाण: विरोधाभास को ध्यान में रखते हुए, मान लीजिए का एक गैर-पहचान परिमित सामान्य उपसमूह है . लेना . तब से किसी के लिए , हम जानते हैं , इसलिए . ले रहा , अपने पास . सामान्यता से , के आधार पर आवागमन करता है , और इसलिए

.

और हम देखते हैं शून्य नहीं हैं, जो दर्शाता है प्रधान नहीं है। यह मूल कथन को दर्शाता है।

== एक परिमित समूह == पर समूह बीजगणित समूह बीजगणित स्वाभाविक रूप से परिमित समूहों के समूह प्रतिनिधित्व के सिद्धांत में होते हैं। समूह बीजगणित K[G] क्षेत्र K पर अनिवार्य रूप से समूह वलय है, जिसमें क्षेत्र K वलय का स्थान ले रहा है। एक समुच्चय और सदिश समष्टि के रूप में, यह क्षेत्र K के ऊपर G पर मुक्त सदिश समष्टि है। अर्थात्, K[G] में x के लिए,

सदिश स्थान पर एक क्षेत्र संरचना पर बीजगणित को समूह में गुणन का उपयोग करके परिभाषित किया गया है:

जहां बाईं ओर, g और h समूह बीजगणित के तत्वों को इंगित करते हैं, जबकि दाईं ओर गुणन समूह संक्रिया है (जुगलबंदी द्वारा चिह्नित)।

क्योंकि उपरोक्त गुणन भ्रमित करने वाला हो सकता है, इसलिए K[G] के आधार सदिशों को e के रूप में भी लिखा जा सकता हैg (g के बजाय), जिस स्थिति में गुणन को इस प्रकार लिखा जाता है:


कार्यों के रूप में व्याख्या

जी पर के-मूल्यवान कार्यों के रूप में मुक्त वेक्टर अंतरिक्ष के बारे में सोचते हुए, बीजगणित गुणन कार्यों का दृढ़ संकल्प है।

जबकि एक परिमित समूह के समूह बीजगणित को समूह पर कार्यों के स्थान के साथ पहचाना जा सकता है, एक अनंत समूह के लिए ये भिन्न होते हैं। समूह बीजगणित, जिसमें परिमित योग होते हैं, उस समूह के कार्यों से मेल खाता है जो निश्चित रूप से कई बिंदुओं के लिए गायब हो जाता है; टोपोलॉजिकल रूप से (असतत टोपोलॉजी का उपयोग करके), ये कॉम्पैक्ट समर्थन वाले कार्यों के अनुरूप हैं।

हालाँकि, समूह बीजगणित K [G] और कार्यों का स्थान KG := Hom(G, K) दोहरे हैं: समूह बीजगणित का एक तत्व दिया गया है

और समूह पर एक समारोह f : GK ये जोड़ी K का एक तत्व देने के लिए

जो एक सुपरिभाषित योग है क्योंकि यह परिमित है।

=== एक समूह बीजगणित === का प्रतिनिधित्व के [जी] को एक अमूर्त बीजगणित लेते हुए, एक आयाम डी के के-वेक्टर अंतरिक्ष वी पर कार्य करने वाले बीजगणित के समूह प्रतिनिधित्व के लिए कह सकता है। ऐसा प्रतिनिधित्व

समूह बीजगणित से वी के एंडोमोर्फिज्म के बीजगणित तक बीजगणित होमोमोर्फिज्म है, जो डी × डी मैट्रिक्स की अंगूठी के लिए आइसोमोर्फिक है: . समतुल्य रूप से, यह एक मॉड्यूल (गणित) है | बाएं के [जी] -मॉड्यूल एबेलियन समूह वी पर।

तदनुसार, एक समूह प्रतिनिधित्व

G से V के रैखिक ऑटोमोर्फिज़्म के समूह के लिए एक समूह समरूपता है, जो कि उलटा मेट्रिसेस के सामान्य रैखिक समूह के लिए आइसोमोर्फिक है: . ऐसा कोई भी प्रतिनिधित्व बीजगणित प्रतिनिधित्व को प्रेरित करता है

बस दे कर और रैखिक रूप से फैल रहा है। इस प्रकार, समूह के निरूपण बिल्कुल बीजगणित के निरूपण के अनुरूप होते हैं, और दो सिद्धांत अनिवार्य रूप से समकक्ष हैं।

नियमित प्रतिनिधित्व

समूह बीजगणित अपने आप में एक बीजगणित है; आर और आर [जी] मॉड्यूल पर अभ्यावेदन के पत्राचार के तहत, यह समूह का नियमित प्रतिनिधित्व है।

एक प्रतिनिधित्व के रूप में लिखा, यह प्रतिनिधित्व जी है ↦ ρg द्वारा दी गई क्रिया के साथ , या


अर्ध-सरल अपघटन

सदिश समष्टि K[G] का आयाम समूह में तत्वों की संख्या के बराबर है। फ़ील्ड K को आमतौर पर जटिल संख्या 'C' या वास्तविक 'R' के रूप में लिया जाता है, ताकि कोई समूह बीजगणित 'C'[G] या 'R'[G] पर चर्चा कर सके।

समूह बीजगणित 'सी' [जी] सम्मिश्र संख्याओं पर परिमित समूह का एक अर्धसरल वलय है। यह परिणाम, मास्चके प्रमेय, हमें 'सी' [जी] को 'सी' में प्रविष्टियों के साथ मैट्रिक्स रिंगों के छल्ले के परिमित उत्पाद के रूप में समझने की अनुमति देता है। वास्तव में, यदि हम G के जटिल अप्रासंगिक अभ्यावेदन को V के रूप में सूचीबद्ध करते हैंkके = 1 के लिए,। . . , मी, ये समूह समरूपता के अनुरूप हैं और इसलिए बीजगणित समरूपता के लिए . इन मानचित्रणों को जोड़ने से बीजगणित समरूपता प्राप्त होती है

जहां घkV का आयाम हैk. 'C'[G] का सबलजेब्रा End(Vk) आइडियल (रिंग थ्योरी) है | इडेम्पोटेंट (रिंग थ्योरी) द्वारा उत्पन्न दो तरफा आदर्श

कहाँ वी. का चरित्र सिद्धांत हैk. ये ऑर्थोगोनल इडेम्पोटेंट्स की एक पूरी प्रणाली बनाते हैं, ताकि , जे ≠ के लिए, और . समरूपता परिमित समूहों पर फूरियर रूपांतरण से निकटता से संबंधित है।

अधिक सामान्य क्षेत्र K के लिए, जब भी K की विशेषता (बीजगणित) समूह G के क्रम को विभाजित नहीं करती है, तब K[G] अर्धसरल होता है। जब G एक परिमित एबेलियन समूह होता है, तो समूह वलय K[G] क्रमविनिमेय होता है, और इसकी संरचना को एकता की जड़ के रूप में व्यक्त करना आसान होता है।

जब K विशेषता p का एक क्षेत्र होता है जो G के क्रम को विभाजित करता है, तो समूह की अंगूठी अर्ध-सरल नहीं होती है: इसमें एक गैर-शून्य जैकबसन कट्टरपंथी होता है, और यह मॉड्यूलर प्रतिनिधित्व सिद्धांत के संबंधित विषय को अपना, गहरा चरित्र देता है।

एक समूह बीजगणित का केंद्र

समूह बीजगणित के एक समूह का केंद्र उन तत्वों का समूह है जो समूह बीजगणित के सभी तत्वों के साथ आवागमन करते हैं:

केंद्र वर्ग कार्यों के समुच्चय के बराबर है, अर्थात उन तत्वों का समुच्चय जो प्रत्येक संयुग्मन वर्ग पर स्थिर होते हैं

अगर K = C, जी के अलघुकरणीय चरित्र सिद्धांत का सेट आंतरिक उत्पाद के संबंध में Z(K[G]) का एक असामान्य आधार बनाता है।


== समूह एक अनंत समूह == पर बजता है उस मामले में बहुत कम जाना जाता है जहां जी अनगिनत रूप से अनंत या बेशुमार है, और यह सक्रिय शोध का एक क्षेत्र है।[3] मामला जहां आर जटिल संख्याओं का क्षेत्र है, शायद सबसे अच्छा अध्ययन किया गया है। इस मामले में, इरविंग कपलान्स्की ने साबित किया कि यदि ए और बी 'सी' [जी] के तत्व हैं ab = 1, तब ba = 1. क्या यह सच है अगर आर सकारात्मक विशेषता का क्षेत्र है अज्ञात रहता है।

लंबे समय से चले आ रहे कप्लान्स्की के अनुमान (~ 1940) कहते हैं कि यदि G एक मरोड़-मुक्त समूह है, और K एक क्षेत्र है, तो समूह वलय K[G] में कोई गैर-तुच्छ शून्य विभाजक नहीं है। यह अनुमान K [G] के समतुल्य है, जिसमें K और G के लिए समान परिकल्पना के तहत कोई गैर-तुच्छ nilpotent नहीं है।

वास्तव में, स्थिति यह है कि K एक क्षेत्र है जिसे किसी भी रिंग में शिथिल किया जा सकता है जिसे एक अभिन्न डोमेन में एम्बेड किया जा सकता है।

अनुमान पूरी तरह से खुला रहता है, हालांकि मरोड़-मुक्त समूहों के कुछ विशेष मामलों को शून्य विभाजक अनुमान को पूरा करने के लिए दिखाया गया है। इसमे शामिल है:

  • अद्वितीय उत्पाद समूह (उदाहरण के लिए ऑर्डर करने योग्य समूह, विशेष रूप से निःशुल्क समूह)
  • प्राथमिक अनुमन्य समूह (जैसे वस्तुतः एबेलियन समूह)
  • फैलाना समूह - विशेष रूप से, समूह जो स्वतंत्र रूप से आर-पेड़ों पर आइसोमेट्रिक रूप से कार्य करते हैं, और प्रक्षेपी विमान की एक, दो या तीन प्रतियों के प्रत्यक्ष योगों के मूलभूत समूहों को छोड़कर सतह समूहों के मूलभूत समूह।

मामला जहां जी एक स्थलीय समूह है, स्थानीय रूप से कॉम्पैक्ट समूह के लेख समूह बीजगणित में अधिक विस्तार से चर्चा की गई है।

श्रेणी सिद्धांत

संलग्न

श्रेणी सिद्धांत, समूह वलय निर्माण इकाइयों के समूह से जुड़ा हुआ है; निम्नलिखित फ़ैक्टर एक सहायक फ़ैक्टर हैं:

कहाँ एक समूह को R पर उसके समूह रिंग में ले जाता है, और इकाइयों के अपने समूह के लिए एक आर-बीजगणित लेता है।

कब R = Z, यह समूहों की श्रेणी और रिंगों की श्रेणी के बीच एक संयोजन देता है, और संयोजन की इकाई समूह G को उस समूह में ले जाती है जिसमें तुच्छ इकाइयाँ होती हैं: G × {±1} = {±g}. सामान्य तौर पर, समूह के छल्ले में गैर-तुच्छ इकाइयां होती हैं। यदि G में तत्व a और b हैं जैसे कि और बी सामान्य नहीं करता है फिर का वर्ग

शून्य है, इसलिए . तत्व 1 + x अनंत क्रम की एक इकाई है।

सार्वभौमिक संपत्ति

उपरोक्त संयोजन समूह के छल्ले की एक सार्वभौमिक संपत्ति व्यक्त करता है।[2][4] होने देना R एक (कम्यूटेटिव) रिंग बनें, चलो G एक समूह बनो, और चलो S सेम R-बीजगणित। किसी भी समूह समरूपता के लिए , वहाँ एक अनूठा मौजूद है R-बीजगणित समरूपता ऐसा है कि कहाँ i समावेशन है

दूसरे शब्दों में, अद्वितीय समाकारिता है जो निम्न रेखाचित्र को कम्यूट करती है:

Group ring UMP.svgइस संपत्ति को संतुष्ट करने वाली कोई अन्य अंगूठी समूह की अंगूठी के लिए गणितीय शब्दावली आइसोमोर्फिक की सूची है।

हॉप बीजगणित

समूह बीजगणित K[G] में हॉफ बीजगणित की एक प्राकृतिक संरचना है। सहगुणन द्वारा परिभाषित किया गया है , रैखिक रूप से विस्तारित, और एंटीपोड है , फिर से रैखिक रूप से बढ़ाया गया।

सामान्यीकरण

समूह बीजगणित मोनॉइड रिंग के लिए सामान्यीकरण करता है और फिर श्रेणी बीजगणित के लिए, जिसमें से एक अन्य उदाहरण घटना बीजगणित है।

छानने का कार्य

यदि किसी समूह का लंबाई कार्य है - उदाहरण के लिए, यदि जेनरेटर का विकल्प है और कोई मेट्रिक शब्द लेता है, जैसा कॉक्सेटर समूह में होता है - तो समूह की अंगूठी एक फ़िल्टर्ड बीजगणित बन जाती है।

यह भी देखें

  • स्थानीय रूप से कॉम्पैक्ट समूह का समूह बीजगणित
  • मोनॉइड रिंग
  • कप्लान्स्की के अनुमान

प्रतिनिधित्व सिद्धांत

  • समूह प्रतिनिधित्व
  • नियमित प्रतिनिधित्व

श्रेणी सिद्धांत

  • स्पष्ट बीजगणित
  • इकाइयों का समूह
  • घटना बीजगणित
  • तरकश (गणित)

टिप्पणियाँ

  1. Polcino & Sehgal (2002), p. 129 and 131.
  2. 2.0 2.1 Polcino & Sehgal (2002), p. 131.
  3. Passman, Donald S. (1976). "What is a group ring?". Amer. Math. Monthly. 83: 173–185. doi:10.2307/2977018.
  4. "group algebra in nLab". ncatlab.org. Retrieved 2017-11-01.


संदर्भ