वेटमैन अभिगृहीत: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
{{Short description|Axiomatization of quantum field theory}}
{{Short description|Axiomatization of quantum field theory}}
{{Quantum field theory|cTopic=Tools}}
{{Quantum field theory|cTopic=Tools}}
[[गणितीय भौतिकी]] में, '''वाइटमैन अभिगृहीत''' (जिसे गार्डिंग-वाइटमैन अभिगृहीत भी कहा जाता है),<ref>{{cite web |url=http://www.encyclopediaofmath.org/index.php/Hilbert_problems |title=Hilbert's sixth problem.|website= Encyclopedia of Mathematics |access-date= 14 July 2014}}</ref><ref>{{cite web| url=http://www.sydsvenskan.se/familj/minnesord/lars-garding/ |title=Lars Gårding – Sydsvenskan |publisher=Sydsvenskan.se |access-date= 14 July 2014}}</ref> [[आर्थर वाइटमैन]] के नाम पर,<ref>A. S. Wightman, , "Fields as Operator-valued Distributions in Relativistic Quantum Theory," ''Arkiv f. Fysik, Kungl. Svenska Vetenskapsak.'' '''28''', 129–189 (1964).</ref> [[क्वांटम क्षेत्र सिद्धांत]] के गणितीय रूप से कठोर सूत्रीकरण का प्रयास किया गया है। आर्थर वाइटमैन ने 1950 के दशक की प्रारंभ में अभिगृहीतों का सूत्रपात किया था,<ref>[https://ncatlab.org/nlab/show/Wightman+axioms Wightman axioms] in nLab.</ref> किन्तु उन्हें पहली बार केवल 1964 में प्रकाशित किया गया था ।<ref>[[Ray Streater|R. F. Streater]] and [[Arthur Wightman|A. S. Wightman]], ''PCT, Spin and Statistics and All That'', Princeton University Press, Landmarks in Mathematics and Physics, 2000 (1st edn., New York, Benjamin 1964).</ref> जब हाग-रूएल प्रकीर्णन सिद्धांत ने<ref>[[Rudolf Haag|R. Haag]] (1958), "Quantum field theories with opposite particles and asymptotic conditions," ''Phys. Rev.'' '''112'''.</ref><ref>[[D. Ruelle]] (1962), "On the asymptotic condition in quantum field theory," ''Helv. Phys. Acta'' '''35'''.</ref> उनके महत्व की पुष्टि की थी।
[[गणितीय भौतिकी]] में, '''वाइटमैन स्वयंसिद्ध''' (जिसे गार्डिंग-वाइटमैन स्वयंसिद्ध भी कहा जाता है),<ref>{{cite web |url=http://www.encyclopediaofmath.org/index.php/Hilbert_problems |title=Hilbert's sixth problem.|website= Encyclopedia of Mathematics |access-date= 14 July 2014}}</ref><ref>{{cite web| url=http://www.sydsvenskan.se/familj/minnesord/lars-garding/ |title=Lars Gårding – Sydsvenskan |publisher=Sydsvenskan.se |access-date= 14 July 2014}}</ref> [[आर्थर वाइटमैन]] के नाम पर,<ref>A. S. Wightman, , "Fields as Operator-valued Distributions in Relativistic Quantum Theory," ''Arkiv f. Fysik, Kungl. Svenska Vetenskapsak.'' '''28''', 129–189 (1964).</ref> [[क्वांटम क्षेत्र सिद्धांत]] के गणितीय रूप से कठोर सूत्रीकरण का प्रयास किया गया है। आर्थर वाइटमैन ने 1950 के दशक की प्रारंभ में अभिगृहीतों का सूत्रपात किया था,<ref>[https://ncatlab.org/nlab/show/Wightman+axioms Wightman axioms] in nLab.</ref> किन्तु उन्हें पहली बार केवल 1964 में प्रकाशित किया गया था ।<ref>[[Ray Streater|R. F. Streater]] and [[Arthur Wightman|A. S. Wightman]], ''PCT, Spin and Statistics and All That'', Princeton University Press, Landmarks in Mathematics and Physics, 2000 (1st edn., New York, Benjamin 1964).</ref> जब हाग-रूएल प्रकीर्णन सिद्धांत ने<ref>[[Rudolf Haag|R. Haag]] (1958), "Quantum field theories with opposite particles and asymptotic conditions," ''Phys. Rev.'' '''112'''.</ref><ref>[[D. Ruelle]] (1962), "On the asymptotic condition in quantum field theory," ''Helv. Phys. Acta'' '''35'''.</ref> उनके महत्व की पुष्टि की थी।


यह सिद्धांत [[रचनात्मक क्वांटम क्षेत्र सिद्धांत]] के संदर्भ में उपस्थित हैं और क्वांटम क्षेत्रों के कठोर उपचार के लिए आधार प्रदान करने के लिए हैं और उपयोग की जाने वाली परेशान करने वाली विधियों के लिए सख्त आधार हैं। सहस्राब्दी समस्याओं में से यांग-मिल्स क्षेत्रों के मामले में यांग-मिल्स के अस्तित्व और बड़े पैमाने पर अंतर को समझना है।
यह सिद्धांत [[रचनात्मक क्वांटम क्षेत्र सिद्धांत]] के संदर्भ में उपस्थित हैं और क्वांटम क्षेत्रों के कठोर उपचार के लिए आधार प्रदान करने के लिए हैं और उपयोग की जाने वाली परेशान करने वाली विधियों के लिए सख्त आधार हैं। सहस्राब्दी समस्याओं में से यांग-मिल्स क्षेत्रों के मामले में यांग-मिल्स के अस्तित्व और बड़े पैमाने पर अंतर को समझना है।
Line 8: Line 8:
वाइटमैन सिद्धांतों का मूल विचार यह है कि हिल्बर्ट एक स्थान है, जिस पर पॉइंकेयर समूह [[एकात्मक प्रतिनिधित्व]] करते है। इस प्रकार, ऊर्जा, संवेग, कोणीय संवेग और द्रव्यमान के केंद्र (बूस्ट के अनुरूप) की अवधारणाओं को प्रायुक्त किया जाता है।
वाइटमैन सिद्धांतों का मूल विचार यह है कि हिल्बर्ट एक स्थान है, जिस पर पॉइंकेयर समूह [[एकात्मक प्रतिनिधित्व]] करते है। इस प्रकार, ऊर्जा, संवेग, कोणीय संवेग और द्रव्यमान के केंद्र (बूस्ट के अनुरूप) की अवधारणाओं को प्रायुक्त किया जाता है।


एक स्थिरता धारणा यह भी है, कि चार-गति के स्पेक्ट्रम को सकारात्मक [[प्रकाश शंकु]] (और इसकी सीमा) तक सीमित करती है। हालांकि, यह इलाके के सिद्धांत को प्रायुक्त करने के लिए पर्याप्त नहीं है। उसके लिए, वाइटमैन अभिगृहीतों में स्थिति-निर्भर संचालिकाएँ होती हैं जिन्हें क्वांटम फ़ील्ड कहा जाता है, जो पॉइंकेयर समूह के सहपरिवर्ती निरूपण बनाती हैं।
एक स्थिरता धारणा यह भी है, कि चार-गति के स्पेक्ट्रम को सकारात्मक [[प्रकाश शंकु]] (और इसकी सीमा) तक सीमित करती है। हालांकि, यह इलाके के सिद्धांत को प्रायुक्त करने के लिए पर्याप्त नहीं है। उसके लिए, वाइटमैन स्वयंसिद्धों में स्थिति-निर्भर संचालिकाएँ होती हैं जिन्हें क्वांटम फ़ील्ड कहा जाता है, जो पॉइंकेयर समूह के सहपरिवर्ती निरूपण बनाती हैं।


चूंकि क्वांटम क्षेत्र सिद्धांत [[पराबैंगनी विचलन]] से ग्रस्त है, एक बिंदु पर क्षेत्र का मान अच्छी प्रकार से परिभाषित नहीं है। इसके आस-पास जाने के लिए, वाइटमैन अभिगृहीत यूवी भिन्नता को वश में करने के लिए परीक्षण फलन पर धब्बा लगाने का विचार प्रस्तुत करते हैं, जो [[मुक्त क्षेत्र सिद्धांत]] में भी उत्पन्न होता है। चूँकि अभिगृहीत असंबद्ध संचालकों के साथ व्यवहार कर रहे हैं, इसलिए संचालकों के डोमेन को निर्दिष्ट करना होगा।
चूंकि क्वांटम क्षेत्र सिद्धांत [[पराबैंगनी विचलन]] से ग्रस्त है, एक बिंदु पर क्षेत्र का मान अच्छी प्रकार से परिभाषित नहीं है। इसके आस-पास जाने के लिए, वाइटमैन स्वयंसिद्ध यूवी भिन्नता को वश में करने के लिए परीक्षण फलन पर धब्बा लगाने का विचार प्रस्तुत करते हैं, जो [[मुक्त क्षेत्र सिद्धांत]] में भी उत्पन्न होता है। चूँकि अभिगृहीत असंबद्ध संचालकों के साथ व्यवहार कर रहे हैं, इसलिए संचालकों के डोमेन को निर्दिष्ट करना होगा।


वाइटमैन अभिगृहीत स्पेसिक जैसे अलग-अलग क्षेत्रों के बीच या तो क्रम विनिमेयता या विरोधी क्रमविनिमेयता को प्रायुक्त करके सिद्धांत के कारण संरचना को प्रतिबंधित करते हैं।
वाइटमैन स्वयंसिद्ध स्पेसिक जैसे अलग-अलग क्षेत्रों के बीच या तो क्रम विनिमेयता या विरोधी क्रमविनिमेयता को प्रायुक्त करके सिद्धांत के कारण संरचना को प्रतिबंधित करते हैं।


वे [[निर्वात अवस्था]] कहे जाने वाले पॉइनकेयर-इनवेरिएंट अवस्था के अस्तित्व को भी मानते हैं और इसे अद्वितीय होने की मांग करते हैं। इसके अतिरिक्त, अभिगृहीत मानते हैं कि निर्वात चक्रीय है, अर्थात, धुंधले क्षेत्र संचालकों द्वारा उत्पन्न बहुपद बीजगणित के निर्वात-अवस्था तत्वों पर मूल्यांकन करके प्राप्त किए जाने वाले सभी सदिशों का समुच्चय पूरे [[हिल्बर्ट अंतरिक्ष]] का सघन उपसमुच्चय है।
वे [[निर्वात अवस्था]] कहे जाने वाले पॉइनकेयर-इनवेरिएंट अवस्था के अस्तित्व को भी मानते हैं और इसे अद्वितीय होने की मांग करते हैं। इसके अतिरिक्त, अभिगृहीत मानते हैं कि निर्वात चक्रीय है, अर्थात, धुंधले क्षेत्र संचालकों द्वारा उत्पन्न बहुपद बीजगणित के निर्वात-अवस्था तत्वों पर मूल्यांकन करके प्राप्त किए जाने वाले सभी सदिशों का समुच्चय पूरे [[हिल्बर्ट अंतरिक्ष]] का सघन उपसमुच्चय है।
Line 42: Line 42:
स्पेसटाइम अनुवाद का समूह [[विनिमेय]] है, और इसलिए ऑपरेटरों को साथ विकर्ण किया जा सकता है। इन समूहों के जनरेटर हमें चार स्व-संयोजक संकारक <math>P_0, P_j,\ j = 1, 2, 3,</math> देते हैं जो सजातीय समूह के अनुसार एक चार-वेक्टर के रूप में परिवर्तित होता है, जिसे ऊर्जा-संवेग चार-वेक्टर कहा जाता है।
स्पेसटाइम अनुवाद का समूह [[विनिमेय]] है, और इसलिए ऑपरेटरों को साथ विकर्ण किया जा सकता है। इन समूहों के जनरेटर हमें चार स्व-संयोजक संकारक <math>P_0, P_j,\ j = 1, 2, 3,</math> देते हैं जो सजातीय समूह के अनुसार एक चार-वेक्टर के रूप में परिवर्तित होता है, जिसे ऊर्जा-संवेग चार-वेक्टर कहा जाता है।


वेटमैन के ज़ीरोथ अभिगृहीत का दूसरा भाग यह है कि प्रतिनिधित्व U(a, A) वर्णक्रमीय स्थिति को पूरा करता है{{snd}} कि ऊर्जा-संवेग का साथ स्पेक्ट्रम आगे के शंकु में समाहित है:
वेटमैन के ज़ीरोथ स्वयंसिद्ध का दूसरा भाग यह है कि प्रतिनिधित्व U(a, A) वर्णक्रमीय स्थिति को पूरा करता है{{snd}} कि ऊर्जा-संवेग का साथ स्पेक्ट्रम आगे के शंकु में समाहित है:


: <math>P_0 \geq 0, \quad P_0^2 - P_j P_j \geq 0.</math>
: <math>P_0 \geq 0, \quad P_0^2 - P_j P_j \geq 0.</math>
अभिगृहीत का तीसरा भाग यह है कि हिल्बर्ट अंतरिक्ष में किरण द्वारा प्रतिनिधित्व किया गया अद्वितीय अवस्था है, जो पोंकारे समूह की कार्रवाई के अनुसार अपरिवर्तनीय है। इसे निर्वात कहते हैं।
स्वयंसिद्ध का तीसरा भाग यह है कि हिल्बर्ट अंतरिक्ष में किरण द्वारा प्रतिनिधित्व किया गया अद्वितीय अवस्था है, जो पोंकारे समूह की कार्रवाई के अनुसार अपरिवर्तनीय है। इसे निर्वात कहते हैं।


=== डब्लू1 (डोमेन और क्षेत्र की निरंतरता पर धारणाएं) ===
=== डब्लू1 (डोमेन और क्षेत्र की निरंतरता पर धारणाएं) ===
Line 59: Line 59:
यदि दो क्षेत्रों के समर्थन [[अंतरिक्ष की तरह|अंतरिक्ष की प्रकार]] अलग हो जाते हैं, तो क्षेत्र या तो आवागमन या प्रतिगामी होते हैं।
यदि दो क्षेत्रों के समर्थन [[अंतरिक्ष की तरह|अंतरिक्ष की प्रकार]] अलग हो जाते हैं, तो क्षेत्र या तो आवागमन या प्रतिगामी होते हैं।


निर्वात की चक्रीयता और निर्वात की विशिष्टता को कभी-कभी अलग-अलग माना जाता है। साथ ही, स्पर्शोन्मुख पूर्णता का गुण भी है{{snd}} वह हिल्बर्ट अवस्था स्पेस को <math>H^\text{in}</math> और <math>H^\text{out}</math> में स्पर्शोन्मुख स्पेस द्वारा फैला हुआ है, जो टक्कर [[एस मैट्रिक्स]] में दिखाई दे रहा है। क्षेत्र सिद्धांत की अन्य महत्वपूर्ण गुण द्रव्यमान अंतराल है, जो अभिगृहीतों द्वारा आवश्यक नहीं है{{snd}} उस ऊर्जा-संवेग स्पेक्ट्रम में शून्य और कुछ सकारात्मक संख्या के बीच का अंतर होता है।
निर्वात की चक्रीयता और निर्वात की विशिष्टता को कभी-कभी अलग-अलग माना जाता है। साथ ही, स्पर्शोन्मुख पूर्णता का गुण भी है{{snd}} वह हिल्बर्ट अवस्था स्पेस को <math>H^\text{in}</math> और <math>H^\text{out}</math> में स्पर्शोन्मुख स्पेस द्वारा फैला हुआ है, जो टक्कर [[एस मैट्रिक्स]] में दिखाई दे रहा है। क्षेत्र सिद्धांत की अन्य महत्वपूर्ण गुण द्रव्यमान अंतराल है, जो स्वयंसिद्धों द्वारा आवश्यक नहीं है{{snd}} उस ऊर्जा-संवेग स्पेक्ट्रम में शून्य और कुछ सकारात्मक संख्या के बीच का अंतर होता है।


== अभिगृहीतों के परिणाम ==
== स्वयंसिद्धों के परिणाम ==
इन अभिगृहीतों से, कुछ सामान्य प्रमेय अनुसरण करते हैं:
इन स्वयंसिद्धों से, कुछ सामान्य प्रमेय अनुसरण करते हैं:
* [[सीपीटी प्रमेय]] - समता के परिवर्तन, कण-प्रतिकण उत्क्रमण और समय व्युत्क्रम के अनुसार सामान्य समरूपता है (इनमें से कोई भी समरूपता अकेले प्रकृति में उपस्थित नहीं है, जैसा कि यह निकला)।
* [[सीपीटी प्रमेय]] - समता के परिवर्तन, कण-प्रतिकण उत्क्रमण और समय व्युत्क्रम के अनुसार सामान्य समरूपता है (इनमें से कोई भी समरूपता अकेले प्रकृति में उपस्थित नहीं है, जैसा कि यह निकला)।
* [[स्पिन (भौतिकी)|घूर्णन (भौतिकी)]] और आँकड़ा के बीच संबंध - क्षेत्र जो आधे पूर्णांक घूर्णन एंटीकॉम्यूट के अनुसार रूपांतरित होते हैं, चूँकि पूर्णांक घूर्णन वाले लोग कम्यूट (स्वयं डब्लू3) के साथ करते हैं। इस प्रमेय में वास्तव में तकनीकी सूक्ष्म विवरण हैं। [[क्लेन परिवर्तन]] का उपयोग करके इसे ठीक किया जा सकता है। बीआरएसटी औपचारिकता में [[parastatistics|पैरासांख्यिकी]] और घोस्ट भी देखें।
* [[स्पिन (भौतिकी)|घूर्णन (भौतिकी)]] और आँकड़ा के बीच संबंध - क्षेत्र जो आधे पूर्णांक घूर्णन एंटीकॉम्यूट के अनुसार रूपांतरित होते हैं, चूँकि पूर्णांक घूर्णन वाले लोग कम्यूट (स्वयं डब्लू3) के साथ करते हैं। इस प्रमेय में वास्तव में तकनीकी सूक्ष्म विवरण हैं। [[क्लेन परिवर्तन]] का उपयोग करके इसे ठीक किया जा सकता है। बीआरएसटी औपचारिकता में [[parastatistics|पैरासांख्यिकी]] और घोस्ट भी देखें।
* [[सुपरल्यूमिनल संचार]] की असंभवता - यदि दो ऑब्जर्वर स्पेसलाइक अलग हो जाते हैं, तो ऑब्जर्वर की हरकतें (हैमिल्टनियन में माप और परिवर्तन दोनों सहित) दूसरे ऑब्जर्वर के माप के आंकड़ों को प्रभावित नहीं करती हैं।<ref>{{citation |last1=Eberhard |first1=Phillippe H. |last2=Ross |first2=Ronald R.|title=Quantum field theory cannot provide faster than light communication |year=1989 | journal=Foundations of Physics Letters | volume=2 | issue=2 |pages=127–149 |doi=10.1007/bf00696109 |bibcode=1989FoPhL...2..127E |url=http://www.escholarship.org/uc/item/5604n7md }}</ref>
* [[सुपरल्यूमिनल संचार]] की असंभवता - यदि दो ऑब्जर्वर स्पेसलाइक अलग हो जाते हैं, तो ऑब्जर्वर की हरकतें (हैमिल्टनियन में माप और परिवर्तन दोनों सहित) दूसरे ऑब्जर्वर के माप के आंकड़ों को प्रभावित नहीं करती हैं।<ref>{{citation |last1=Eberhard |first1=Phillippe H. |last2=Ross |first2=Ronald R.|title=Quantum field theory cannot provide faster than light communication |year=1989 | journal=Foundations of Physics Letters | volume=2 | issue=2 |pages=127–149 |doi=10.1007/bf00696109 |bibcode=1989FoPhL...2..127E |url=http://www.escholarship.org/uc/item/5604n7md }}</ref>
आर्थर वाइटमैन ने दिखाया कि वैक्यूम अपेक्षा मूल्य वितरण, गुणों के कुछ समुच्चय को संतुष्ट करते हैं, जो अभिगृहीतों से अनुसरण करते हैं, क्षेत्र सिद्धांत के पुनर्निर्माण के लिए पर्याप्त हैं - [[वेटमैन पुनर्निर्माण प्रमेय]], जिसमें निर्वात स्थिति का अस्तित्व सम्मिलित है; उन्होंने निर्वात की विशिष्टता की गारंटी देने वाले निर्वात अपेक्षा मूल्यों पर स्थिति नहीं पाई; यह स्थिति, [[क्लस्टर अपघटन]], बाद में [[रेस जोस्ट]], [[क्लॉस हेप]], [[डेविड रूएल]] और [[ओथमर स्टेनमैन]] द्वारा पाया गया था।
आर्थर वाइटमैन ने दिखाया कि वैक्यूम अपेक्षा मूल्य वितरण, गुणों के कुछ समुच्चय को संतुष्ट करते हैं, जो स्वयंसिद्धों से अनुसरण करते हैं, क्षेत्र सिद्धांत के पुनर्निर्माण के लिए पर्याप्त हैं - [[वेटमैन पुनर्निर्माण प्रमेय]], जिसमें निर्वात स्थिति का अस्तित्व सम्मिलित है; उन्होंने निर्वात की विशिष्टता की गारंटी देने वाले निर्वात अपेक्षा मूल्यों पर स्थिति नहीं पाई; यह स्थिति, [[क्लस्टर अपघटन]], बाद में [[रेस जोस्ट]], [[क्लॉस हेप]], [[डेविड रूएल]] और [[ओथमर स्टेनमैन]] द्वारा पाया गया था।


यदि सिद्धांत में द्रव्यमान अंतर है, अर्थात 0 के बीच कोई द्रव्यमान नहीं है और शून्य से अधिक कुछ स्थिर है, तो वैक्यूम अपेक्षा मूल्य वितरण दूर के क्षेत्रों में विषम रूप से स्वतंत्र हैं।
यदि सिद्धांत में द्रव्यमान अंतर है, अर्थात 0 के बीच कोई द्रव्यमान नहीं है और शून्य से अधिक कुछ स्थिर है, तो वैक्यूम अपेक्षा मूल्य वितरण दूर के क्षेत्रों में विषम रूप से स्वतंत्र हैं।
Line 75: Line 75:
वेटमैन ढांचे में परिमित-तापमान अवस्थाओं जैसे अनंत-ऊर्जा अवस्थाओं को सम्मिलित नहीं किया गया है।
वेटमैन ढांचे में परिमित-तापमान अवस्थाओं जैसे अनंत-ऊर्जा अवस्थाओं को सम्मिलित नहीं किया गया है।


[[स्थानीय क्वांटम क्षेत्र सिद्धांत]] के विपरीत, वाइटमैन अभिगृहीत सिद्धांत के कारण संरचना को प्रमेय के रूप में प्राप्त करने के अतिरिक्त, स्प्रस्तुतियली अलग-अलग क्षेत्रों के बीच या तो कम्यूटेटिविटी या एंटीकॉम्यूटेटिविटी को प्रायुक्त करके स्पष्ट रूप से प्रतिबंधित करते हैं। यदि कोई 4 के अतिरिक्त अन्य आयामों के लिए वेटमैन के अभिगृहीतों के सामान्यीकरण पर विचार करता है, तो यह (विरोधी) क्रमानुक्रमणीयता निम्न आयामों में किसी भी और चोटी के आँकड़ों को नियमबद्ध करती है।
[[स्थानीय क्वांटम क्षेत्र सिद्धांत]] के विपरीत, वाइटमैन स्वयंसिद्ध सिद्धांत के कारण संरचना को प्रमेय के रूप में प्राप्त करने के अतिरिक्त, स्प्रस्तुतियली अलग-अलग क्षेत्रों के बीच या तो कम्यूटेटिविटी या एंटीकॉम्यूटेटिविटी को प्रायुक्त करके स्पष्ट रूप से प्रतिबंधित करते हैं। यदि कोई 4 के अतिरिक्त अन्य आयामों के लिए वेटमैन के स्वयंसिद्धों के सामान्यीकरण पर विचार करता है, तो यह (विरोधी) क्रमानुक्रमणीयता निम्न आयामों में किसी भी और चोटी के आँकड़ों को नियमबद्ध करती है।


अद्वितीय निर्वात स्थिति का वाइटमैन अभिधारणा आवश्यक रूप से वाइटमैन अभिगृहीतों को सहज समरूपता के टूटने के मामले में अनुपयुक्त नहीं बनाता है क्योंकि हम हमेशा स्वयं को [[सुपरसेलेक्शन सेक्टर]] तक सीमित कर सकते हैं।
अद्वितीय निर्वात स्थिति का वाइटमैन अभिधारणा आवश्यक रूप से वाइटमैन स्वयंसिद्धों को सहज समरूपता के टूटने के मामले में अनुपयुक्त नहीं बनाता है क्योंकि हम हमेशा स्वयं को [[सुपरसेलेक्शन सेक्टर]] तक सीमित कर सकते हैं।


वेटमैन अभिगृहीतों द्वारा मांगे गए निर्वात की चक्रीयता का अर्थ है कि वे निर्वात के केवल सुपरसलेक्शन क्षेत्र का वर्णन करते हैं; फिर से, यह व्यापकता का एक बड़ा हानि नहीं है। चूँकि यह धारणा सॉलिटॉन जैसी परिमित-ऊर्जा अवस्थाओं को छोड़ देती है, जो परीक्षण कार्यों द्वारा लिप्त क्षेत्रों के बहुपद द्वारा उत्पन्न नहीं की जा सकती क्योंकि कम से कम क्षेत्र-सैद्धांतिक दृष्टिकोण से एक सॉलिटॉन एक वैश्विक संरचना है जिसमें अनंत पर स्थलीय सीमा की स्थिति सम्मिलित है।
वेटमैन स्वयंसिद्धों द्वारा मांगे गए निर्वात की चक्रीयता का अर्थ है कि वे निर्वात के केवल सुपरसलेक्शन क्षेत्र का वर्णन करते हैं; फिर से, यह व्यापकता का एक बड़ा हानि नहीं है। चूँकि यह धारणा सॉलिटॉन जैसी परिमित-ऊर्जा अवस्थाओं को छोड़ देती है, जो परीक्षण कार्यों द्वारा लिप्त क्षेत्रों के बहुपद द्वारा उत्पन्न नहीं की जा सकती क्योंकि कम से कम क्षेत्र-सैद्धांतिक दृष्टिकोण से एक सॉलिटॉन एक वैश्विक संरचना है जिसमें अनंत पर स्थलीय सीमा की स्थिति सम्मिलित है।


वेटमैन ढांचे में [[प्रभावी क्षेत्र सिद्धांत]] सम्मिलित नहीं है क्योंकि परीक्षण कार्य का समर्थन कितना छोटा हो सकता है इसकी कोई सीमा नहीं है। अर्थात् कोई [[कटऑफ (भौतिकी)]] मापदंड नहीं है।
वेटमैन ढांचे में [[प्रभावी क्षेत्र सिद्धांत]] सम्मिलित नहीं है क्योंकि परीक्षण कार्य का समर्थन कितना छोटा हो सकता है इसकी कोई सीमा नहीं है। अर्थात् कोई [[कटऑफ (भौतिकी)]] मापदंड नहीं है।


वेटमैन ढांचे में [[क्वांटम गेज सिद्धांत]] को भी सम्मिलित नहीं किया गया है। एबेलियन गेज सिद्धांतों में भी पारंपरिक दृष्टिकोण हिल्बर्ट स्पेस के साथ अनिश्चित मानदंड के साथ शुरू होता है (इसलिए वास्तव में हिल्बर्ट स्पेस नहीं है, जिसके लिए सकारात्मक-निश्चित मानदंड की आवश्यकता होती है, किन्तु भौतिक विज्ञानी इसे हिल्बर्ट स्पेस कहते हैं), और भौतिक अवस्था और भौतिक ऑपरेटर [[सह-समरूपता]] से संबंधित हैं। यह स्पष्ट रूप से वेटमैन ढांचे में कहीं भी सम्मिलित नहीं है। (हालांकि, जैसा कि श्विंगर, क्राइस्ट और ली, ग्रिबोव, ज़वानज़िगर, वैन बाल, आदि द्वारा दिखाया गया है, कूलम्ब गेज में गेज सिद्धांतों का विहित परिमाणीकरण साधारण हिल्बर्ट स्पेस के साथ संभव है, और यह उन्हें अभिगृहीत प्रणालीगत की प्रयोज्यता के अंतर्गत लाने का विधि हो सकता है।)
वेटमैन ढांचे में [[क्वांटम गेज सिद्धांत]] को भी सम्मिलित नहीं किया गया है। एबेलियन गेज सिद्धांतों में भी पारंपरिक दृष्टिकोण हिल्बर्ट स्पेस के साथ अनिश्चित मानदंड के साथ शुरू होता है (इसलिए वास्तव में हिल्बर्ट स्पेस नहीं है, जिसके लिए सकारात्मक-निश्चित मानदंड की आवश्यकता होती है, किन्तु भौतिक विज्ञानी इसे हिल्बर्ट स्पेस कहते हैं), और भौतिक अवस्था और भौतिक ऑपरेटर [[सह-समरूपता]] से संबंधित हैं। यह स्पष्ट रूप से वेटमैन ढांचे में कहीं भी सम्मिलित नहीं है। (हालांकि, जैसा कि श्विंगर, क्राइस्ट और ली, ग्रिबोव, ज़वानज़िगर, वैन बाल, आदि द्वारा दिखाया गया है, कूलम्ब गेज में गेज सिद्धांतों का विहित परिमाणीकरण साधारण हिल्बर्ट स्पेस के साथ संभव है, और यह उन्हें स्वयंसिद्ध प्रणालीगत की प्रयोज्यता के अंतर्गत लाने का विधि हो सकता है।)


वेटमैन अभिगृहीतों को परीक्षण कार्यों के स्थान के टेन्सर बीजगणित के बराबर बोरचर्स बीजगणित पर वाइटमैन कार्यात्मक नामक अवस्था के रूप में दोहराया जा सकता है।
वेटमैन स्वयंसिद्धों को परीक्षण कार्यों के स्थान के टेन्सर बीजगणित के बराबर बोरचर्स बीजगणित पर वाइटमैन कार्यात्मक नामक अवस्था के रूप में दोहराया जा सकता है।


== सिद्धांतों का अस्तित्व जो अभिगृहीतों को संतुष्ट करते हैं ==
== सिद्धांतों का अस्तित्व जो स्वयंसिद्धों को संतुष्ट करते हैं ==
कोई वेटमैन के अभिगृहीतों को 4 के अतिरिक्त अन्य आयामों के लिए सामान्यीकृत कर सकता है। आयाम 2 और 3 में, परस्पर क्रिया (अर्थात गैर-मुक्त) सिद्धांतों का निर्माण किया गया है जो अभिगृहीतों को संतुष्ट करते हैं।
कोई वेटमैन के स्वयंसिद्धों को 4 के अतिरिक्त अन्य आयामों के लिए सामान्यीकृत कर सकता है। आयाम 2 और 3 में, परस्पर क्रिया (अर्थात गैर-मुक्त) सिद्धांतों का निर्माण किया गया है जो स्वयंसिद्धों को संतुष्ट करते हैं।


वर्तमान में, इस बात का कोई प्रमाण नहीं है कि वाइटमैन के सिद्धांत आयाम 4 में परस्पर क्रिया करने वाले सिद्धांतों के लिए संतुष्ट हो सकते हैं। विशेष रूप से, कण भौतिकी के [[मानक मॉडल]] में गणितीय रूप से कठोर आधार नहीं है। यांग-मिल्स अस्तित्व और द्रव्यमान में अंतर है। इस बात के प्रमाण के लिए एक मिलियन-डॉलर का पुरस्कार है कि वेटमैन अभिगृहीतों को बड़े अंतराल की अतिरिक्त आवश्यकता के साथ [[गेज सिद्धांत|गेज सिद्धांतों]] के लिए संतुष्ट किया जा सकता है।
वर्तमान में, इस बात का कोई प्रमाण नहीं है कि वाइटमैन के सिद्धांत आयाम 4 में परस्पर क्रिया करने वाले सिद्धांतों के लिए संतुष्ट हो सकते हैं। विशेष रूप से, कण भौतिकी के [[मानक मॉडल]] में गणितीय रूप से कठोर आधार नहीं है। यांग-मिल्स अस्तित्व और द्रव्यमान में अंतर है। इस बात के प्रमाण के लिए एक मिलियन-डॉलर का पुरस्कार है कि वेटमैन स्वयंसिद्धों को बड़े अंतराल की अतिरिक्त आवश्यकता के साथ [[गेज सिद्धांत|गेज सिद्धांतों]] के लिए संतुष्ट किया जा सकता है।


=== ओस्टरवाल्डर-श्राडर पुनर्निर्माण प्रमेय ===
=== ओस्टरवाल्डर-श्राडर पुनर्निर्माण प्रमेय ===
Line 96: Line 96:


== यह भी देखें ==
== यह भी देखें ==
* हाग-कस्तलर अभिगृहीत
* हाग-कस्तलर स्वयंसिद्ध
* हिल्बर्ट की छठी समस्या
* हिल्बर्ट की छठी समस्या
* [[स्वयंसिद्ध क्वांटम क्षेत्र सिद्धांत|अभिगृहीत क्वांटम क्षेत्र सिद्धांत]]
* [[स्वयंसिद्ध क्वांटम क्षेत्र सिद्धांत]]
* स्थानीय क्वांटम क्षेत्र सिद्धांत
* स्थानीय क्वांटम क्षेत्र सिद्धांत


Line 108: Line 108:
* [[Arthur Wightman]], "Hilbert's sixth problem: Mathematical treatment of the axioms of physics", in F.&nbsp;E. Browder (ed.): Vol.&nbsp;28 (part&nbsp;1) of ''Proc. Symp. Pure Math.'', Amer. Math. Soc., 1976, pp.&nbsp;241–268.
* [[Arthur Wightman]], "Hilbert's sixth problem: Mathematical treatment of the axioms of physics", in F.&nbsp;E. Browder (ed.): Vol.&nbsp;28 (part&nbsp;1) of ''Proc. Symp. Pure Math.'', Amer. Math. Soc., 1976, pp.&nbsp;241–268.
* [[Res Jost]], ''The general theory of quantized fields'', Amer. Math. Soc., 1965.
* [[Res Jost]], ''The general theory of quantized fields'', Amer. Math. Soc., 1965.
[[Category: स्वयंसिद्ध क्वांटम क्षेत्र सिद्धांत]]


 
[[Category:Articles with invalid date parameter in template]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 13/02/2023]]
[[Category:Created On 13/02/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Template documentation pages|Short description/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]

Revision as of 15:51, 10 March 2023

गणितीय भौतिकी में, वाइटमैन स्वयंसिद्ध (जिसे गार्डिंग-वाइटमैन स्वयंसिद्ध भी कहा जाता है),[1][2] आर्थर वाइटमैन के नाम पर,[3] क्वांटम क्षेत्र सिद्धांत के गणितीय रूप से कठोर सूत्रीकरण का प्रयास किया गया है। आर्थर वाइटमैन ने 1950 के दशक की प्रारंभ में अभिगृहीतों का सूत्रपात किया था,[4] किन्तु उन्हें पहली बार केवल 1964 में प्रकाशित किया गया था ।[5] जब हाग-रूएल प्रकीर्णन सिद्धांत ने[6][7] उनके महत्व की पुष्टि की थी।

यह सिद्धांत रचनात्मक क्वांटम क्षेत्र सिद्धांत के संदर्भ में उपस्थित हैं और क्वांटम क्षेत्रों के कठोर उपचार के लिए आधार प्रदान करने के लिए हैं और उपयोग की जाने वाली परेशान करने वाली विधियों के लिए सख्त आधार हैं। सहस्राब्दी समस्याओं में से यांग-मिल्स क्षेत्रों के मामले में यांग-मिल्स के अस्तित्व और बड़े पैमाने पर अंतर को समझना है।

तर्क

वाइटमैन सिद्धांतों का मूल विचार यह है कि हिल्बर्ट एक स्थान है, जिस पर पॉइंकेयर समूह एकात्मक प्रतिनिधित्व करते है। इस प्रकार, ऊर्जा, संवेग, कोणीय संवेग और द्रव्यमान के केंद्र (बूस्ट के अनुरूप) की अवधारणाओं को प्रायुक्त किया जाता है।

एक स्थिरता धारणा यह भी है, कि चार-गति के स्पेक्ट्रम को सकारात्मक प्रकाश शंकु (और इसकी सीमा) तक सीमित करती है। हालांकि, यह इलाके के सिद्धांत को प्रायुक्त करने के लिए पर्याप्त नहीं है। उसके लिए, वाइटमैन स्वयंसिद्धों में स्थिति-निर्भर संचालिकाएँ होती हैं जिन्हें क्वांटम फ़ील्ड कहा जाता है, जो पॉइंकेयर समूह के सहपरिवर्ती निरूपण बनाती हैं।

चूंकि क्वांटम क्षेत्र सिद्धांत पराबैंगनी विचलन से ग्रस्त है, एक बिंदु पर क्षेत्र का मान अच्छी प्रकार से परिभाषित नहीं है। इसके आस-पास जाने के लिए, वाइटमैन स्वयंसिद्ध यूवी भिन्नता को वश में करने के लिए परीक्षण फलन पर धब्बा लगाने का विचार प्रस्तुत करते हैं, जो मुक्त क्षेत्र सिद्धांत में भी उत्पन्न होता है। चूँकि अभिगृहीत असंबद्ध संचालकों के साथ व्यवहार कर रहे हैं, इसलिए संचालकों के डोमेन को निर्दिष्ट करना होगा।

वाइटमैन स्वयंसिद्ध स्पेसिक जैसे अलग-अलग क्षेत्रों के बीच या तो क्रम विनिमेयता या विरोधी क्रमविनिमेयता को प्रायुक्त करके सिद्धांत के कारण संरचना को प्रतिबंधित करते हैं।

वे निर्वात अवस्था कहे जाने वाले पॉइनकेयर-इनवेरिएंट अवस्था के अस्तित्व को भी मानते हैं और इसे अद्वितीय होने की मांग करते हैं। इसके अतिरिक्त, अभिगृहीत मानते हैं कि निर्वात चक्रीय है, अर्थात, धुंधले क्षेत्र संचालकों द्वारा उत्पन्न बहुपद बीजगणित के निर्वात-अवस्था तत्वों पर मूल्यांकन करके प्राप्त किए जाने वाले सभी सदिशों का समुच्चय पूरे हिल्बर्ट अंतरिक्ष का सघन उपसमुच्चय है।

अंत में, आदिम कार्य-कारण प्रतिबंध है, जिसमें कहा गया है कि धुंधले किए गए क्षेत्रों में किसी भी बहुपद को मिन्कोव्स्की अंतरिक्ष में एक खुले समुच्चय में समर्थन (अर्थात कमजोर टोपोलॉजी में ऑपरेटरों की सीमा है) के साथ परीक्षण कार्यों पर स्मियर किए गए क्षेत्रों में बहुपदों द्वारा मनमाने ढंग से त्रुटिहीन रूप से अनुमानित किया जा सकता है, जिसका कारण बंद होना संपूर्ण मिंकोव्स्की स्थान है।

सिद्धांत

डब्लू0 (सापेक्षतावादी क्वांटम यांत्रिकी की मान्यताएं)

जॉन वॉन न्यूमैन के अनुसार क्वांटम यांत्रिकी का वर्णन किया गया है; विशेष रूप से, शुद्ध अवस्थाएँ कुछ वियोज्य जटिल हिल्बर्ट अंतरिक्ष की किरणों, अर्थात् एक-आयामी उप-स्थानों द्वारा दी जाती हैं। निम्नलिखित में, हिल्बर्ट स्पेस वैक्टर Ψ और Φ के स्केलर उत्पाद को द्वारा दर्शाया गया है, और Ψ के मानदंड को द्वारा निरूपित किया जाता हैं। दो शुद्ध अवस्थाओं [Ψ] और [Φ] के बीच संक्रमण संभावना को गैर-शून्य वेक्टर प्रतिनिधियों Ψ और Φ के संदर्भ में परिभाषित किया जा सकता है

और स्वतंत्र है कि Ψ और Φ जो प्रतिनिधि वैक्टर चुने गए हैं।

विग्नर के अनुसार सममिति के सिद्धांत का वर्णन किया गया है। यह 1939 के अपने प्रसिद्ध पेपर में यूजीन पॉल विग्नर द्वारा सापेक्षतावादी कणों के सफल विवरण का लाभ उठाने के लिए है, विग्नर का वर्गीकरण देखें। विग्नर ने अवस्थाओं के बीच संक्रमण की संभावना को विशेष सापेक्षता के परिवर्तन से संबंधित सभी पर्यवेक्षकों के लिए समान माना गया। अधिक सामान्यतः, उन्होंने इस कथन पर विचार किया कि किसी भी दो किरणों के बीच संक्रमण संभाव्यता के आक्रमण के संदर्भ में व्यक्त किए जाने वाले समूह G के अनुसार सिद्धांत अपरिवर्तनीय हो सकता है। बयान बताता है कि समूह किरणों के समुच्चय पर कार्य करता है, जो कि प्रक्षेपी स्थान पर है। चलो (ए, एल) पोंकारे समूह (अमानवीय लोरेंत्ज़ समूह) का तत्व है। इस प्रकार, a वास्तविक लोरेंत्ज़ चार-वेक्टर है जो अंतरिक्ष समय मूल x ↦ x - a के परिवर्तन का प्रतिनिधित्व करता है, जहाँ x मिंकोस्की अंतरिक्ष M4 में है, और L लोरेंत्ज़ परिवर्तन है, जिसे चार-आयामी अंतरिक्ष-समय के रैखिक परिवर्तन के रूप में परिभाषित किया जा सकता है, जो लोरेंत्ज़ दूरी c2t2xx को संरक्षित करता है। प्रत्येक सदिश का (ct, x)। तब सिद्धांत पोंकारे समूह के अनुसार अपरिवर्तनीय है यदि हिल्बर्ट अंतरिक्ष के प्रत्येक किरण Ψ के लिए और प्रत्येक समूह तत्व (a, L) को रूपांतरित किरण Ψ (a, L) दिया जाता है और संक्रमण की संभावना परिवर्तन से अपरिवर्तित होती है:

विग्नर के प्रमेय का कहना है कि इन शर्तों के अनुसार, हिल्बर्ट अंतरिक्ष पर परिवर्तन या तो रैखिक या विरोधी-रैखिक ऑपरेटर हैं (यदि इसके अतिरिक्त वे मानक को संरक्षित करते हैं, तो वे एकात्मक ऑपरेटर या एंटीयूटरी ऑपरेटर हैं); किरणों के प्रोजेक्टिव स्पेस पर समरूपता ऑपरेटर को अंतर्निहित हिल्बर्ट स्पेस में उठाया जा सकता है। यह प्रत्येक समूह तत्व (a, L) के लिए किया जा रहा है, हमें अपने हिल्बर्ट स्थान पर एकात्मक या प्रतिएकात्मक ऑपरेटरों U(a, L) का परिवार मिलता है, जैसे कि किरण Ψ (a, L) U(a, L)ψ वाली किरण। यदि हम पहचान से जुड़े समूह के तत्वों पर ध्यान केंद्रित करते हैं, तो एकात्मक विरोधी मामला उत्पन्न नहीं होता है।

मान लीजिए (ए, एल) और (बी, एम) दो पॉइनकेयर परिवर्तन हैं, और आइए हम उनके समूह उत्पाद को निरूपित करते हैं (a, L)⋅(b, M); भौतिक व्याख्या से हम देखते हैं कि U(a, L)[U(b, M)ψ] वाली किरण (किसी भी ψ के लिए) U((a, L)⋅(b, M))ψ वाली किरण होनी चाहिए (समूह संचालन की संबद्धता)। किरणों से वापस हिल्बर्ट अंतरिक्ष में जाने पर, ये दो वैक्टर चरण से भिन्न हो सकते हैं (और सामान्य तौर पर नहीं, क्योंकि हम एकात्मक संचालक चुनते हैं), जो दो समूह तत्वों (a, L) और (b, M) पर निर्भर हो सकता है। अर्थात् हमारे पास समूह का प्रतिनिधित्व नहीं है, किन्तु अनुमानित प्रतिनिधित्व है। इन चरणों को हमेशा प्रत्येक यू (ए) को फिर से परिभाषित करके रद्द नहीं किया जा सकता है, उदाहरण घूर्णन 1/2 के कणों के लिए। विग्नर ने दिखाया कि पोइनकेयर समूह के लिए सबसे अच्छा मिल सकता है

अर्थात् चरण का गुणक है . पूर्णांक घूर्णन के कणों के लिए (पियंस, फोटॉन, ग्रेविटॉन, ...) आगे के चरण परिवर्तनों द्वारा ± चिह्न को हटाया जा सकता है, किन्तु अर्ध-विषम-घूर्णन के निरूपण के लिए, हम नहीं कर सकते हैं, और जैसे ही हम किसी भी दौर में जाते हैं, चिन्ह निरंतर बदलता रहता है 2π के कोण से अक्ष। चूँकि, हम पोंकारे समूह का प्रतिनिधित्व बना सकते हैं, जिसे विषम विशेष रैखिक समूह SL(2, 'C') कहा जाता है; इसमें तत्व (a, A) हैं, जहां पहले की प्रकार, a चार-वेक्टर है, किन्तु अब A इकाई निर्धारक के साथ जटिल 2 × 2 मैट्रिक्स है। हम U(a, A) द्वारा प्राप्त एकात्मक संचालकों को निरूपित करते हैं, और ये हमें निरंतर, एकात्मक और सही प्रतिनिधित्व देते हैं जिसमें U(a, A) का संग्रह विषम SL(2, C) के समूह कानून का पालन करता है।

2π द्वारा रोटेशन के अनुसार साइन परिवर्तन के कारण, हर्मिटियन ऑपरेटर घूर्णन 1/2, 3/2 इत्यादि के रूप में बदलते हैं, अवलोकन योग्य नहीं हो सकते हैं। यह एकरूपता उत्तमचयन नियम के रूप में दिखाई देता है: घूर्णन 0, 1, 2 आदि के अवस्थाओं और घूर्णन 1/2, 3/2 आदि के बीच के चरण अवलोकनीय नहीं हैं। यह नियम अवस्था वेक्टर के समग्र चरण की गैर-अवलोकन क्षमता के अतिरिक्त है।

वेधशालाओं और अवस्थाओं |v⟩ के संबंध में, हमें पूर्णांक घूर्णन सबस्पेस पर पॉइनकेयर समूह का U(a, L) और अर्ध-विषम पर विषम SL(2, C) का U(a, A) मिलता है। -पूर्णांक उप-स्थान, जो निम्नलिखित व्याख्या के अनुसार कार्य करता है:

U(a, L)|v⟩ के अनुरूप सांख्यिकीय समेकन को निर्देशांक के संबंध में व्याख्या किया जाना है ठीक उसी प्रकार जैसे कि |v⟩ के अनुरूप पहनावा की व्याख्या निर्देशांक x के संबंध में की जाती है और इसी प्रकार विषम उप-स्थानों के लिए भी की जाती है।

स्पेसटाइम अनुवाद का समूह विनिमेय है, और इसलिए ऑपरेटरों को साथ विकर्ण किया जा सकता है। इन समूहों के जनरेटर हमें चार स्व-संयोजक संकारक देते हैं जो सजातीय समूह के अनुसार एक चार-वेक्टर के रूप में परिवर्तित होता है, जिसे ऊर्जा-संवेग चार-वेक्टर कहा जाता है।

वेटमैन के ज़ीरोथ स्वयंसिद्ध का दूसरा भाग यह है कि प्रतिनिधित्व U(a, A) वर्णक्रमीय स्थिति को पूरा करता है – कि ऊर्जा-संवेग का साथ स्पेक्ट्रम आगे के शंकु में समाहित है:

स्वयंसिद्ध का तीसरा भाग यह है कि हिल्बर्ट अंतरिक्ष में किरण द्वारा प्रतिनिधित्व किया गया अद्वितीय अवस्था है, जो पोंकारे समूह की कार्रवाई के अनुसार अपरिवर्तनीय है। इसे निर्वात कहते हैं।

डब्लू1 (डोमेन और क्षेत्र की निरंतरता पर धारणाएं)

प्रत्येक परीक्षण फलन f के लिए,[clarification needed] ऑपरेटरों का समुच्चय उपस्थित है जो, उनके आस-पास के साथ, हिल्बर्ट अवस्था अंतरिक्ष के घने उपसमुच्चय पर परिभाषित होते हैं, जिसमें निर्वात होता है। फ़ील्ड ए ऑपरेटर-मूल्यवान वितरण (गणित) टेम्पर्ड_डिस्ट्रीब्यूशन_एंड_फोरियर_ट्रांसफॉर्म हैं। हिल्बर्ट अवस्था स्थान को निर्वात (चक्रीय स्थिति) पर कार्य करने वाले क्षेत्र बहुपदों द्वारा फैलाया जाता है।

डब्लू2 (क्षेत्र का परिवर्तन नियम)

पॉइंकेयर समूह की कार्रवाई के अनुसार फ़ील्ड सहपरिवर्ती हैं और लोरेंत्ज़ समूह के कुछ प्रतिनिधित्व S के अनुसार रूपांतरित होते हैं, या SL(2, 'C') यदि घूर्णन पूर्णांक नहीं है:


डब्लू3 (स्थानीय क्रमविनिमेयता या सूक्ष्म करणीय)

यदि दो क्षेत्रों के समर्थन अंतरिक्ष की प्रकार अलग हो जाते हैं, तो क्षेत्र या तो आवागमन या प्रतिगामी होते हैं।

निर्वात की चक्रीयता और निर्वात की विशिष्टता को कभी-कभी अलग-अलग माना जाता है। साथ ही, स्पर्शोन्मुख पूर्णता का गुण भी है – वह हिल्बर्ट अवस्था स्पेस को और में स्पर्शोन्मुख स्पेस द्वारा फैला हुआ है, जो टक्कर एस मैट्रिक्स में दिखाई दे रहा है। क्षेत्र सिद्धांत की अन्य महत्वपूर्ण गुण द्रव्यमान अंतराल है, जो स्वयंसिद्धों द्वारा आवश्यक नहीं है – उस ऊर्जा-संवेग स्पेक्ट्रम में शून्य और कुछ सकारात्मक संख्या के बीच का अंतर होता है।

स्वयंसिद्धों के परिणाम

इन स्वयंसिद्धों से, कुछ सामान्य प्रमेय अनुसरण करते हैं:

  • सीपीटी प्रमेय - समता के परिवर्तन, कण-प्रतिकण उत्क्रमण और समय व्युत्क्रम के अनुसार सामान्य समरूपता है (इनमें से कोई भी समरूपता अकेले प्रकृति में उपस्थित नहीं है, जैसा कि यह निकला)।
  • घूर्णन (भौतिकी) और आँकड़ा के बीच संबंध - क्षेत्र जो आधे पूर्णांक घूर्णन एंटीकॉम्यूट के अनुसार रूपांतरित होते हैं, चूँकि पूर्णांक घूर्णन वाले लोग कम्यूट (स्वयं डब्लू3) के साथ करते हैं। इस प्रमेय में वास्तव में तकनीकी सूक्ष्म विवरण हैं। क्लेन परिवर्तन का उपयोग करके इसे ठीक किया जा सकता है। बीआरएसटी औपचारिकता में पैरासांख्यिकी और घोस्ट भी देखें।
  • सुपरल्यूमिनल संचार की असंभवता - यदि दो ऑब्जर्वर स्पेसलाइक अलग हो जाते हैं, तो ऑब्जर्वर की हरकतें (हैमिल्टनियन में माप और परिवर्तन दोनों सहित) दूसरे ऑब्जर्वर के माप के आंकड़ों को प्रभावित नहीं करती हैं।[8]

आर्थर वाइटमैन ने दिखाया कि वैक्यूम अपेक्षा मूल्य वितरण, गुणों के कुछ समुच्चय को संतुष्ट करते हैं, जो स्वयंसिद्धों से अनुसरण करते हैं, क्षेत्र सिद्धांत के पुनर्निर्माण के लिए पर्याप्त हैं - वेटमैन पुनर्निर्माण प्रमेय, जिसमें निर्वात स्थिति का अस्तित्व सम्मिलित है; उन्होंने निर्वात की विशिष्टता की गारंटी देने वाले निर्वात अपेक्षा मूल्यों पर स्थिति नहीं पाई; यह स्थिति, क्लस्टर अपघटन, बाद में रेस जोस्ट, क्लॉस हेप, डेविड रूएल और ओथमर स्टेनमैन द्वारा पाया गया था।

यदि सिद्धांत में द्रव्यमान अंतर है, अर्थात 0 के बीच कोई द्रव्यमान नहीं है और शून्य से अधिक कुछ स्थिर है, तो वैक्यूम अपेक्षा मूल्य वितरण दूर के क्षेत्रों में विषम रूप से स्वतंत्र हैं।

हाग के प्रमेय का कहना है कि कोई इंटरेक्शन तस्वीर नहीं हो सकती है - कि हम हिल्बर्ट स्पेस के रूप में गैर-बातचीत करने वाले कणों के फॉक स्पेस का उपयोग नहीं कर सकते हैं - इस अर्थ में कि हम हिल्बर्ट रिक्त स्थान को फ़ील्ड बहुपदों के माध्यम से निश्चित समय पर निर्वात पर अभिनय करेंगे।

क्वांटम क्षेत्र सिद्धांत में ऋणायन रूपरेखाओं और अवधारणाओं से संबंध

वेटमैन ढांचे में परिमित-तापमान अवस्थाओं जैसे अनंत-ऊर्जा अवस्थाओं को सम्मिलित नहीं किया गया है।

स्थानीय क्वांटम क्षेत्र सिद्धांत के विपरीत, वाइटमैन स्वयंसिद्ध सिद्धांत के कारण संरचना को प्रमेय के रूप में प्राप्त करने के अतिरिक्त, स्प्रस्तुतियली अलग-अलग क्षेत्रों के बीच या तो कम्यूटेटिविटी या एंटीकॉम्यूटेटिविटी को प्रायुक्त करके स्पष्ट रूप से प्रतिबंधित करते हैं। यदि कोई 4 के अतिरिक्त अन्य आयामों के लिए वेटमैन के स्वयंसिद्धों के सामान्यीकरण पर विचार करता है, तो यह (विरोधी) क्रमानुक्रमणीयता निम्न आयामों में किसी भी और चोटी के आँकड़ों को नियमबद्ध करती है।

अद्वितीय निर्वात स्थिति का वाइटमैन अभिधारणा आवश्यक रूप से वाइटमैन स्वयंसिद्धों को सहज समरूपता के टूटने के मामले में अनुपयुक्त नहीं बनाता है क्योंकि हम हमेशा स्वयं को सुपरसेलेक्शन सेक्टर तक सीमित कर सकते हैं।

वेटमैन स्वयंसिद्धों द्वारा मांगे गए निर्वात की चक्रीयता का अर्थ है कि वे निर्वात के केवल सुपरसलेक्शन क्षेत्र का वर्णन करते हैं; फिर से, यह व्यापकता का एक बड़ा हानि नहीं है। चूँकि यह धारणा सॉलिटॉन जैसी परिमित-ऊर्जा अवस्थाओं को छोड़ देती है, जो परीक्षण कार्यों द्वारा लिप्त क्षेत्रों के बहुपद द्वारा उत्पन्न नहीं की जा सकती क्योंकि कम से कम क्षेत्र-सैद्धांतिक दृष्टिकोण से एक सॉलिटॉन एक वैश्विक संरचना है जिसमें अनंत पर स्थलीय सीमा की स्थिति सम्मिलित है।

वेटमैन ढांचे में प्रभावी क्षेत्र सिद्धांत सम्मिलित नहीं है क्योंकि परीक्षण कार्य का समर्थन कितना छोटा हो सकता है इसकी कोई सीमा नहीं है। अर्थात् कोई कटऑफ (भौतिकी) मापदंड नहीं है।

वेटमैन ढांचे में क्वांटम गेज सिद्धांत को भी सम्मिलित नहीं किया गया है। एबेलियन गेज सिद्धांतों में भी पारंपरिक दृष्टिकोण हिल्बर्ट स्पेस के साथ अनिश्चित मानदंड के साथ शुरू होता है (इसलिए वास्तव में हिल्बर्ट स्पेस नहीं है, जिसके लिए सकारात्मक-निश्चित मानदंड की आवश्यकता होती है, किन्तु भौतिक विज्ञानी इसे हिल्बर्ट स्पेस कहते हैं), और भौतिक अवस्था और भौतिक ऑपरेटर सह-समरूपता से संबंधित हैं। यह स्पष्ट रूप से वेटमैन ढांचे में कहीं भी सम्मिलित नहीं है। (हालांकि, जैसा कि श्विंगर, क्राइस्ट और ली, ग्रिबोव, ज़वानज़िगर, वैन बाल, आदि द्वारा दिखाया गया है, कूलम्ब गेज में गेज सिद्धांतों का विहित परिमाणीकरण साधारण हिल्बर्ट स्पेस के साथ संभव है, और यह उन्हें स्वयंसिद्ध प्रणालीगत की प्रयोज्यता के अंतर्गत लाने का विधि हो सकता है।)

वेटमैन स्वयंसिद्धों को परीक्षण कार्यों के स्थान के टेन्सर बीजगणित के बराबर बोरचर्स बीजगणित पर वाइटमैन कार्यात्मक नामक अवस्था के रूप में दोहराया जा सकता है।

सिद्धांतों का अस्तित्व जो स्वयंसिद्धों को संतुष्ट करते हैं

कोई वेटमैन के स्वयंसिद्धों को 4 के अतिरिक्त अन्य आयामों के लिए सामान्यीकृत कर सकता है। आयाम 2 और 3 में, परस्पर क्रिया (अर्थात गैर-मुक्त) सिद्धांतों का निर्माण किया गया है जो स्वयंसिद्धों को संतुष्ट करते हैं।

वर्तमान में, इस बात का कोई प्रमाण नहीं है कि वाइटमैन के सिद्धांत आयाम 4 में परस्पर क्रिया करने वाले सिद्धांतों के लिए संतुष्ट हो सकते हैं। विशेष रूप से, कण भौतिकी के मानक मॉडल में गणितीय रूप से कठोर आधार नहीं है। यांग-मिल्स अस्तित्व और द्रव्यमान में अंतर है। इस बात के प्रमाण के लिए एक मिलियन-डॉलर का पुरस्कार है कि वेटमैन स्वयंसिद्धों को बड़े अंतराल की अतिरिक्त आवश्यकता के साथ गेज सिद्धांतों के लिए संतुष्ट किया जा सकता है।

ओस्टरवाल्डर-श्राडर पुनर्निर्माण प्रमेय

कुछ तकनीकी धारणाओं के अनुसार, यह दिखाया गया है कि यूक्लिडियन अंतरिक्ष क्यूएफटी को वाइटमैन क्यूएफटी में वर्तिका-घूर्णित किया जा सकता है (ओस्टरवाल्डर-श्राडर प्रमेय देखें)। यह प्रमेय आयाम 2 और 3 में अंतःक्रियात्मक सिद्धांतों के निर्माण के लिए महत्वपूर्ण उपकरण है जो वाइटमैन सिद्धांतों को संतुष्ट करता है।

यह भी देखें

संदर्भ

  1. "Hilbert's sixth problem". Encyclopedia of Mathematics. Retrieved 14 July 2014.
  2. "Lars Gårding – Sydsvenskan". Sydsvenskan.se. Retrieved 14 July 2014.
  3. A. S. Wightman, , "Fields as Operator-valued Distributions in Relativistic Quantum Theory," Arkiv f. Fysik, Kungl. Svenska Vetenskapsak. 28, 129–189 (1964).
  4. Wightman axioms in nLab.
  5. R. F. Streater and A. S. Wightman, PCT, Spin and Statistics and All That, Princeton University Press, Landmarks in Mathematics and Physics, 2000 (1st edn., New York, Benjamin 1964).
  6. R. Haag (1958), "Quantum field theories with opposite particles and asymptotic conditions," Phys. Rev. 112.
  7. D. Ruelle (1962), "On the asymptotic condition in quantum field theory," Helv. Phys. Acta 35.
  8. Eberhard, Phillippe H.; Ross, Ronald R. (1989), "Quantum field theory cannot provide faster than light communication", Foundations of Physics Letters, 2 (2): 127–149, Bibcode:1989FoPhL...2..127E, doi:10.1007/bf00696109


अग्रिम पठन

  • Arthur Wightman, "Hilbert's sixth problem: Mathematical treatment of the axioms of physics", in F. E. Browder (ed.): Vol. 28 (part 1) of Proc. Symp. Pure Math., Amer. Math. Soc., 1976, pp. 241–268.
  • Res Jost, The general theory of quantized fields, Amer. Math. Soc., 1965.