आदर्श वर्ग समूह: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
{{Short description|In number theory, measure of non-unique factorization}} | {{Short description|In number theory, measure of non-unique factorization}} | ||
{{more citations needed|date=February 2010}} | {{more citations needed|date=February 2010}} | ||
[[संख्या सिद्धांत|संख्या]] | [[संख्या सिद्धांत|संख्या]] प्रधान में, एक [[बीजगणितीय संख्या क्षेत्र]] K का आदर्श वर्ग समूह (या वर्ग समूह) भागफल समूह है {{math|''J<sub>K</sub>''/''P<sub>K</sub>''}} जहाँ {{math|''J<sub>K</sub>''}} , K के पूर्णांकों के वलय के भिन्नात्मक आदर्शों का समूह है और {{math|''P<sub>K</sub>''}} इसके [[प्रमुख आदर्श|प्रमुख]] आदर्शों का उपसमूह है। वर्ग समूह इस बात का माप है कि पूर्णांकों के वलय में अद्वितीय गुणनखंडन किस सीमा तक विफल रहता है। समूह का क्रम (समूह सिद्धांत), जो परिमित है, K की वर्ग संख्या कहलाती है। | ||
यह प्रधान[[डेडेकिंड डोमेन|डेडेकिंड | यह प्रधान [[डेडेकिंड डोमेन|डेडेकिंड कार्यक्षेत्र]] और उनके अंशों के क्षेत्र तक विस्तृत हुआ है, जिसके लिए गुणात्मक गुण वर्ग समूह की संरचना से घनिष्ठ रूप से बंधे हैं। उदाहरण के लिए, डेडेकाइंड कार्यक्षेत्र का वर्ग समूह साधारण है और केवल वलय एक [[अद्वितीय गुणनखंड डोमेन|अद्वितीय गुणनखंड क्षेत्र]] है। | ||
== आदर्श वर्ग समूह का इतिहास और उत्पत्ति == | == आदर्श वर्ग समूह का इतिहास और उत्पत्ति == | ||
प्रभावी रूप से आदर्श वर्ग समूह का अध्ययन एक आदर्श (वृत्तपरिकल्पना) के विचार को तैयार करने से कुछ समय पहले किया गया था। ये समूह [[द्विघात रूप|द्विघात]] रूपों के | प्रभावी रूप से आदर्श वर्ग समूह का अध्ययन एक आदर्श (वृत्तपरिकल्पना) के विचार को तैयार करने से कुछ समय पहले किया गया था। ये समूह [[द्विघात रूप|द्विघात]] रूपों के प्रधान में दिखाई दिए: जैसा कि द्विआधारी अभिन्न द्विघात रूपों के स्थिति में [[कार्ल फ्रेडरिक गॉस]] द्वारा अंतिम रूप में रखा गया था और एक रचना कानून के रूपों को कुछ समतुल्य वर्गों पर परिभाषित किया गया था। इसने एक परिमित गणित में विनिमेय समूह दिया, जो उस समय पहचाना गया था। | ||
बाद में अर्न्स्ट कुमेर चक्रविक्षिप्त क्षेत्रों के | बाद में अर्न्स्ट कुमेर चक्रविक्षिप्त क्षेत्रों के प्रधान की दिशा में काम कर रहे थे। यह सिद्ध किया गया था (सम्भवतः कई लोगों द्वारा) कि फ़र्मा के अंतिम प्रमेय के सामान्य रूपों में एकता के मूलों का उपयोग करके गुणनखंडन द्वारा पूर्ण प्रमाणों को पूरा करने में विफलता एक बहुत अच्छे कारण के लिए थी: अद्वितीय गुणनखंडन की विफलता, अर्थात, [[अंकगणित का मौलिक प्रमेय]] एकता की उन मूलों द्वारा उत्पन्न वलय(गणित) में धारण करना एक प्रमुख अवरोध था। कुमेर के कार्य में पहली बार गुणनखंडन में अवरोध का अध्ययन आया। अब हम इसे आदर्श वर्ग समूह के हिस्से के रूप में पहचानते हैं: वास्तव में कुमेर ने उस समूह में एकता के p-मूलों के क्षेत्र के लिए, किसी भी अभाज्य संख्या p के लिए,फ़र्मा प्रश्न पर मानक पद्धति की विफलता के कारण p- आघूर्ण बल को अलग कर दिया था। | ||
कुछ समय बाद फिर से [[रिचर्ड डेडेकिंड]] ने आदर्श की अवधारणा तैयार की और कुमेर ने एक अलग तरीके से काम किया। इस बिंदु पर मौजूदा उदाहरणों को एकीकृत किया जा सकता है। यह दिखाया गया था कि [[बीजगणितीय पूर्णांक|बीजगणितीय]] पूर्णांकों के वलय में हमेशा अभाज्यों में अद्वितीय गुणनखंडन नहीं होता है (क्योंकि उन्हें प्रमुख आदर्श क्षेत्र होने की आवश्यकता नहीं है), उनके पास यह गुण होता है कि प्रत्येक उचित आदर्श प्रधान आदर्शों के उत्पाद के रूप में एक अद्वितीय गुणनखंडन को स्वीकार करता है (अर्थात , बीजगणितीय पूर्णांकों का प्रत्येक वलय एक डेडेकिंड क्षेत्र है)। आदर्श वर्ग समूह के आकार को एक प्रमुख आदर्श क्षेत्र होने से वलय के विचलन के लिए एक उपाय के रूप में माना जा सकता है; एक वलय एक प्रमुख क्षेत्र है अगर इसमें केवल एक साधारण आदर्श वर्ग समूह है। | कुछ समय बाद फिर से [[रिचर्ड डेडेकिंड]] ने आदर्श की अवधारणा तैयार की और कुमेर ने एक अलग तरीके से काम किया। इस बिंदु पर मौजूदा उदाहरणों को एकीकृत किया जा सकता है। यह दिखाया गया था कि [[बीजगणितीय पूर्णांक|बीजगणितीय]] पूर्णांकों के वलय में हमेशा अभाज्यों में अद्वितीय गुणनखंडन नहीं होता है (क्योंकि उन्हें प्रमुख आदर्श क्षेत्र होने की आवश्यकता नहीं है), उनके पास यह गुण होता है कि प्रत्येक उचित आदर्श प्रधान आदर्शों के उत्पाद के रूप में एक अद्वितीय गुणनखंडन को स्वीकार करता है (अर्थात , बीजगणितीय पूर्णांकों का प्रत्येक वलय एक डेडेकिंड क्षेत्र है)। आदर्श वर्ग समूह के आकार को एक प्रमुख आदर्श क्षेत्र होने से वलय के विचलन के लिए एक उपाय के रूप में माना जा सकता है; एक वलय एक प्रमुख क्षेत्र है अगर इसमें केवल एक साधारण आदर्श वर्ग समूह है। | ||
Line 19: | Line 19: | ||
आदर्श वर्गों को गुणा किया जा सकता है: यदि [I] आदर्श I के तुल्यता वर्ग को दर्शाता है, तो गुणन [I] [J] = [IJ] अच्छी तरह से परिभाषित और क्रम[[विनिमेय]] है। प्रमुख गुण आदर्श वर्ग [R] बनाते हैं जो इस गुणन के लिए एक [[पहचान तत्व]] के रूप में कार्य करता है। यदि एक आदर्श J है जैसे कि IJ एक प्रमुख आदर्श है तो इस प्रकार एक वर्ग [I] का व्युत्क्रम [J] होता है। सामान्यता, J का अस्तित्व नहीं हो सकता है और फलस्वरूप R के आदर्श वर्गों का समूह केवल एक [[मोनोइड|एकाभ]] हो सकता है। | आदर्श वर्गों को गुणा किया जा सकता है: यदि [I] आदर्श I के तुल्यता वर्ग को दर्शाता है, तो गुणन [I] [J] = [IJ] अच्छी तरह से परिभाषित और क्रम[[विनिमेय]] है। प्रमुख गुण आदर्श वर्ग [R] बनाते हैं जो इस गुणन के लिए एक [[पहचान तत्व]] के रूप में कार्य करता है। यदि एक आदर्श J है जैसे कि IJ एक प्रमुख आदर्श है तो इस प्रकार एक वर्ग [I] का व्युत्क्रम [J] होता है। सामान्यता, J का अस्तित्व नहीं हो सकता है और फलस्वरूप R के आदर्श वर्गों का समूह केवल एक [[मोनोइड|एकाभ]] हो सकता है। | ||
हालाँकि, यदि R एक बीजगणितीय संख्या क्षेत्र में [[बीजगणितीय पूर्णांक|बीजगणितीय]] पूर्णांकों का वलय है, या R का आदर्श वर्ग समूह अधिक सामान्यतः का एक डेडेकिंड क्षेत्र है, तो ऊपर परिभाषित गुणन भिन्नात्मक आदर्श वर्गों के समूह को एक गणित में विनिमेय समूह में बदल देता है। व्युत्क्रम तत्वों के अस्तित्व की समूह संपत्ति इस तथ्य से | हालाँकि, यदि R एक बीजगणितीय संख्या क्षेत्र में [[बीजगणितीय पूर्णांक|बीजगणितीय]] पूर्णांकों का वलय है, या R का आदर्श वर्ग समूह अधिक सामान्यतः का एक डेडेकिंड क्षेत्र है, तो ऊपर परिभाषित गुणन भिन्नात्मक आदर्श वर्गों के समूह को एक गणित में विनिमेय समूह में बदल देता है। व्युत्क्रम तत्वों के अस्तित्व की समूह संपत्ति इस तथ्य से सरलता से अनुसरण करती है कि, डेडेकिंड कार्यक्षेत्र में, प्रत्येक शून्येतर आदर्श (R को छोड़कर) प्रमुख आदर्शों का एक उत्पाद है। | ||
== गुण== | == गुण== | ||
आदर्श वर्ग समूह साधारण है (अर्थात् केवल एक तत्व है) यदि केवल R के सभी आदर्श प्रमुख हैं। इस अर्थ में, आदर्श वर्ग समूह यह मापता है कि R एक प्रमुख आदर्श क्षेत्र होने से कितना दूर है और इसलिए अद्वितीय प्रधान गुणनखंड को संतुष्ट करने से (डेडेकिंड | आदर्श वर्ग समूह साधारण है (अर्थात् केवल एक तत्व है) यदि केवल R के सभी आदर्श प्रमुख हैं। इस अर्थ में, आदर्श वर्ग समूह यह मापता है कि R एक प्रमुख आदर्श क्षेत्र होने से कितना दूर है और इसलिए अद्वितीय प्रधान गुणनखंड को संतुष्ट करने से (डेडेकिंड कार्यक्षेत्र अद्वितीय गुणनखंड क्षेत्र हैं, यदि केवल वे प्रमुख आदर्श क्षेत्र हैं)। | ||
आदर्श वर्गों की संख्या (R की वर्ग संख्या) सामान्य रूप से अनंत हो सकता है। वास्तव में, प्रत्येक गणित में विनिमेय समूह कुछ डेडेकाइंड | आदर्श वर्गों की संख्या (R की वर्ग संख्या) सामान्य रूप से अनंत हो सकता है। वास्तव में, प्रत्येक गणित में विनिमेय समूह कुछ डेडेकाइंड कार्यक्षेत्र के आदर्श वर्ग समूह के लिए समरूप है।<ref>{{harvnb|Claborn|1966}}</ref> लेकिन यदि R वास्तव में बीजगणितीय पूर्णांकों का एक वलय है, तो वर्ग संख्या हमेशा परिमित होती है। यह उत्तम बीजगणितीय संख्या प्रधान के मुख्य परिणामों में से एक है। | ||
मिन्कोव्स्की की सीमा का उपयोग करते हुए वर्ग समूह की गणना सामान्यतःछोटे विभेदक के बीजगणितीय संख्या क्षेत्र में पूर्णांकों के वलय के लिए हाथ से किया जा सकता है। यह परिणाम वलय के आधार पर एक सीमा देता है, जैसे कि प्रत्येक आदर्श वर्ग में सीमा से कम एक [[आदर्श मानदंड]] होता है। सामान्यतः सीमा बहुत प्रखर नहीं है कि बड़े विभेदक वाले क्षेत्रों के लिए गणना को व्यावहारिक बनाया जा सके, लेकिन कंप्यूटर इस कार्य के लिए उपयुक्त हैं। | मिन्कोव्स्की की सीमा का उपयोग करते हुए वर्ग समूह की गणना सामान्यतःछोटे विभेदक के बीजगणितीय संख्या क्षेत्र में पूर्णांकों के वलय के लिए हाथ से किया जा सकता है। यह परिणाम वलय के आधार पर एक सीमा देता है, जैसे कि प्रत्येक आदर्श वर्ग में सीमा से कम एक [[आदर्श मानदंड]] होता है। सामान्यतः सीमा बहुत प्रखर नहीं है कि बड़े विभेदक वाले क्षेत्रों के लिए गणना को व्यावहारिक बनाया जा सके, लेकिन कंप्यूटर इस कार्य के लिए उपयुक्त हैं। | ||
पूर्णांक R के वलय से उनके संबंधित वर्ग समूहों के लिए मानचित्रण क्रियात्मक है, और वर्ग समूह को [[बीजगणितीय के-सिद्धांत|बीजगणितीय K-]] | पूर्णांक R के वलय से उनके संबंधित वर्ग समूहों के लिए मानचित्रण क्रियात्मक है, और वर्ग समूह को [[बीजगणितीय के-सिद्धांत|बीजगणितीय K-]] प्रधान के शीर्षक के तहत सम्मिलित किया जा सकता है, K<sub>0</sub>(R)) R को इसके आदर्श वर्ग समूह को नियत करने वाला कारकीय है; अधिक शुद्ध रुप से, K<sub>0</sub>(R) =Z×C(R), जहां C(R) वर्ग समूह है। पूर्णांकों के वलयों के संबंध में उच्च K समूहों को अंकगणितीय रूप से नियोजित और व्याख्यायित किया जा सकता है। | ||
== इकाइयों के समूह के साथ संबंध == | == इकाइयों के समूह के साथ संबंध == | ||
ऊपर यह टिप्पणी की गई थी कि आदर्श वर्ग समूह इस प्रश्न के उत्तर का एक भाग प्रदान करता है कि डेडेकाइंड क्षेत्र में कितने आदर्श तत्वों की तरह व्यवहार करते हैं। उत्तर का दूसरा भाग डेडेकाइंड | ऊपर यह टिप्पणी की गई थी कि आदर्श वर्ग समूह इस प्रश्न के उत्तर का एक भाग प्रदान करता है कि डेडेकाइंड क्षेत्र में कितने आदर्श तत्वों की तरह व्यवहार करते हैं। उत्तर का दूसरा भाग डेडेकाइंड कार्यक्षेत्र की इकाइयों के गुणात्मक समूह द्वारा प्रदान किया गया है, क्योंकि प्रमुख आदर्शों से उनके जनित्र तक जाने के लिए इकाइयों के उपयोग की आवश्यकता होती है (और यह भिन्नात्मक आदर्श की अवधारणा को प्रस्तुत करने का शेष कारण है, जैसा कि कुंआ): | ||
प्रत्येक तत्व के उत्पन्न होने वाले प्रमुख(आंशिक) आदर्श के लिए भेजकर ''R''<sup>×</sup> से R के सभी शून्येतर आंशिक आदर्शों के समूह में एक मानचित्र परिभाषित करें। यह एक [[समूह समरूपता]] है; इसका [[कर्नेल (बीजगणित)|मध्यभाग (बीजगणित)]] R की इकाइयों का समूह है, और इसका सह मध्यभाग R का आदर्श वर्ग समूह है। इन समूहों के साधारण होने की विफलता एक समरूपता होने के लिए मानचित्र की विफलता का एक उपाय है: यह आदर्शों की विफलता है जो वलय तत्वों की तरह कार्य करती है, अर्थात संख्याओं की तरह। | प्रत्येक तत्व के उत्पन्न होने वाले प्रमुख(आंशिक) आदर्श के लिए भेजकर ''R''<sup>×</sup> से R के सभी शून्येतर आंशिक आदर्शों के समूह में एक मानचित्र परिभाषित करें। यह एक [[समूह समरूपता]] है; इसका [[कर्नेल (बीजगणित)|मध्यभाग (बीजगणित)]] R की इकाइयों का समूह है, और इसका सह मध्यभाग R का आदर्श वर्ग समूह है। इन समूहों के साधारण होने की विफलता एक समरूपता होने के लिए मानचित्र की विफलता का एक उपाय है: यह आदर्शों की विफलता है जो वलय तत्वों की तरह कार्य करती है, अर्थात संख्याओं की तरह। | ||
Line 37: | Line 37: | ||
== आदर्श वर्ग समूहों के उदाहरण == | == आदर्श वर्ग समूहों के उदाहरण == | ||
* वलय Z, Z[ω], और Z[i], जहां ω 1 का घनमूल है और i 1 का चौथा मूल है (अर्थात् −1 का वर्गमूल), सभी प्रमुख आदर्श | * वलय Z, Z[ω], और Z[i], जहां ω 1 का घनमूल है और i 1 का चौथा मूल है (अर्थात् −1 का वर्गमूल), सभी प्रमुख आदर्श कार्यक्षेत्र हैं (और वास्तव में सभी यूक्लिडीय क्षेत्र हैं), और इसलिए वर्ग संख्या 1 है: अर्थात, उनके पास साधारण आदर्श वर्ग समूह हैं। | ||
*यदि k एक क्षेत्र है, तो बहुपद वलय ''k''[X1, X2, X3, ...] एक अभिन्न क्षेत्र है। इसमें आदर्श वर्गों का एक अनगिनत अनंत समूह है। | *यदि k एक क्षेत्र है, तो बहुपद वलय ''k''[X1, X2, X3, ...] एक अभिन्न क्षेत्र है। इसमें आदर्श वर्गों का एक अनगिनत अनंत समूह है। | ||
Line 53: | Line 53: | ||
[[द्विघात पूर्णांक]] वलय R = 'Z' [{{radic|−5}}] Q({{radic|−5}}) के पूर्णांकों का वलय है। इसमें अद्वितीय गुणनखंड नहीं है; वास्तव में R का वर्ग समूह क्रम 2 का चक्रीय है। वास्तव में, आदर्श | [[द्विघात पूर्णांक]] वलय R = 'Z' [{{radic|−5}}] Q({{radic|−5}}) के पूर्णांकों का वलय है। इसमें अद्वितीय गुणनखंड नहीं है; वास्तव में R का वर्ग समूह क्रम 2 का चक्रीय है। वास्तव में, आदर्श | ||
: ''J'' = (2, 1 + {{radic|−5}}) | : ''J'' = (2, 1 + {{radic|−5}}) | ||
प्रधान नहीं है, जिसे विरोधाभास द्वारा निम्नानुसार सिद्ध किया जा सकता है। <math>R</math> का एक आदर्श कार्य है <math>N(a + b \sqrt{-5}) = a^2 + 5 b^2 </math>, जो संतुष्ट करता है <math>N(uv) = N(u)N(v)</math>, और <math>N(u) = 1</math> अगर और केवल अगर <math>u</math> में एक <math>R</math> इकाई है। सबसे पहले, <math> J \ne R</math>, क्योंकि भागफल का वलय <math>R</math> मापांक आदर्श <math>(1 + \sqrt{-5})</math> के लिए समरूप है <math>\mathbf{Z} / 6 \mathbf{Z}</math>, ताकि [[भागफल की अंगूठी|भागफल का वलय]] <math>R</math> मापांक <math>J</math> के लिए समरूप है <math>\mathbf{Z} / 2 \mathbf{Z}</math>. यदि J को R के एक तत्व x द्वारा उत्पन्न किया गया था, तो x 2 और 1 + √−5 दोनों को विभाजित करेगा। फिर आदर्श <math>N(x)</math> दोनों को विभाजित करेगा <math>N(2) = 4</math> और <math>N(1 + \sqrt{-5}) = 6</math>, इसलिए N(x) 2 को विभाजित करेगा। यदि <math>N(x) = 1</math>, तब <math>x</math> एक इकाई है, और <math>J = R</math>, एक विरोधाभास। लेकिन <math>N(x)</math> 2 भी नहीं हो सकता है, क्योंकि R में मानक 2 के कोई तत्व नहीं हैं, क्योंकि [[डायोफैंटाइन समीकरण]] <math>b^2 + 5 c^2 = 2</math> का पूर्णांकों में कोई समाधान नहीं है, क्योंकि इसका कोई समाधान मापांक 5 नहीं है। | |||
एक यह भी गणना करता है कि ''J''<sup>2</sup> = (2), जो कि प्रधान है, इसलिए आदर्श वर्ग समूह में J के वर्ग का क्रम दो है। यह दिखाने के लिए कि कोई अन्य आदर्श वर्ग नहीं है, अधिक प्रयास की आवश्यकता है। | एक यह भी गणना करता है कि ''J''<sup>2</sup> = (2), जो कि प्रधान है, इसलिए आदर्श वर्ग समूह में J के वर्ग का क्रम दो है। यह दिखाने के लिए कि कोई अन्य आदर्श वर्ग नहीं है, अधिक प्रयास की आवश्यकता है। | ||
Line 60: | Line 60: | ||
: 6 = 2 × 3 = (1 + {{radic|−5}}) × (1 − {{radic|−5}}). | : 6 = 2 × 3 = (1 + {{radic|−5}}) × (1 − {{radic|−5}}). | ||
== वर्ग क्षेत्र | == वर्ग क्षेत्र प्रधान से सम्बन्ध == | ||
[[वर्ग क्षेत्र सिद्धांत|वर्ग क्षेत्र]] | [[वर्ग क्षेत्र सिद्धांत|वर्ग क्षेत्र]] प्रधान [[बीजगणितीय संख्या सिद्धांत|बीजगणितीय संख्या]] प्रधान की एक शाखा है जो किसी दिए गए बीजगणितीय संख्या क्षेत्र के सभी गणित में विनिमेय समूह सिद्धांतों को वर्गीकृत करना चाहता है, जिसका अर्थ है गणित में विनिमेय समूह गाल्वा समूह के साथ गाल्वा क्षेत्र। एक संख्या क्षेत्र के [[हिल्बर्ट वर्ग क्षेत्र]] में एक विशेष रूप से सुंदर उदाहरण पाया जाता है, जिसे ऐसे क्षेत्र के अधिकतम असम्बद्ध गणित में विनिमेय समूह विस्तार के रूप में परिभाषित किया जा सकता है। हिल्बर्ट वर्ग क्षेत्र L एक संख्या क्षेत्र K अद्वितीय है और इसमें निम्नलिखित गुण हैं: | ||
* K के पूर्णांकों के वलय की प्रत्येक आदर्श L में प्रधान बन जाती है, अर्थात, यदि I, K की एक समाकल आदर्श है तो I की छवि L में प्रधान आदर्श है। | * K के पूर्णांकों के वलय की प्रत्येक आदर्श L में प्रधान बन जाती है, अर्थात, यदि I, K की एक समाकल आदर्श है तो I की छवि L में प्रधान आदर्श है। |
Revision as of 10:05, 20 February 2023
This article needs additional citations for verification. (February 2010) (Learn how and when to remove this template message) |
संख्या प्रधान में, एक बीजगणितीय संख्या क्षेत्र K का आदर्श वर्ग समूह (या वर्ग समूह) भागफल समूह है JK/PK जहाँ JK , K के पूर्णांकों के वलय के भिन्नात्मक आदर्शों का समूह है और PK इसके प्रमुख आदर्शों का उपसमूह है। वर्ग समूह इस बात का माप है कि पूर्णांकों के वलय में अद्वितीय गुणनखंडन किस सीमा तक विफल रहता है। समूह का क्रम (समूह सिद्धांत), जो परिमित है, K की वर्ग संख्या कहलाती है।
यह प्रधान डेडेकिंड कार्यक्षेत्र और उनके अंशों के क्षेत्र तक विस्तृत हुआ है, जिसके लिए गुणात्मक गुण वर्ग समूह की संरचना से घनिष्ठ रूप से बंधे हैं। उदाहरण के लिए, डेडेकाइंड कार्यक्षेत्र का वर्ग समूह साधारण है और केवल वलय एक अद्वितीय गुणनखंड क्षेत्र है।
आदर्श वर्ग समूह का इतिहास और उत्पत्ति
प्रभावी रूप से आदर्श वर्ग समूह का अध्ययन एक आदर्श (वृत्तपरिकल्पना) के विचार को तैयार करने से कुछ समय पहले किया गया था। ये समूह द्विघात रूपों के प्रधान में दिखाई दिए: जैसा कि द्विआधारी अभिन्न द्विघात रूपों के स्थिति में कार्ल फ्रेडरिक गॉस द्वारा अंतिम रूप में रखा गया था और एक रचना कानून के रूपों को कुछ समतुल्य वर्गों पर परिभाषित किया गया था। इसने एक परिमित गणित में विनिमेय समूह दिया, जो उस समय पहचाना गया था।
बाद में अर्न्स्ट कुमेर चक्रविक्षिप्त क्षेत्रों के प्रधान की दिशा में काम कर रहे थे। यह सिद्ध किया गया था (सम्भवतः कई लोगों द्वारा) कि फ़र्मा के अंतिम प्रमेय के सामान्य रूपों में एकता के मूलों का उपयोग करके गुणनखंडन द्वारा पूर्ण प्रमाणों को पूरा करने में विफलता एक बहुत अच्छे कारण के लिए थी: अद्वितीय गुणनखंडन की विफलता, अर्थात, अंकगणित का मौलिक प्रमेय एकता की उन मूलों द्वारा उत्पन्न वलय(गणित) में धारण करना एक प्रमुख अवरोध था। कुमेर के कार्य में पहली बार गुणनखंडन में अवरोध का अध्ययन आया। अब हम इसे आदर्श वर्ग समूह के हिस्से के रूप में पहचानते हैं: वास्तव में कुमेर ने उस समूह में एकता के p-मूलों के क्षेत्र के लिए, किसी भी अभाज्य संख्या p के लिए,फ़र्मा प्रश्न पर मानक पद्धति की विफलता के कारण p- आघूर्ण बल को अलग कर दिया था।
कुछ समय बाद फिर से रिचर्ड डेडेकिंड ने आदर्श की अवधारणा तैयार की और कुमेर ने एक अलग तरीके से काम किया। इस बिंदु पर मौजूदा उदाहरणों को एकीकृत किया जा सकता है। यह दिखाया गया था कि बीजगणितीय पूर्णांकों के वलय में हमेशा अभाज्यों में अद्वितीय गुणनखंडन नहीं होता है (क्योंकि उन्हें प्रमुख आदर्श क्षेत्र होने की आवश्यकता नहीं है), उनके पास यह गुण होता है कि प्रत्येक उचित आदर्श प्रधान आदर्शों के उत्पाद के रूप में एक अद्वितीय गुणनखंडन को स्वीकार करता है (अर्थात , बीजगणितीय पूर्णांकों का प्रत्येक वलय एक डेडेकिंड क्षेत्र है)। आदर्श वर्ग समूह के आकार को एक प्रमुख आदर्श क्षेत्र होने से वलय के विचलन के लिए एक उपाय के रूप में माना जा सकता है; एक वलय एक प्रमुख क्षेत्र है अगर इसमें केवल एक साधारण आदर्श वर्ग समूह है।
परिभाषा
जब भी R के शून्येतर अवयव a और b ऐसे हों कि (a)I = (b)J, तो R के शून्येतर भिन्नात्मक आदर्शों पर I ~J द्वारा एक संबंध ~ परिभाषित करें,यदि R एक पूर्णांकीय प्रांत है (यहाँ अंकन (a) का अर्थ R के प्रमुख गुणक से है, जिसमें a के सभी गुणक सम्मिलित हैं।) यह सरलता से दिखाया गया है कि यह एक तुल्यता संबंध है। तुल्यता वर्ग को R का आदर्श वर्ग कहा जाता है।
आदर्श वर्गों को गुणा किया जा सकता है: यदि [I] आदर्श I के तुल्यता वर्ग को दर्शाता है, तो गुणन [I] [J] = [IJ] अच्छी तरह से परिभाषित और क्रमविनिमेय है। प्रमुख गुण आदर्श वर्ग [R] बनाते हैं जो इस गुणन के लिए एक पहचान तत्व के रूप में कार्य करता है। यदि एक आदर्श J है जैसे कि IJ एक प्रमुख आदर्श है तो इस प्रकार एक वर्ग [I] का व्युत्क्रम [J] होता है। सामान्यता, J का अस्तित्व नहीं हो सकता है और फलस्वरूप R के आदर्श वर्गों का समूह केवल एक एकाभ हो सकता है।
हालाँकि, यदि R एक बीजगणितीय संख्या क्षेत्र में बीजगणितीय पूर्णांकों का वलय है, या R का आदर्श वर्ग समूह अधिक सामान्यतः का एक डेडेकिंड क्षेत्र है, तो ऊपर परिभाषित गुणन भिन्नात्मक आदर्श वर्गों के समूह को एक गणित में विनिमेय समूह में बदल देता है। व्युत्क्रम तत्वों के अस्तित्व की समूह संपत्ति इस तथ्य से सरलता से अनुसरण करती है कि, डेडेकिंड कार्यक्षेत्र में, प्रत्येक शून्येतर आदर्श (R को छोड़कर) प्रमुख आदर्शों का एक उत्पाद है।
गुण
आदर्श वर्ग समूह साधारण है (अर्थात् केवल एक तत्व है) यदि केवल R के सभी आदर्श प्रमुख हैं। इस अर्थ में, आदर्श वर्ग समूह यह मापता है कि R एक प्रमुख आदर्श क्षेत्र होने से कितना दूर है और इसलिए अद्वितीय प्रधान गुणनखंड को संतुष्ट करने से (डेडेकिंड कार्यक्षेत्र अद्वितीय गुणनखंड क्षेत्र हैं, यदि केवल वे प्रमुख आदर्श क्षेत्र हैं)।
आदर्श वर्गों की संख्या (R की वर्ग संख्या) सामान्य रूप से अनंत हो सकता है। वास्तव में, प्रत्येक गणित में विनिमेय समूह कुछ डेडेकाइंड कार्यक्षेत्र के आदर्श वर्ग समूह के लिए समरूप है।[1] लेकिन यदि R वास्तव में बीजगणितीय पूर्णांकों का एक वलय है, तो वर्ग संख्या हमेशा परिमित होती है। यह उत्तम बीजगणितीय संख्या प्रधान के मुख्य परिणामों में से एक है।
मिन्कोव्स्की की सीमा का उपयोग करते हुए वर्ग समूह की गणना सामान्यतःछोटे विभेदक के बीजगणितीय संख्या क्षेत्र में पूर्णांकों के वलय के लिए हाथ से किया जा सकता है। यह परिणाम वलय के आधार पर एक सीमा देता है, जैसे कि प्रत्येक आदर्श वर्ग में सीमा से कम एक आदर्श मानदंड होता है। सामान्यतः सीमा बहुत प्रखर नहीं है कि बड़े विभेदक वाले क्षेत्रों के लिए गणना को व्यावहारिक बनाया जा सके, लेकिन कंप्यूटर इस कार्य के लिए उपयुक्त हैं।
पूर्णांक R के वलय से उनके संबंधित वर्ग समूहों के लिए मानचित्रण क्रियात्मक है, और वर्ग समूह को बीजगणितीय K- प्रधान के शीर्षक के तहत सम्मिलित किया जा सकता है, K0(R)) R को इसके आदर्श वर्ग समूह को नियत करने वाला कारकीय है; अधिक शुद्ध रुप से, K0(R) =Z×C(R), जहां C(R) वर्ग समूह है। पूर्णांकों के वलयों के संबंध में उच्च K समूहों को अंकगणितीय रूप से नियोजित और व्याख्यायित किया जा सकता है।
इकाइयों के समूह के साथ संबंध
ऊपर यह टिप्पणी की गई थी कि आदर्श वर्ग समूह इस प्रश्न के उत्तर का एक भाग प्रदान करता है कि डेडेकाइंड क्षेत्र में कितने आदर्श तत्वों की तरह व्यवहार करते हैं। उत्तर का दूसरा भाग डेडेकाइंड कार्यक्षेत्र की इकाइयों के गुणात्मक समूह द्वारा प्रदान किया गया है, क्योंकि प्रमुख आदर्शों से उनके जनित्र तक जाने के लिए इकाइयों के उपयोग की आवश्यकता होती है (और यह भिन्नात्मक आदर्श की अवधारणा को प्रस्तुत करने का शेष कारण है, जैसा कि कुंआ):
प्रत्येक तत्व के उत्पन्न होने वाले प्रमुख(आंशिक) आदर्श के लिए भेजकर R× से R के सभी शून्येतर आंशिक आदर्शों के समूह में एक मानचित्र परिभाषित करें। यह एक समूह समरूपता है; इसका मध्यभाग (बीजगणित) R की इकाइयों का समूह है, और इसका सह मध्यभाग R का आदर्श वर्ग समूह है। इन समूहों के साधारण होने की विफलता एक समरूपता होने के लिए मानचित्र की विफलता का एक उपाय है: यह आदर्शों की विफलता है जो वलय तत्वों की तरह कार्य करती है, अर्थात संख्याओं की तरह।
आदर्श वर्ग समूहों के उदाहरण
- वलय Z, Z[ω], और Z[i], जहां ω 1 का घनमूल है और i 1 का चौथा मूल है (अर्थात् −1 का वर्गमूल), सभी प्रमुख आदर्श कार्यक्षेत्र हैं (और वास्तव में सभी यूक्लिडीय क्षेत्र हैं), और इसलिए वर्ग संख्या 1 है: अर्थात, उनके पास साधारण आदर्श वर्ग समूह हैं।
- यदि k एक क्षेत्र है, तो बहुपद वलय k[X1, X2, X3, ...] एक अभिन्न क्षेत्र है। इसमें आदर्श वर्गों का एक अनगिनत अनंत समूह है।
द्विघात क्षेत्रों की वर्ग संख्या
यदि d 1 के अतिरिक्त एक वर्ग-मुक्त पूर्णांक (विभिन्न अभाज्य संख्याओं का गुणनफल) है, तो 'Q'(√d) Q का द्विघात विस्तार है। यदि d < 0, तो Q(√d) के बीजगणितीय पूर्णांकों के वलय R की वर्ग संख्या 1 के बराबर है, ठीक d के निम्नलिखित मानों के लिए: d = −1, −2, −3, −7, −11 , -19, -43, -67, और -163। यह परिणाम पहले गॉस द्वारा अनुमान लगाया गया था और कर्ट हेगनर द्वारा सिद्ध किया गया था, हालांकि हेगनेर के प्रमाण पर तब तक विश्वास नहीं किया गया था जब तक हेरोल्ड स्टार्क ने 1967 में बाद का प्रमाण नहीं दिया था। ((देखें स्टार्क-हेगनेर प्रमेय।) यह प्रसिद्ध वर्ग संख्या प्रश्न की एक विशेष स्थिति है। .
यदि, दूसरी ओर, d > 0, तो यह अज्ञात है कि कक्षा संख्या 1 के साथ अपरिमित रूप से अनेक क्षेत्र Q(√d) हैं या नहीं। अभिकलनात्मक परिणाम बताते हैं कि बहुत ऐसे क्षेत्र हैं। हालाँकि, यह भी ज्ञात नहीं है कि वर्ग संख्या 1 के साथ असीम रूप से कई संख्याएँ हैं।[2][3]
d< 0 के लिए, Q(√d) का आदर्श वर्ग समूह, Q(√d) के विभेदक के बराबर विभेदक के अभिन्न द्विआधारी द्विघात रूपों के वर्ग समूह के लिए समरूप है। d > 0 के लिए, आदर्श वर्ग समूह आधे आकार का हो सकता है क्योंकि पूर्णांक द्विघात रूपों का वर्ग समूह Q(√d) के संकीर्ण वर्ग समूह के लिए समरूप है।[4]
वास्तविक द्विघात पूर्णांक वलयों के लिए, वर्ग संख्या OEIS A003649 में दी गई है; काल्पनिक स्थिति के लिए, उन्हें OEIS A000924 में दिया गया है।
गैर-साधारण वर्ग समूह का उदाहरण
द्विघात पूर्णांक वलय R = 'Z' [√−5] Q(√−5) के पूर्णांकों का वलय है। इसमें अद्वितीय गुणनखंड नहीं है; वास्तव में R का वर्ग समूह क्रम 2 का चक्रीय है। वास्तव में, आदर्श
- J = (2, 1 + √−5)
प्रधान नहीं है, जिसे विरोधाभास द्वारा निम्नानुसार सिद्ध किया जा सकता है। का एक आदर्श कार्य है , जो संतुष्ट करता है , और अगर और केवल अगर में एक इकाई है। सबसे पहले, , क्योंकि भागफल का वलय मापांक आदर्श के लिए समरूप है , ताकि भागफल का वलय मापांक के लिए समरूप है . यदि J को R के एक तत्व x द्वारा उत्पन्न किया गया था, तो x 2 और 1 + √−5 दोनों को विभाजित करेगा। फिर आदर्श दोनों को विभाजित करेगा और , इसलिए N(x) 2 को विभाजित करेगा। यदि , तब एक इकाई है, और , एक विरोधाभास। लेकिन 2 भी नहीं हो सकता है, क्योंकि R में मानक 2 के कोई तत्व नहीं हैं, क्योंकि डायोफैंटाइन समीकरण का पूर्णांकों में कोई समाधान नहीं है, क्योंकि इसका कोई समाधान मापांक 5 नहीं है।
एक यह भी गणना करता है कि J2 = (2), जो कि प्रधान है, इसलिए आदर्श वर्ग समूह में J के वर्ग का क्रम दो है। यह दिखाने के लिए कि कोई अन्य आदर्श वर्ग नहीं है, अधिक प्रयास की आवश्यकता है।
तथ्य यह है कि यह J प्रधाननहीं है, इस तथ्य से भी संबंधित है कि तत्व 6 में दो अलग-अलग गुणनखंड हैं:
- 6 = 2 × 3 = (1 + √−5) × (1 − √−5).
वर्ग क्षेत्र प्रधान से सम्बन्ध
वर्ग क्षेत्र प्रधान बीजगणितीय संख्या प्रधान की एक शाखा है जो किसी दिए गए बीजगणितीय संख्या क्षेत्र के सभी गणित में विनिमेय समूह सिद्धांतों को वर्गीकृत करना चाहता है, जिसका अर्थ है गणित में विनिमेय समूह गाल्वा समूह के साथ गाल्वा क्षेत्र। एक संख्या क्षेत्र के हिल्बर्ट वर्ग क्षेत्र में एक विशेष रूप से सुंदर उदाहरण पाया जाता है, जिसे ऐसे क्षेत्र के अधिकतम असम्बद्ध गणित में विनिमेय समूह विस्तार के रूप में परिभाषित किया जा सकता है। हिल्बर्ट वर्ग क्षेत्र L एक संख्या क्षेत्र K अद्वितीय है और इसमें निम्नलिखित गुण हैं:
- K के पूर्णांकों के वलय की प्रत्येक आदर्श L में प्रधान बन जाती है, अर्थात, यदि I, K की एक समाकल आदर्श है तो I की छवि L में प्रधान आदर्श है।
- L, K के आदर्श वर्ग समूह के लिए गाल्वा समूह समरूप के साथ K का एक गाल्वा विस्तार है।
किसी भी संपत्ति को सिद्ध करना विशेष रूप से आसान नहीं है।
यह भी देखें
- वर्ग संख्या सूत्र
- कक्षा संख्या प्रश्न
- ब्राउर-सीगल प्रमेय- वर्ग संख्या के लिए एक स्पर्शोन्मुख विश्लेषण सूत्र
- वर्ग संख्या एक के साथ संख्या क्षेत्रों की सूची
- प्रधान आदर्श कार्यक्षेत्र
- बीजगणितीय K-सिद्धांत
- गाल्वा सिद्धांत
- फर्मेट की अंतिम प्रमेय
- संकीर्ण वर्ग समूह
- पिकार्ड समूह—बीजगणितीय ज्यामिति में दिखने वाले वर्ग समूह का एक सामान्यीकरण
- अरकेलोव वर्ग समूह
टिप्पणियाँ
- ↑ Claborn 1966
- ↑ Neukirch 1999
- ↑ Gauss 1700
- ↑ Fröhlich & Taylor 1993, Theorem 58
संदर्भ
- Claborn, Luther (1966), "Every abelian group is a class group", Pacific Journal of Mathematics, 18 (2): 219–222, doi:10.2140/pjm.1966.18.219
- Fröhlich, Albrecht; Taylor, Martin (1993), Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, ISBN 978-0-521-43834-6, MR 1215934
- Neukirch, Jürgen (1999). Algebraische Zahlentheorie. Grundlehren der mathematischen Wissenschaften. Vol. 322. Berlin: Springer-Verlag. ISBN 978-3-540-65399-8. MR 1697859. Zbl 0956.11021.