परमाणु रिएक्टर सुरक्षा प्रणाली: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 5: Line 5:


== [[रिएक्टर सुरक्षा प्रणाली]] (RPS) ==
== [[रिएक्टर सुरक्षा प्रणाली]] (RPS) ==
एक रिएक्टर सुरक्षा प्रणाली को परमाणु प्रतिक्रिया को तुरंत समाप्त करने के लिए डिज़ाइन किया गया है। नाभिकीय श्रृंखला अभिक्रिया को तोड़ने से ऊष्मा का स्रोत समाप्त हो जाता है। अन्य प्रणालियों का उपयोग फिर कोर से क्षय गर्मी को दूर करने के लिए किया जा सकता है। सभी परमाणु संयंत्रों में रिएक्टर सुरक्षा प्रणाली का कोई न कोई रूप होता है।
रिएक्टर सुरक्षा प्रणाली को परमाणु प्रतिक्रिया को तुरंत समाप्त करने के लिए डिज़ाइन किया गया है। नाभिकीय श्रृंखला अभिक्रिया को तोड़ने से ऊष्मा का स्रोत समाप्त हो जाता है। अन्य प्रणालियों का उपयोग फिर कोर से क्षय गर्मी को दूर करने के लिए किया जा सकता है। सभी परमाणु संयंत्रों में रिएक्टर सुरक्षा प्रणाली का कोई न कोई रूप होता है।


=== [[नियंत्रण छड़]] ===
=== [[नियंत्रण छड़]] ===
नियंत्रण छड़ें छड़ की एक श्रृंखला होती हैं जिन्हें [[न्यूट्रॉन]] को अवशोषित करने और परमाणु प्रतिक्रिया को तेजी से समाप्त करने के लिए रिएक्टर कोर में जल्दी से डाला जा सकता है।<ref name="Jabsen">{{cite web |last1=Jabsen |first1=Felix S. |title=Nuclear reactor rod controller |url=https://patents.google.chttps://patentimages.storage.googleapis.com/11/12/a0/d0632f83ee8b61/US3462345.pdf |access-date=4 June 2019 |pages=3 |format=PDF |date=10 May 1967}}</ref> वे आमतौर पर [[एक्टिनाइड्स]], [[लैंथेनाइड्स]], [[संक्रमण धातुओं]] और बोरॉन से बने होते हैं।<ref name="Fisher">{{cite web |last1=Fisher |first1=John R. |title=Nuclear reactor control rod |url=https://patentimages.storage.googleapis.com/62/9b/0b/c3e114845c3ede/US3712852.pdf |access-date=4 June 2019 |page=7 |format=PDF |date=8 July 1968}}</ref> स्टील जैसे संरचनात्मक समर्थन के साथ विभिन्न मिश्र धातुओं में। न्यूट्रॉन शोषक होने के अलावा, उपयोग की जाने वाली मिश्र धातुओं में थर्मल विस्तार के कम से कम गुणांक की आवश्यकता होती है ताकि वे उच्च तापमान के तहत जाम न हों, और उन्हें धातु पर आत्म-स्नेहन धातु होना चाहिए, क्योंकि तापमान का अनुभव होता है परमाणु रिएक्टर कोर द्वारा तेल स्नेहन बहुत जल्दी खराब हो जाएगा।
नियंत्रण छड़ें छड़ की श्रृंखला होती हैं जिन्हें [[न्यूट्रॉन]] को अवशोषित करने और परमाणु प्रतिक्रिया को तेजी से समाप्त करने के लिए रिएक्टर कोर में जल्दी से डाला जा सकता है।<ref name="Jabsen">{{cite web |last1=Jabsen |first1=Felix S. |title=Nuclear reactor rod controller |url=https://patents.google.chttps://patentimages.storage.googleapis.com/11/12/a0/d0632f83ee8b61/US3462345.pdf |access-date=4 June 2019 |pages=3 |format=PDF |date=10 May 1967}}</ref> वे आमतौर पर [[एक्टिनाइड्स]], [[लैंथेनाइड्स]], [[संक्रमण धातुओं]] और बोरॉन से बने होते हैं।<ref name="Fisher">{{cite web |last1=Fisher |first1=John R. |title=Nuclear reactor control rod |url=https://patentimages.storage.googleapis.com/62/9b/0b/c3e114845c3ede/US3712852.pdf |access-date=4 June 2019 |page=7 |format=PDF |date=8 July 1968}}</ref> स्टील जैसे संरचनात्मक समर्थन के साथ विभिन्न मिश्र धातुओं में। न्यूट्रॉन शोषक होने के अलावा, उपयोग की जाने वाली मिश्र धातुओं में थर्मल विस्तार के कम से कम गुणांक की आवश्यकता होती है ताकि वे उच्च तापमान के तहत जाम न हों, और उन्हें धातु पर आत्म-स्नेहन धातु होना चाहिए, क्योंकि तापमान का अनुभव होता है परमाणु रिएक्टर कोर द्वारा तेल स्नेहन बहुत जल्दी खराब हो जाएगा।


=== सुरक्षा इंजेक्शन / अतिरिक्त तरल नियंत्रण ===
=== सुरक्षा इंजेक्शन / अतिरिक्त तरल नियंत्रण ===
[[उबलते पानी के रिएक्टर]] अपनी नियंत्रण छड़ों की मदद से रिएक्टर को पूरी तरह से [[SCRAM]] करने में सक्षम हैं।<ref name="Jabsen" />शीतलक दुर्घटना (एलओसीए) के नुकसान के मामले में, प्राथमिक शीतलन प्रणाली के पानी के नुकसान को कूलिंग सर्किट में पंप किए गए सामान्य पानी से मुआवजा दिया जा सकता है। दूसरी ओर, स्टैंडबाय लिक्विड कंट्रोल (SLC) सिस्टम (SLCS) में [[बोरिक एसिड]] युक्त एक घोल होता है, जो [[न्यूट्रॉन जहर]] के रूप में काम करता है और चेन रिएक्शन को रोकने में समस्या होने पर कोर को तेजी से भर देता है।<ref name="Fensin">{{cite web |last1=Fensin |first1=ML |title=Optimum Boiling Water Reactor Fuel Design Strategies to Enhance Reactor Shutdown by the Standby Liquid Control System |url=http://etd.fcla.edu/UF/UFE0005364/fensin_m.pdf |publisher=University of Florida |access-date=4 June 2019 |pages=24–25 |format=PDF}}</ref>
[[उबलते पानी के रिएक्टर]] अपनी नियंत्रण छड़ों की मदद से रिएक्टर को पूरी तरह से [[SCRAM]] करने में सक्षम हैं।<ref name="Jabsen" />शीतलक दुर्घटना (एलओसीए) के नुकसान के मामले में, प्राथमिक शीतलन प्रणाली के पानी के नुकसान को कूलिंग सर्किट में पंप किए गए सामान्य पानी से मुआवजा दिया जा सकता है। दूसरी ओर, स्टैंडबाय लिक्विड कंट्रोल (SLC) सिस्टम (SLCS) में [[बोरिक एसिड]] युक्त घोल होता है, जो [[न्यूट्रॉन जहर]] के रूप में काम करता है और चेन रिएक्शन को रोकने में समस्या होने पर कोर को तेजी से भर देता है।<ref name="Fensin">{{cite web |last1=Fensin |first1=ML |title=Optimum Boiling Water Reactor Fuel Design Strategies to Enhance Reactor Shutdown by the Standby Liquid Control System |url=http://etd.fcla.edu/UF/UFE0005364/fensin_m.pdf |publisher=University of Florida |access-date=4 June 2019 |pages=24–25 |format=PDF}}</ref>
[[दाबित जल रिएक्टर]] भी अपने नियंत्रण छड़ों की सहायता से रिएक्टर को पूरी तरह से एससीआरएएम कर सकते हैं। पीडब्ल्यूआर अपने रासायनिक और आयतन नियंत्रण प्रणाली (सीवीसीएस) का उपयोग करके रिएक्टर शक्ति स्तर, या प्रतिक्रियात्मकता में ठीक समायोजन करने के लिए बोरिक एसिड का भी उपयोग करते हैं।<ref name="Corcoran">{{cite web |last1=Corcoran |first1=W.R. |last2=Finnicum |first2=D.J. |last3=Hubbard |first3=F.R., III |last4=Musick |first4=C.R. |last5=Walzer |first5=P.F. |title=The operator's role and safety functions |url=https://inis.iaea.org/collection/NCLCollectionStore/_Public/12/605/12605058.pdf |access-date=4 June 2019 |page=5 |format=PDF |date=May 1980}}</ref> LOCA के मामले में, PWRs के पास बैकअप कूलिंग वॉटर, हाई प्रेशर इंजेक्शन (HPI), लो प्रेशर इंजेक्शन (LPI) और कोर फ्लड टैंक (CFTs) के तीन स्रोत हैं।<ref name="Carlton">{{cite web |last1=Carlton |first1=James D. |last2=Kane |first2=Edward R. |last3=Parece |first3=Martin V. |title=Method and system for emergency core cooling |url=https://patentimages.storage.googleapis.com/63/2d/10/da930fa2785334/US5377242.pdf |access-date=4 June 2019 |pages=1, 7 |format=PDF |date=15 November 1993}}</ref> वे सभी बोरॉन की उच्च सांद्रता वाले पानी का उपयोग करते हैं।
[[दाबित जल रिएक्टर]] भी अपने नियंत्रण छड़ों की सहायता से रिएक्टर को पूरी तरह से एससीआरएएम कर सकते हैं। पीडब्ल्यूआर अपने रासायनिक और आयतन नियंत्रण प्रणाली (सीवीसीएस) का उपयोग करके रिएक्टर शक्ति स्तर, या प्रतिक्रियात्मकता में ठीक समायोजन करने के लिए बोरिक एसिड का भी उपयोग करते हैं।<ref name="Corcoran">{{cite web |last1=Corcoran |first1=W.R. |last2=Finnicum |first2=D.J. |last3=Hubbard |first3=F.R., III |last4=Musick |first4=C.R. |last5=Walzer |first5=P.F. |title=The operator's role and safety functions |url=https://inis.iaea.org/collection/NCLCollectionStore/_Public/12/605/12605058.pdf |access-date=4 June 2019 |page=5 |format=PDF |date=May 1980}}</ref> LOCA के मामले में, PWRs के पास बैकअप कूलिंग वॉटर, हाई प्रेशर इंजेक्शन (HPI), लो प्रेशर इंजेक्शन (LPI) और कोर फ्लड टैंक (CFTs) के तीन स्रोत हैं।<ref name="Carlton">{{cite web |last1=Carlton |first1=James D. |last2=Kane |first2=Edward R. |last3=Parece |first3=Martin V. |title=Method and system for emergency core cooling |url=https://patentimages.storage.googleapis.com/63/2d/10/da930fa2785334/US5377242.pdf |access-date=4 June 2019 |pages=1, 7 |format=PDF |date=15 November 1993}}</ref> वे सभी बोरॉन की उच्च सांद्रता वाले पानी का उपयोग करते हैं।


==आवश्यक सेवा जल व्यवस्था==
==आवश्यक सेवा जल व्यवस्था==
[[Image:KKP Auslauf.jpg|thumb|[[फिलिप्सबर्ग परमाणु ऊर्जा संयंत्र]], [[जर्मनी]] में कूलिंग टॉवर]]आवश्यक सेवा जल प्रणाली (ईएसडब्ल्यूएस) पर्यावरण में गर्मी को खत्म करने से पहले संयंत्र के हीट एक्सचेंजर्स और अन्य घटकों को ठंडा करने वाले पानी को प्रसारित करती है। क्योंकि इसमें उन प्रणालियों को ठंडा करना शामिल है जो प्राथमिक प्रणाली और खर्च किए गए [[परमाणु ईंधन]] शीतलन तालाबों दोनों से क्षय गर्मी को दूर करते हैं, ESWS एक सुरक्षा-महत्वपूर्ण प्रणाली है।<ref name=pcsr-09-06-29>[http://www.epr-reactor.co.uk/ssmod/liblocal/docs/PCSR/Chapter%20%209%20-%20Auxiliary%20Systems/Sub-Chapter%209.2%20-%20Water%20Systems.pdf Pre-construction safety report - Sub-chapter 9.2 – Water Systems] AREVA NP / EDF, published 2009-06-29, accessed 2011-03-23</ref> चूंकि पानी अक्सर निकटवर्ती नदी, समुद्र, या पानी के अन्य बड़े शरीर से खींचा जाता है, इस प्रणाली को समुद्री शैवाल, समुद्री जीवों, तेल प्रदूषण, बर्फ और मलबे से दूषित किया जा सकता है।<ref name=pcsr-09-06-29 /><ref>[http://www.ucsusa.org/assets/documents/nuclear_power/20071204-ucs-brief-got-water.pdf Got Water?] Union of Concerned Scientists, published October 2007, accessed 2011-03-23</ref> ऐसे स्थानों में जहां पानी की बड़ी मात्रा नहीं होती है, जहां गर्मी को दूर करने के लिए, पानी को [[शीतलन टॉवर]] के माध्यम से पुन: परिचालित किया जाता है।
[[Image:KKP Auslauf.jpg|thumb|[[फिलिप्सबर्ग परमाणु ऊर्जा संयंत्र]], [[जर्मनी]] में कूलिंग टॉवर]]आवश्यक सेवा जल प्रणाली (ईएसडब्ल्यूएस) पर्यावरण में गर्मी को खत्म करने से पहले संयंत्र के हीट एक्सचेंजर्स और अन्य घटकों को ठंडा करने वाले पानी को प्रसारित करती है। क्योंकि इसमें उन प्रणालियों को ठंडा करना शामिल है जो प्राथमिक प्रणाली और खर्च किए गए [[परमाणु ईंधन]] शीतलन तालाबों दोनों से क्षय गर्मी को दूर करते हैं, ESWS सुरक्षा-महत्वपूर्ण प्रणाली है।<ref name=pcsr-09-06-29>[http://www.epr-reactor.co.uk/ssmod/liblocal/docs/PCSR/Chapter%20%209%20-%20Auxiliary%20Systems/Sub-Chapter%209.2%20-%20Water%20Systems.pdf Pre-construction safety report - Sub-chapter 9.2 – Water Systems] AREVA NP / EDF, published 2009-06-29, accessed 2011-03-23</ref> चूंकि पानी अक्सर निकटवर्ती नदी, समुद्र, या पानी के अन्य बड़े शरीर से खींचा जाता है, इस प्रणाली को समुद्री शैवाल, समुद्री जीवों, तेल प्रदूषण, बर्फ और मलबे से दूषित किया जा सकता है।<ref name=pcsr-09-06-29 /><ref>[http://www.ucsusa.org/assets/documents/nuclear_power/20071204-ucs-brief-got-water.pdf Got Water?] Union of Concerned Scientists, published October 2007, accessed 2011-03-23</ref> ऐसे स्थानों में जहां पानी की बड़ी मात्रा नहीं होती है, जहां गर्मी को दूर करने के लिए, पानी को [[शीतलन टॉवर]] के माध्यम से पुन: परिचालित किया जाता है।


ईएसडब्ल्यूएस पंपों में से आधे की विफलता उन कारकों में से एक थी, जो 1999 में ब्लैयस परमाणु ऊर्जा संयंत्र बाढ़ में सुरक्षा को खतरे में डालती थी,<ref name=eurosafe-2001>[http://www.eurosafe-forum.org/files/semb1_7.pdf Generic Results and Conclusions of Re-evaluating the Flooding in French and German Nuclear Power Plants] {{webarchive|url=https://web.archive.org/web/20111006131639/http://www.eurosafe-forum.org/files/semb1_7.pdf |date=2011-10-06 }} J. M. Mattéi, E. Vial, V. Rebour, H. Liemersdorf, M. Türschmann, ''Eurosafe Forum 2001'', published 2001, accessed 2011-03-21</ref><ref name=deciphering-fukushima>[http://deciphering-fukushima.blogs.sciencesetavenir.fr/tag/monique%20sen%C3%A9 The great lesson France has to learn from Fukushima] {{Webarchive|url=https://web.archive.org/web/20121029035544/http://deciphering-fukushima.blogs.sciencesetavenir.fr/tag/monique%20sen%C3%A9 |date=2012-10-29 }} Deciphering Fukushima, published 2011-03-08, accessed 2012-05-08</ref> जबकि 2011 में फुकुशिमा I परमाणु दुर्घटनाओं और फुकुशिमा II परमाणु ऊर्जा संयंत्र # 2011 भूकंप और सूनामी परमाणु दुर्घटनाओं के दौरान कुल नुकसान हुआ।<ref name=deciphering-fukushima /><ref name=wnn-2011-03-18>{{Cite web|title=Insight to Fukushima engineering challenges|url=http://www.world-nuclear-news.org/RS_Insight_to_Fukushima_engineering_challenges_1803112.html|date=March 18, 2011|access-date=March 19, 2011|publisher=[[World Nuclear News]]}}</ref>
ईएसडब्ल्यूएस पंपों में से आधे की विफलता उन कारकों में से थी, जो 1999 में ब्लैयस परमाणु ऊर्जा संयंत्र बाढ़ में सुरक्षा को खतरे में डालती थी,<ref name=eurosafe-2001>[http://www.eurosafe-forum.org/files/semb1_7.pdf Generic Results and Conclusions of Re-evaluating the Flooding in French and German Nuclear Power Plants] {{webarchive|url=https://web.archive.org/web/20111006131639/http://www.eurosafe-forum.org/files/semb1_7.pdf |date=2011-10-06 }} J. M. Mattéi, E. Vial, V. Rebour, H. Liemersdorf, M. Türschmann, ''Eurosafe Forum 2001'', published 2001, accessed 2011-03-21</ref><ref name=deciphering-fukushima>[http://deciphering-fukushima.blogs.sciencesetavenir.fr/tag/monique%20sen%C3%A9 The great lesson France has to learn from Fukushima] {{Webarchive|url=https://web.archive.org/web/20121029035544/http://deciphering-fukushima.blogs.sciencesetavenir.fr/tag/monique%20sen%C3%A9 |date=2012-10-29 }} Deciphering Fukushima, published 2011-03-08, accessed 2012-05-08</ref> जबकि 2011 में फुकुशिमा I परमाणु दुर्घटनाओं और फुकुशिमा II परमाणु ऊर्जा संयंत्र # 2011 भूकंप और सूनामी परमाणु दुर्घटनाओं के दौरान कुल नुकसान हुआ।<ref name=deciphering-fukushima /><ref name=wnn-2011-03-18>{{Cite web|title=Insight to Fukushima engineering challenges|url=http://www.world-nuclear-news.org/RS_Insight_to_Fukushima_engineering_challenges_1803112.html|date=March 18, 2011|access-date=March 19, 2011|publisher=[[World Nuclear News]]}}</ref>




== इमरजेंसी कोर कूलिंग सिस्टम ==
== इमरजेंसी कोर कूलिंग सिस्टम ==
[[File:Active Emergency Core Cooling System.svg|right|thumb|250px|एचपीसीआई और एलपीसीआई सक्रिय ईसीसीएस के एक भाग के रूप में]]इमरजेंसी कोर कूलिंग सिस्टम (ECCS) को दुर्घटना की स्थिति में परमाणु रिएक्टर को सुरक्षित रूप से बंद करने के लिए डिज़ाइन किया गया है। ईसीसीएस संयंत्र को विभिन्न प्रकार की दुर्घटना स्थितियों (जैसे शीतलक दुर्घटनाओं का नुकसान) का जवाब देने की अनुमति देता है और अतिरिक्त अतिरेक पेश करता है ताकि संयंत्र को एक या अधिक सबसिस्टम विफलताओं के साथ भी बंद किया जा सके। <!-- Add discussion of Loss of Coolant Accident LOCA <ref>https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0046.html {{Bare URL inline|date=May 2022}}</ref> -->अधिकांश संयंत्रों में, ईसीसीएस निम्नलिखित प्रणालियों से बना होता है:
[[File:Active Emergency Core Cooling System.svg|right|thumb|250px|एचपीसीआई और एलपीसीआई सक्रिय ईसीसीएस के भाग के रूप में]]इमरजेंसी कोर कूलिंग सिस्टम (ECCS) को दुर्घटना की स्थिति में परमाणु रिएक्टर को सुरक्षित रूप से बंद करने के लिए डिज़ाइन किया गया है। ईसीसीएस संयंत्र को विभिन्न प्रकार की दुर्घटना स्थितियों (जैसे शीतलक दुर्घटनाओं का नुकसान) का जवाब देने की अनुमति देता है और अतिरिक्त अतिरेक पेश करता है ताकि संयंत्र को या अधिक सबसिस्टम विफलताओं के साथ भी बंद किया जा सके। <!-- Add discussion of Loss of Coolant Accident LOCA <ref>https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0046.html {{Bare URL inline|date=May 2022}}</ref> -->अधिकांश संयंत्रों में, ईसीसीएस निम्नलिखित प्रणालियों से बना होता है:


=== उच्च दबाव शीतलक इंजेक्शन प्रणाली ===
=== उच्च दबाव शीतलक इंजेक्शन प्रणाली ===
हाई प्रेशर कूलेंट इंजेक्शन (एचपीसीआई) सिस्टम में एक पंप या पंप होते हैं, जो रिएक्टर पोत में शीतलक को इंजेक्ट करने के लिए पर्याप्त दबाव रखते हैं, जबकि यह दबाव में होता है। यह रिएक्टर पोत में शीतलक के स्तर की निगरानी करने के लिए डिज़ाइन किया गया है और जब स्तर एक सीमा से नीचे गिरता है तो स्वचालित रूप से शीतलक इंजेक्ट करता है। यह प्रणाली आमतौर पर रिएक्टर के लिए रक्षा की पहली पंक्ति होती है क्योंकि इसका उपयोग तब किया जा सकता है जब रिएक्टर पोत अभी भी अत्यधिक दबाव में हो।
हाई प्रेशर कूलेंट इंजेक्शन (एचपीसीआई) सिस्टम में पंप या पंप होते हैं, जो रिएक्टर पोत में शीतलक को इंजेक्ट करने के लिए पर्याप्त दबाव रखते हैं, जबकि यह दबाव में होता है। यह रिएक्टर पोत में शीतलक के स्तर की निगरानी करने के लिए डिज़ाइन किया गया है और जब स्तर सीमा से नीचे गिरता है तो स्वचालित रूप से शीतलक इंजेक्ट करता है। यह प्रणाली आमतौर पर रिएक्टर के लिए रक्षा की पहली पंक्ति होती है क्योंकि इसका उपयोग तब किया जा सकता है जब रिएक्टर पोत अभी भी अत्यधिक दबाव में हो।


=== स्वचालित अवसादन प्रणाली ===
=== स्वचालित अवसादन प्रणाली ===
[[File:Passive Emergency Core Coolling System.svg|right|thumb|250px|निष्क्रिय ईसीसीएस]]स्वचालित डिप्रेसराइजेशन सिस्टम (ADS) में वाल्वों की एक श्रृंखला होती है, जो तरल पानी के एक बड़े पूल (वेटवेल या टोरस के रूप में जाना जाता है) की सतह के नीचे दबाव दमन प्रकार की रोकथाम (आमतौर पर उबलते पानी रिएक्टर में उपयोग किया जाता है) की सतह के नीचे वेंट भाप के लिए खुलती है। डिजाइन), या अन्य प्रकार के कंटेनमेंट में सीधे प्राथमिक कंटेनमेंट स्ट्रक्चर में, जैसे कि लार्ज-ड्राई या आइस-कंडेंसर कंटेनमेंट (आमतौर पर प्रेशराइज्ड वॉटर रिएक्टर डिजाइन में उपयोग किया जाता है)। इन वाल्वों का क्रियान्वयन रिएक्टर पोत को निराश करता है और निम्न दबाव शीतलक इंजेक्शन सिस्टम को कार्य करने की अनुमति देता है, जिसमें उच्च दबाव प्रणालियों की तुलना में बहुत बड़ी क्षमता होती है। कुछ डिप्रेसराइजेशन सिस्टम स्वचालित रूप से कार्य करते हैं, जबकि अन्य को ऑपरेटरों को मैन्युअल रूप से सक्रिय करने की आवश्यकता हो सकती है। बड़े सूखे या बर्फ कंडेनसर युक्त दबाव वाले पानी के रिएक्टरों में, सिस्टम के वाल्वों को पायलट संचालित रिलीज वाल्व कहा जाता है।
[[File:Passive Emergency Core Coolling System.svg|right|thumb|250px|निष्क्रिय ईसीसीएस]]स्वचालित डिप्रेसराइजेशन सिस्टम (ADS) में वाल्वों की श्रृंखला होती है, जो तरल पानी के बड़े पूल (वेटवेल या टोरस के रूप में जाना जाता है) की सतह के नीचे दबाव दमन प्रकार की रोकथाम (आमतौर पर उबलते पानी रिएक्टर में उपयोग किया जाता है) की सतह के नीचे वेंट भाप के लिए खुलती है। डिजाइन), या अन्य प्रकार के कंटेनमेंट में सीधे प्राथमिक कंटेनमेंट स्ट्रक्चर में, जैसे कि लार्ज-ड्राई या आइस-कंडेंसर कंटेनमेंट (आमतौर पर प्रेशराइज्ड वॉटर रिएक्टर डिजाइन में उपयोग किया जाता है)। इन वाल्वों का क्रियान्वयन रिएक्टर पोत को निराश करता है और निम्न दबाव शीतलक इंजेक्शन सिस्टम को कार्य करने की अनुमति देता है, जिसमें उच्च दबाव प्रणालियों की तुलना में बहुत बड़ी क्षमता होती है। कुछ डिप्रेसराइजेशन सिस्टम स्वचालित रूप से कार्य करते हैं, जबकि अन्य को ऑपरेटरों को मैन्युअल रूप से सक्रिय करने की आवश्यकता हो सकती है। बड़े सूखे या बर्फ कंडेनसर युक्त दबाव वाले पानी के रिएक्टरों में, सिस्टम के वाल्वों को पायलट संचालित रिलीज वाल्व कहा जाता है।


=== कम दबाव शीतलक इंजेक्शन प्रणाली ===
=== कम दबाव शीतलक इंजेक्शन प्रणाली ===
एक एलपीसीआई एक आपातकालीन प्रणाली है जिसमें एक पंप होता है जो रिएक्टर पोत में एक बार दबाव कम होने के बाद शीतलक को इंजेक्ट करता है। कुछ परमाणु ऊर्जा संयंत्रों में एक एलपीसीआई एक अवशिष्ट ताप हटाने प्रणाली के संचालन का एक तरीका है, जिसे आरएचआर या आरएचएस भी कहा जाता है। आम तौर पर एलपीसीआई कहा जाता है एक स्टैंड-अलोन वाल्व या सिस्टम नहीं है।
एक एलपीसीआई आपातकालीन प्रणाली है जिसमें पंप होता है जो रिएक्टर पोत में बार दबाव कम होने के बाद शीतलक को इंजेक्ट करता है। कुछ परमाणु ऊर्जा संयंत्रों में एलपीसीआई अवशिष्ट ताप हटाने प्रणाली के संचालन का तरीका है, जिसे आरएचआर या आरएचएस भी कहा जाता है। आम तौर पर एलपीसीआई कहा जाता है स्टैंड-अलोन वाल्व या सिस्टम नहीं है।


=== कोर स्प्रे सिस्टम (केवल बीडब्ल्यूआर में) ===
=== कोर स्प्रे सिस्टम (केवल बीडब्ल्यूआर में) ===
यह प्रणाली रिएक्टर दबाव पोत के भीतर ईंधन की छड़ों पर सीधे पानी का छिड़काव करने के लिए स्पार्गर्स (कई छोटे स्प्रे नोजल की एक सरणी के साथ लगे पाइप) का उपयोग करती है, भाप की पीढ़ी को दबाती है। रिएक्टर डिजाइन में उच्च दबाव और निम्न दबाव मोड में कोर स्प्रे शामिल हो सकते हैं।
यह प्रणाली रिएक्टर दबाव पोत के भीतर ईंधन की छड़ों पर सीधे पानी का छिड़काव करने के लिए स्पार्गर्स (कई छोटे स्प्रे नोजल की सरणी के साथ लगे पाइप) का उपयोग करती है, भाप की पीढ़ी को दबाती है। रिएक्टर डिजाइन में उच्च दबाव और निम्न दबाव मोड में कोर स्प्रे शामिल हो सकते हैं।


=== रोकथाम स्प्रे प्रणाली ===
=== रोकथाम स्प्रे प्रणाली ===
इस प्रणाली में पंपों और स्पार्गर्स की एक श्रृंखला होती है जो शीतलक को प्राथमिक रोकथाम संरचना के ऊपरी हिस्से में स्प्रे करती है। इसे अत्यधिक दबाव और अत्यधिक तापमान को रोकने के लिए प्राथमिक रोकथाम संरचना के भीतर भाप को तरल में संघनित करने के लिए डिज़ाइन किया गया है, जिससे रिसाव हो सकता है, जिसके बाद अनैच्छिक अवसादन हो सकता है।
इस प्रणाली में पंपों और स्पार्गर्स की श्रृंखला होती है जो शीतलक को प्राथमिक रोकथाम संरचना के ऊपरी हिस्से में स्प्रे करती है। इसे अत्यधिक दबाव और अत्यधिक तापमान को रोकने के लिए प्राथमिक रोकथाम संरचना के भीतर भाप को तरल में संघनित करने के लिए डिज़ाइन किया गया है, जिससे रिसाव हो सकता है, जिसके बाद अनैच्छिक अवसादन हो सकता है।


=== अलगाव शीतलन प्रणाली ===
=== अलगाव शीतलन प्रणाली ===
यदि रिएक्टर भवन को नियंत्रण और टर्बाइन भवनों से अलग किया जाता है तो रिएक्टर को सुरक्षित रूप से ठंडा करने के लिए पर्याप्त पानी प्रदान करने के लिए यह प्रणाली अक्सर भाप टरबाइन द्वारा संचालित होती है। वायवीय नियंत्रण के साथ भाप टरबाइन संचालित कूलिंग पंप बैटरी पावर, आपातकालीन जनरेटर, या ऑफ-साइट विद्युत शक्ति के बिना यंत्रवत् नियंत्रित समायोज्य गति पर चल सकते हैं। अलगाव शीतलन प्रणाली एक रक्षात्मक प्रणाली है जिसे स्टेशन ब्लैकआउट के रूप में जाना जाता है। यह सिस्टम ईसीसीएस का हिस्सा नहीं है और इसमें लो कूलेंट एक्सीडेंट फंक्शन नहीं है। दबाव वाले जल रिएक्टरों के लिए, यह प्रणाली द्वितीयक शीतलन सर्किट में कार्य करती है और इसे टर्बाइन चालित सहायक फीडवाटर प्रणाली कहा जाता है।
यदि रिएक्टर भवन को नियंत्रण और टर्बाइन भवनों से अलग किया जाता है तो रिएक्टर को सुरक्षित रूप से ठंडा करने के लिए पर्याप्त पानी प्रदान करने के लिए यह प्रणाली अक्सर भाप टरबाइन द्वारा संचालित होती है। वायवीय नियंत्रण के साथ भाप टरबाइन संचालित कूलिंग पंप बैटरी पावर, आपातकालीन जनरेटर, या ऑफ-साइट विद्युत शक्ति के बिना यंत्रवत् नियंत्रित समायोज्य गति पर चल सकते हैं। अलगाव शीतलन प्रणाली रक्षात्मक प्रणाली है जिसे स्टेशन ब्लैकआउट के रूप में जाना जाता है। यह सिस्टम ईसीसीएस का हिस्सा नहीं है और इसमें लो कूलेंट एक्सीडेंट फंक्शन नहीं है। दबाव वाले जल रिएक्टरों के लिए, यह प्रणाली द्वितीयक शीतलन सर्किट में कार्य करती है और इसे टर्बाइन चालित सहायक फीडवाटर प्रणाली कहा जाता है।


== आपातकालीन विद्युत प्रणाली ==
== आपातकालीन विद्युत प्रणाली ==
सामान्य परिस्थितियों में, परमाणु ऊर्जा संयंत्र जनरेटर से बिजली प्राप्त करते हैं। हालांकि, एक दुर्घटना के दौरान एक संयंत्र इस बिजली आपूर्ति तक पहुंच खो सकता है और इस प्रकार अपनी आपातकालीन प्रणालियों की आपूर्ति के लिए अपनी खुद की बिजली उत्पन्न करने की आवश्यकता हो सकती है। इन विद्युत प्रणालियों में आमतौर पर [[डीजल जनरेटर]] और [[बैटरी (बिजली)]] शामिल होती है।
सामान्य परिस्थितियों में, परमाणु ऊर्जा संयंत्र जनरेटर से बिजली प्राप्त करते हैं। हालांकि, दुर्घटना के दौरान संयंत्र इस बिजली आपूर्ति तक पहुंच खो सकता है और इस प्रकार अपनी आपातकालीन प्रणालियों की आपूर्ति के लिए अपनी खुद की बिजली उत्पन्न करने की आवश्यकता हो सकती है। इन विद्युत प्रणालियों में आमतौर पर [[डीजल जनरेटर]] और [[बैटरी (बिजली)]] शामिल होती है।


=== डीजल जनरेटर ===
=== डीजल जनरेटर ===
आपातकालीन स्थितियों के दौरान साइट को बिजली देने के लिए डीजल जनरेटर कार्यरत हैं। वे आम तौर पर इस तरह के आकार के होते हैं कि एक आपात स्थिति के दौरान एक सुविधा को बंद करने के लिए सभी आवश्यक शक्ति प्रदान कर सकता है। अतिरेक के लिए सुविधाओं में कई जनरेटर हैं। इसके अतिरिक्त, रिएक्टर को बंद करने के लिए आवश्यक सिस्टम में अलग विद्युत स्रोत (अक्सर अलग जनरेटर) होते हैं ताकि वे शटडाउन क्षमता को प्रभावित न करें।
आपातकालीन स्थितियों के दौरान साइट को बिजली देने के लिए डीजल जनरेटर कार्यरत हैं। वे आम तौर पर इस तरह के आकार के होते हैं कि आपात स्थिति के दौरान सुविधा को बंद करने के लिए सभी आवश्यक शक्ति प्रदान कर सकता है। अतिरेक के लिए सुविधाओं में कई जनरेटर हैं। इसके अतिरिक्त, रिएक्टर को बंद करने के लिए आवश्यक सिस्टम में अलग विद्युत स्रोत (अक्सर अलग जनरेटर) होते हैं ताकि वे शटडाउन क्षमता को प्रभावित न करें।


=== मोटर जनरेटर [[चक्का]] ===
=== मोटर जनरेटर [[चक्का]] ===
Line 51: Line 51:


=== बैटरी ===
=== बैटरी ===
बैटरी अक्सर अंतिम निरर्थक बैकअप विद्युत प्रणाली बनाती हैं और एक संयंत्र को बंद करने के लिए पर्याप्त विद्युत शक्ति प्रदान करने में भी सक्षम होती हैं।
बैटरी अक्सर अंतिम निरर्थक बैकअप विद्युत प्रणाली बनाती हैं और संयंत्र को बंद करने के लिए पर्याप्त विद्युत शक्ति प्रदान करने में भी सक्षम होती हैं।


== नियंत्रण प्रणाली ==
== नियंत्रण प्रणाली ==
Line 57: Line 57:


=== ईंधन आवरण ===
=== ईंधन आवरण ===
ईंधन रॉड#परमाणु ईंधन के सामान्य भौतिक रूप परमाणु ईंधन के चारों ओर सुरक्षा की पहली परत है और इसे ईंधन को जंग से बचाने के लिए डिज़ाइन किया गया है जो ईंधन सामग्री को रिएक्टर कूलेंट सर्किट में फैला देगा। अधिकांश रिएक्टरों में यह एक मुहरबंद धातु या सिरेमिक परत का रूप ले लेता है। यह विखंडन उत्पादों को ट्रैप करने का भी काम करता है, विशेष रूप से वे जो रिएक्टर के ऑपरेटिंग तापमान पर गैसीय होते हैं, जैसे कि [[क्रीप्टोण]], [[क्सीनन]] और [[आयोडीन]]। क्लैडिंग परिरक्षण का गठन नहीं करता है, और इसे इस तरह विकसित किया जाना चाहिए कि यह जितना संभव हो उतना कम विकिरण को अवशोषित करे। इस कारण से, मैग्नीशियम और जिरकोनियम जैसी सामग्रियों का उपयोग उनके कम [[न्यूट्रॉन कैप्चर]] क्रॉस सेक्शन के लिए किया जाता है।
ईंधन रॉड#परमाणु ईंधन के सामान्य भौतिक रूप परमाणु ईंधन के चारों ओर सुरक्षा की पहली परत है और इसे ईंधन को जंग से बचाने के लिए डिज़ाइन किया गया है जो ईंधन सामग्री को रिएक्टर कूलेंट सर्किट में फैला देगा। अधिकांश रिएक्टरों में यह मुहरबंद धातु या सिरेमिक परत का रूप ले लेता है। यह विखंडन उत्पादों को ट्रैप करने का भी काम करता है, विशेष रूप से वे जो रिएक्टर के ऑपरेटिंग तापमान पर गैसीय होते हैं, जैसे कि [[क्रीप्टोण]], [[क्सीनन]] और [[आयोडीन]]। क्लैडिंग परिरक्षण का गठन नहीं करता है, और इसे इस तरह विकसित किया जाना चाहिए कि यह जितना संभव हो उतना कम विकिरण को अवशोषित करे। इस कारण से, मैग्नीशियम और जिरकोनियम जैसी सामग्रियों का उपयोग उनके कम [[न्यूट्रॉन कैप्चर]] क्रॉस सेक्शन के लिए किया जाता है।


=== [[रिएक्टर पोत]] ===
=== [[रिएक्टर पोत]] ===
Line 63: Line 63:


=== प्राथमिक रोकथाम ===
=== प्राथमिक रोकथाम ===
रोकथाम निर्माण प्रणाली में आमतौर पर एक बड़ी धातु और/या ठोस संरचना (अक्सर बेलनाकार या बल्ब के आकार की) होती है जिसमें रिएक्टर पोत होता है। अधिकांश रिएक्टरों में इसमें रेडियोधर्मी रूप से दूषित प्रणालियाँ भी होती हैं। प्राथमिक रोकथाम प्रणाली को रिएक्टर पोत के रिसाव या जानबूझकर अवसादन के परिणामस्वरूप मजबूत आंतरिक दबावों का सामना करने के लिए डिज़ाइन किया गया है।
रोकथाम निर्माण प्रणाली में आमतौर पर बड़ी धातु और/या ठोस संरचना (अक्सर बेलनाकार या बल्ब के आकार की) होती है जिसमें रिएक्टर पोत होता है। अधिकांश रिएक्टरों में इसमें रेडियोधर्मी रूप से दूषित प्रणालियाँ भी होती हैं। प्राथमिक रोकथाम प्रणाली को रिएक्टर पोत के रिसाव या जानबूझकर अवसादन के परिणामस्वरूप मजबूत आंतरिक दबावों का सामना करने के लिए डिज़ाइन किया गया है।


=== माध्यमिक रोकथाम ===
=== माध्यमिक रोकथाम ===
कुछ पौधों में एक द्वितीयक नियंत्रण प्रणाली होती है जो प्राथमिक प्रणाली को शामिल करती है। यह [[BWR]]s में बहुत आम है क्योंकि टर्बाइन सहित अधिकांश भाप प्रणालियों में रेडियोधर्मी पदार्थ होते हैं।
कुछ पौधों में द्वितीयक नियंत्रण प्रणाली होती है जो प्राथमिक प्रणाली को शामिल करती है। यह [[BWR]]s में बहुत आम है क्योंकि टर्बाइन सहित अधिकांश भाप प्रणालियों में रेडियोधर्मी पदार्थ होते हैं।


=== कोर पकड़ने ===
=== कोर पकड़ने ===
पूरी तरह से पिघलने की स्थिति में, ईंधन सबसे अधिक संभावना प्राथमिक नियंत्रण भवन के कंक्रीट के फर्श पर समाप्त हो जाएगा। कंक्रीट बहुत अधिक गर्मी का सामना कर सकता है, इसलिए प्राथमिक रोकथाम में मोटा सपाट कंक्रीट का फर्श अक्सर तथाकथित [[परमाणु मंदी]] के खिलाफ पर्याप्त सुरक्षा प्रदान करेगा। [[चेरनोबिल]] संयंत्र में एक नियंत्रण भवन नहीं था, लेकिन कोर को अंततः कंक्रीट नींव से रोक दिया गया था। इस चिंता के कारण कि कोर कंक्रीट के माध्यम से अपना रास्ता पिघला देगा, एक [[कोर पकड़ने वाला]] का आविष्कार किया गया था, और इस तरह के उपकरण को स्थापित करने के इरादे से संयंत्र के नीचे एक खदान को जल्दी से खोदा गया था। डिवाइस में धातु की मात्रा होती है जिसे पिघलाने के लिए डिज़ाइन किया गया है, कोरियम (परमाणु रिएक्टर) को पतला करता है और इसकी तापीय चालकता बढ़ाता है; पतला धात्विक द्रव्यमान तब फर्श में पानी के प्रवाह से ठंडा हो सकता है। आज, सभी नए रूसी-डिज़ाइन किए गए रिएक्टर नियंत्रण भवन के निचले भाग में कोर-कैचर से लैस हैं।<ref>[https://www.nytimes.com/2011/03/23/business/energy-environment/23chernobyl.html Nuclear Industry in Russia Sells Safety, Taught by Chernobyl]</ref>
पूरी तरह से पिघलने की स्थिति में, ईंधन सबसे अधिक संभावना प्राथमिक नियंत्रण भवन के कंक्रीट के फर्श पर समाप्त हो जाएगा। कंक्रीट बहुत अधिक गर्मी का सामना कर सकता है, इसलिए प्राथमिक रोकथाम में मोटा सपाट कंक्रीट का फर्श अक्सर तथाकथित [[परमाणु मंदी]] के खिलाफ पर्याप्त सुरक्षा प्रदान करेगा। [[चेरनोबिल]] संयंत्र में नियंत्रण भवन नहीं था, लेकिन कोर को अंततः कंक्रीट नींव से रोक दिया गया था। इस चिंता के कारण कि कोर कंक्रीट के माध्यम से अपना रास्ता पिघला देगा, [[कोर पकड़ने वाला]] का आविष्कार किया गया था, और इस तरह के उपकरण को स्थापित करने के इरादे से संयंत्र के नीचे खदान को जल्दी से खोदा गया था। डिवाइस में धातु की मात्रा होती है जिसे पिघलाने के लिए डिज़ाइन किया गया है, कोरियम (परमाणु रिएक्टर) को पतला करता है और इसकी तापीय चालकता बढ़ाता है; पतला धात्विक द्रव्यमान तब फर्श में पानी के प्रवाह से ठंडा हो सकता है। आज, सभी नए रूसी-डिज़ाइन किए गए रिएक्टर नियंत्रण भवन के निचले भाग में कोर-कैचर से लैस हैं।<ref>[https://www.nytimes.com/2011/03/23/business/energy-environment/23chernobyl.html Nuclear Industry in Russia Sells Safety, Taught by Chernobyl]</ref>
यूरोपीय दाबित रिएक्टर, SNR-300, SWR1000, ESBWR, और Atmea I रिएक्टर में कोर कैचर हैं।{{citation needed|date=February 2013}}
यूरोपीय दाबित रिएक्टर, SNR-300, SWR1000, ESBWR, और Atmea I रिएक्टर में कोर कैचर हैं।{{citation needed|date=February 2013}}




== अतिरिक्त गैस उपचार ==
== अतिरिक्त गैस उपचार ==
एक अतिरिक्त गैस उपचार प्रणाली (SGTS) द्वितीयक नियंत्रण प्रणाली का हिस्सा है। SGTS सिस्टम सेकेंडरी कंटेनमेंट से पर्यावरण में हवा को फिल्टर और पंप करता है और रेडियोधर्मी सामग्री के रिलीज को सीमित करने के लिए सेकेंडरी कंटेनमेंट के भीतर एक नकारात्मक दबाव बनाए रखता है।
एक अतिरिक्त गैस उपचार प्रणाली (SGTS) द्वितीयक नियंत्रण प्रणाली का हिस्सा है। SGTS सिस्टम सेकेंडरी कंटेनमेंट से पर्यावरण में हवा को फिल्टर और पंप करता है और रेडियोधर्मी सामग्री के रिलीज को सीमित करने के लिए सेकेंडरी कंटेनमेंट के भीतर नकारात्मक दबाव बनाए रखता है।


प्रत्येक एसजीटीएस ट्रेन में आम तौर पर एक मिस्ट एलिमिनेटर/रफिंग फिल्टर होता है; एक इलेक्ट्रिक हीटर; एक प्रीफ़िल्टर; दो निरपेक्ष ([[HEPA]]) फिल्टर; एक सक्रिय चारकोल फ़िल्टर; एक निकास पंखा; और संबंधित वाल्व, डक्टवर्क, डैम्पर्स, इंस्ट्रूमेंटेशन और नियंत्रण। SGTS सिस्टम को ट्रिप करने वाले सिग्नल प्लांट-विशिष्ट हैं; हालाँकि, स्वचालित यात्राएं आमतौर पर इलेक्ट्रिक हीटर और चारकोल फिल्टर में उच्च तापमान की स्थिति से जुड़ी होती हैं।
प्रत्येक एसजीटीएस ट्रेन में आम तौर पर मिस्ट एलिमिनेटर/रफिंग फिल्टर होता है; इलेक्ट्रिक हीटर; प्रीफ़िल्टर; दो निरपेक्ष ([[HEPA]]) फिल्टर; सक्रिय चारकोल फ़िल्टर; निकास पंखा; और संबंधित वाल्व, डक्टवर्क, डैम्पर्स, इंस्ट्रूमेंटेशन और नियंत्रण। SGTS सिस्टम को ट्रिप करने वाले सिग्नल प्लांट-विशिष्ट हैं; हालाँकि, स्वचालित यात्राएं आमतौर पर इलेक्ट्रिक हीटर और चारकोल फिल्टर में उच्च तापमान की स्थिति से जुड़ी होती हैं।


== वेंटिलेशन और विकिरण सुरक्षा ==
== वेंटिलेशन और विकिरण सुरक्षा ==
रेडियोधर्मी रिलीज के मामले में, अधिकांश संयंत्रों में कर्मचारियों और जनता पर रेडियोधर्मिता रिलीज के प्रभाव को कम करने के लिए हवा से रेडियोधर्मिता को हटाने के लिए एक प्रणाली तैयार की गई है। इस प्रणाली में आमतौर पर रोकथाम वेंटिलेशन होता है जो प्राथमिक रोकथाम से रेडियोधर्मिता और भाप को हटा देता है। कंट्रोल रूम वेंटिलेशन सुनिश्चित करता है कि प्लांट संचालक सुरक्षित हैं। इस प्रणाली में अक्सर सक्रिय चारकोल फिल्टर होते हैं जो हवा से रेडियोधर्मी समस्थानिकों को हटाते हैं।
रेडियोधर्मी रिलीज के मामले में, अधिकांश संयंत्रों में कर्मचारियों और जनता पर रेडियोधर्मिता रिलीज के प्रभाव को कम करने के लिए हवा से रेडियोधर्मिता को हटाने के लिए प्रणाली तैयार की गई है। इस प्रणाली में आमतौर पर रोकथाम वेंटिलेशन होता है जो प्राथमिक रोकथाम से रेडियोधर्मिता और भाप को हटा देता है। कंट्रोल रूम वेंटिलेशन सुनिश्चित करता है कि प्लांट संचालक सुरक्षित हैं। इस प्रणाली में अक्सर सक्रिय चारकोल फिल्टर होते हैं जो हवा से रेडियोधर्मी समस्थानिकों को हटाते हैं।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 14:25, 8 February 2023

यह लेख संयुक्त राज्य अमेरिका में सक्रिय परमाणु सुरक्षा प्रणालियों के तकनीकी पहलुओं को सम्मिलित करता है। परमाणु सुरक्षा के सामान्य दृष्टिकोण के लिए, परमाणु सुरक्षा देखें।

अमेरिकी परमाणु नियामक आयोग द्वारा परिभाषित 'परमाणु रिएक्टर सुरक्षा प्रणालियों' के तीन प्राथमिक उद्देश्य रिएक्टर को बंद करना, इसे बंद स्थिति में बनाए रखना और रेडियोधर्मी सामग्री की रिहाई को रोकना है।[1]


रिएक्टर सुरक्षा प्रणाली (RPS)

रिएक्टर सुरक्षा प्रणाली को परमाणु प्रतिक्रिया को तुरंत समाप्त करने के लिए डिज़ाइन किया गया है। नाभिकीय श्रृंखला अभिक्रिया को तोड़ने से ऊष्मा का स्रोत समाप्त हो जाता है। अन्य प्रणालियों का उपयोग फिर कोर से क्षय गर्मी को दूर करने के लिए किया जा सकता है। सभी परमाणु संयंत्रों में रिएक्टर सुरक्षा प्रणाली का कोई न कोई रूप होता है।

नियंत्रण छड़

नियंत्रण छड़ें छड़ की श्रृंखला होती हैं जिन्हें न्यूट्रॉन को अवशोषित करने और परमाणु प्रतिक्रिया को तेजी से समाप्त करने के लिए रिएक्टर कोर में जल्दी से डाला जा सकता है।[2] वे आमतौर पर एक्टिनाइड्स, लैंथेनाइड्स, संक्रमण धातुओं और बोरॉन से बने होते हैं।[3] स्टील जैसे संरचनात्मक समर्थन के साथ विभिन्न मिश्र धातुओं में। न्यूट्रॉन शोषक होने के अलावा, उपयोग की जाने वाली मिश्र धातुओं में थर्मल विस्तार के कम से कम गुणांक की आवश्यकता होती है ताकि वे उच्च तापमान के तहत जाम न हों, और उन्हें धातु पर आत्म-स्नेहन धातु होना चाहिए, क्योंकि तापमान का अनुभव होता है परमाणु रिएक्टर कोर द्वारा तेल स्नेहन बहुत जल्दी खराब हो जाएगा।

सुरक्षा इंजेक्शन / अतिरिक्त तरल नियंत्रण

उबलते पानी के रिएक्टर अपनी नियंत्रण छड़ों की मदद से रिएक्टर को पूरी तरह से SCRAM करने में सक्षम हैं।[2]शीतलक दुर्घटना (एलओसीए) के नुकसान के मामले में, प्राथमिक शीतलन प्रणाली के पानी के नुकसान को कूलिंग सर्किट में पंप किए गए सामान्य पानी से मुआवजा दिया जा सकता है। दूसरी ओर, स्टैंडबाय लिक्विड कंट्रोल (SLC) सिस्टम (SLCS) में बोरिक एसिड युक्त घोल होता है, जो न्यूट्रॉन जहर के रूप में काम करता है और चेन रिएक्शन को रोकने में समस्या होने पर कोर को तेजी से भर देता है।[4] दाबित जल रिएक्टर भी अपने नियंत्रण छड़ों की सहायता से रिएक्टर को पूरी तरह से एससीआरएएम कर सकते हैं। पीडब्ल्यूआर अपने रासायनिक और आयतन नियंत्रण प्रणाली (सीवीसीएस) का उपयोग करके रिएक्टर शक्ति स्तर, या प्रतिक्रियात्मकता में ठीक समायोजन करने के लिए बोरिक एसिड का भी उपयोग करते हैं।[5] LOCA के मामले में, PWRs के पास बैकअप कूलिंग वॉटर, हाई प्रेशर इंजेक्शन (HPI), लो प्रेशर इंजेक्शन (LPI) और कोर फ्लड टैंक (CFTs) के तीन स्रोत हैं।[6] वे सभी बोरॉन की उच्च सांद्रता वाले पानी का उपयोग करते हैं।

आवश्यक सेवा जल व्यवस्था

आवश्यक सेवा जल प्रणाली (ईएसडब्ल्यूएस) पर्यावरण में गर्मी को खत्म करने से पहले संयंत्र के हीट एक्सचेंजर्स और अन्य घटकों को ठंडा करने वाले पानी को प्रसारित करती है। क्योंकि इसमें उन प्रणालियों को ठंडा करना शामिल है जो प्राथमिक प्रणाली और खर्च किए गए परमाणु ईंधन शीतलन तालाबों दोनों से क्षय गर्मी को दूर करते हैं, ESWS सुरक्षा-महत्वपूर्ण प्रणाली है।[7] चूंकि पानी अक्सर निकटवर्ती नदी, समुद्र, या पानी के अन्य बड़े शरीर से खींचा जाता है, इस प्रणाली को समुद्री शैवाल, समुद्री जीवों, तेल प्रदूषण, बर्फ और मलबे से दूषित किया जा सकता है।[7][8] ऐसे स्थानों में जहां पानी की बड़ी मात्रा नहीं होती है, जहां गर्मी को दूर करने के लिए, पानी को शीतलन टॉवर के माध्यम से पुन: परिचालित किया जाता है।

ईएसडब्ल्यूएस पंपों में से आधे की विफलता उन कारकों में से थी, जो 1999 में ब्लैयस परमाणु ऊर्जा संयंत्र बाढ़ में सुरक्षा को खतरे में डालती थी,[9][10] जबकि 2011 में फुकुशिमा I परमाणु दुर्घटनाओं और फुकुशिमा II परमाणु ऊर्जा संयंत्र # 2011 भूकंप और सूनामी परमाणु दुर्घटनाओं के दौरान कुल नुकसान हुआ।[10][11]


इमरजेंसी कोर कूलिंग सिस्टम

एचपीसीआई और एलपीसीआई सक्रिय ईसीसीएस के भाग के रूप में

इमरजेंसी कोर कूलिंग सिस्टम (ECCS) को दुर्घटना की स्थिति में परमाणु रिएक्टर को सुरक्षित रूप से बंद करने के लिए डिज़ाइन किया गया है। ईसीसीएस संयंत्र को विभिन्न प्रकार की दुर्घटना स्थितियों (जैसे शीतलक दुर्घटनाओं का नुकसान) का जवाब देने की अनुमति देता है और अतिरिक्त अतिरेक पेश करता है ताकि संयंत्र को या अधिक सबसिस्टम विफलताओं के साथ भी बंद किया जा सके। अधिकांश संयंत्रों में, ईसीसीएस निम्नलिखित प्रणालियों से बना होता है:

उच्च दबाव शीतलक इंजेक्शन प्रणाली

हाई प्रेशर कूलेंट इंजेक्शन (एचपीसीआई) सिस्टम में पंप या पंप होते हैं, जो रिएक्टर पोत में शीतलक को इंजेक्ट करने के लिए पर्याप्त दबाव रखते हैं, जबकि यह दबाव में होता है। यह रिएक्टर पोत में शीतलक के स्तर की निगरानी करने के लिए डिज़ाइन किया गया है और जब स्तर सीमा से नीचे गिरता है तो स्वचालित रूप से शीतलक इंजेक्ट करता है। यह प्रणाली आमतौर पर रिएक्टर के लिए रक्षा की पहली पंक्ति होती है क्योंकि इसका उपयोग तब किया जा सकता है जब रिएक्टर पोत अभी भी अत्यधिक दबाव में हो।

स्वचालित अवसादन प्रणाली

निष्क्रिय ईसीसीएस

स्वचालित डिप्रेसराइजेशन सिस्टम (ADS) में वाल्वों की श्रृंखला होती है, जो तरल पानी के बड़े पूल (वेटवेल या टोरस के रूप में जाना जाता है) की सतह के नीचे दबाव दमन प्रकार की रोकथाम (आमतौर पर उबलते पानी रिएक्टर में उपयोग किया जाता है) की सतह के नीचे वेंट भाप के लिए खुलती है। डिजाइन), या अन्य प्रकार के कंटेनमेंट में सीधे प्राथमिक कंटेनमेंट स्ट्रक्चर में, जैसे कि लार्ज-ड्राई या आइस-कंडेंसर कंटेनमेंट (आमतौर पर प्रेशराइज्ड वॉटर रिएक्टर डिजाइन में उपयोग किया जाता है)। इन वाल्वों का क्रियान्वयन रिएक्टर पोत को निराश करता है और निम्न दबाव शीतलक इंजेक्शन सिस्टम को कार्य करने की अनुमति देता है, जिसमें उच्च दबाव प्रणालियों की तुलना में बहुत बड़ी क्षमता होती है। कुछ डिप्रेसराइजेशन सिस्टम स्वचालित रूप से कार्य करते हैं, जबकि अन्य को ऑपरेटरों को मैन्युअल रूप से सक्रिय करने की आवश्यकता हो सकती है। बड़े सूखे या बर्फ कंडेनसर युक्त दबाव वाले पानी के रिएक्टरों में, सिस्टम के वाल्वों को पायलट संचालित रिलीज वाल्व कहा जाता है।

कम दबाव शीतलक इंजेक्शन प्रणाली

एक एलपीसीआई आपातकालीन प्रणाली है जिसमें पंप होता है जो रिएक्टर पोत में बार दबाव कम होने के बाद शीतलक को इंजेक्ट करता है। कुछ परमाणु ऊर्जा संयंत्रों में एलपीसीआई अवशिष्ट ताप हटाने प्रणाली के संचालन का तरीका है, जिसे आरएचआर या आरएचएस भी कहा जाता है। आम तौर पर एलपीसीआई कहा जाता है स्टैंड-अलोन वाल्व या सिस्टम नहीं है।

कोर स्प्रे सिस्टम (केवल बीडब्ल्यूआर में)

यह प्रणाली रिएक्टर दबाव पोत के भीतर ईंधन की छड़ों पर सीधे पानी का छिड़काव करने के लिए स्पार्गर्स (कई छोटे स्प्रे नोजल की सरणी के साथ लगे पाइप) का उपयोग करती है, भाप की पीढ़ी को दबाती है। रिएक्टर डिजाइन में उच्च दबाव और निम्न दबाव मोड में कोर स्प्रे शामिल हो सकते हैं।

रोकथाम स्प्रे प्रणाली

इस प्रणाली में पंपों और स्पार्गर्स की श्रृंखला होती है जो शीतलक को प्राथमिक रोकथाम संरचना के ऊपरी हिस्से में स्प्रे करती है। इसे अत्यधिक दबाव और अत्यधिक तापमान को रोकने के लिए प्राथमिक रोकथाम संरचना के भीतर भाप को तरल में संघनित करने के लिए डिज़ाइन किया गया है, जिससे रिसाव हो सकता है, जिसके बाद अनैच्छिक अवसादन हो सकता है।

अलगाव शीतलन प्रणाली

यदि रिएक्टर भवन को नियंत्रण और टर्बाइन भवनों से अलग किया जाता है तो रिएक्टर को सुरक्षित रूप से ठंडा करने के लिए पर्याप्त पानी प्रदान करने के लिए यह प्रणाली अक्सर भाप टरबाइन द्वारा संचालित होती है। वायवीय नियंत्रण के साथ भाप टरबाइन संचालित कूलिंग पंप बैटरी पावर, आपातकालीन जनरेटर, या ऑफ-साइट विद्युत शक्ति के बिना यंत्रवत् नियंत्रित समायोज्य गति पर चल सकते हैं। अलगाव शीतलन प्रणाली रक्षात्मक प्रणाली है जिसे स्टेशन ब्लैकआउट के रूप में जाना जाता है। यह सिस्टम ईसीसीएस का हिस्सा नहीं है और इसमें लो कूलेंट एक्सीडेंट फंक्शन नहीं है। दबाव वाले जल रिएक्टरों के लिए, यह प्रणाली द्वितीयक शीतलन सर्किट में कार्य करती है और इसे टर्बाइन चालित सहायक फीडवाटर प्रणाली कहा जाता है।

आपातकालीन विद्युत प्रणाली

सामान्य परिस्थितियों में, परमाणु ऊर्जा संयंत्र जनरेटर से बिजली प्राप्त करते हैं। हालांकि, दुर्घटना के दौरान संयंत्र इस बिजली आपूर्ति तक पहुंच खो सकता है और इस प्रकार अपनी आपातकालीन प्रणालियों की आपूर्ति के लिए अपनी खुद की बिजली उत्पन्न करने की आवश्यकता हो सकती है। इन विद्युत प्रणालियों में आमतौर पर डीजल जनरेटर और बैटरी (बिजली) शामिल होती है।

डीजल जनरेटर

आपातकालीन स्थितियों के दौरान साइट को बिजली देने के लिए डीजल जनरेटर कार्यरत हैं। वे आम तौर पर इस तरह के आकार के होते हैं कि आपात स्थिति के दौरान सुविधा को बंद करने के लिए सभी आवश्यक शक्ति प्रदान कर सकता है। अतिरेक के लिए सुविधाओं में कई जनरेटर हैं। इसके अतिरिक्त, रिएक्टर को बंद करने के लिए आवश्यक सिस्टम में अलग विद्युत स्रोत (अक्सर अलग जनरेटर) होते हैं ताकि वे शटडाउन क्षमता को प्रभावित न करें।

मोटर जनरेटर चक्का

विद्युत शक्ति का नुकसान अचानक हो सकता है और उपकरण को नुकसान पहुंचा सकता है या कमजोर कर सकता है। क्षति को रोकने के लिए, मोटर-जनरेटर को चक्का से बांधा जा सकता है जो संक्षिप्त अवधि के लिए उपकरणों को निर्बाध विद्युत शक्ति प्रदान कर सकता है। अक्सर वे विद्युत शक्ति प्रदान करने के लिए उपयोग किए जाते हैं जब तक कि संयंत्र विद्युत आपूर्ति को बैटरी और/या डीजल जनरेटर में स्विच नहीं किया जा सकता।

बैटरी

बैटरी अक्सर अंतिम निरर्थक बैकअप विद्युत प्रणाली बनाती हैं और संयंत्र को बंद करने के लिए पर्याप्त विद्युत शक्ति प्रदान करने में भी सक्षम होती हैं।

नियंत्रण प्रणाली

पर्यावरण में रेडियोधर्मी सामग्री की रिहाई को रोकने के लिए रोकथाम प्रणाली तैयार की गई है।

ईंधन आवरण

ईंधन रॉड#परमाणु ईंधन के सामान्य भौतिक रूप परमाणु ईंधन के चारों ओर सुरक्षा की पहली परत है और इसे ईंधन को जंग से बचाने के लिए डिज़ाइन किया गया है जो ईंधन सामग्री को रिएक्टर कूलेंट सर्किट में फैला देगा। अधिकांश रिएक्टरों में यह मुहरबंद धातु या सिरेमिक परत का रूप ले लेता है। यह विखंडन उत्पादों को ट्रैप करने का भी काम करता है, विशेष रूप से वे जो रिएक्टर के ऑपरेटिंग तापमान पर गैसीय होते हैं, जैसे कि क्रीप्टोण, क्सीनन और आयोडीन। क्लैडिंग परिरक्षण का गठन नहीं करता है, और इसे इस तरह विकसित किया जाना चाहिए कि यह जितना संभव हो उतना कम विकिरण को अवशोषित करे। इस कारण से, मैग्नीशियम और जिरकोनियम जैसी सामग्रियों का उपयोग उनके कम न्यूट्रॉन कैप्चर क्रॉस सेक्शन के लिए किया जाता है।

रिएक्टर पोत

रिएक्टर पोत परमाणु ईंधन के चारों ओर परिरक्षण की पहली परत है और आमतौर पर परमाणु प्रतिक्रिया के दौरान जारी अधिकांश विकिरण को फंसाने के लिए डिज़ाइन किया गया है। रिएक्टर पोत भी उच्च दबावों का सामना करने के लिए डिज़ाइन किया गया है।

प्राथमिक रोकथाम

रोकथाम निर्माण प्रणाली में आमतौर पर बड़ी धातु और/या ठोस संरचना (अक्सर बेलनाकार या बल्ब के आकार की) होती है जिसमें रिएक्टर पोत होता है। अधिकांश रिएक्टरों में इसमें रेडियोधर्मी रूप से दूषित प्रणालियाँ भी होती हैं। प्राथमिक रोकथाम प्रणाली को रिएक्टर पोत के रिसाव या जानबूझकर अवसादन के परिणामस्वरूप मजबूत आंतरिक दबावों का सामना करने के लिए डिज़ाइन किया गया है।

माध्यमिक रोकथाम

कुछ पौधों में द्वितीयक नियंत्रण प्रणाली होती है जो प्राथमिक प्रणाली को शामिल करती है। यह BWRs में बहुत आम है क्योंकि टर्बाइन सहित अधिकांश भाप प्रणालियों में रेडियोधर्मी पदार्थ होते हैं।

कोर पकड़ने

पूरी तरह से पिघलने की स्थिति में, ईंधन सबसे अधिक संभावना प्राथमिक नियंत्रण भवन के कंक्रीट के फर्श पर समाप्त हो जाएगा। कंक्रीट बहुत अधिक गर्मी का सामना कर सकता है, इसलिए प्राथमिक रोकथाम में मोटा सपाट कंक्रीट का फर्श अक्सर तथाकथित परमाणु मंदी के खिलाफ पर्याप्त सुरक्षा प्रदान करेगा। चेरनोबिल संयंत्र में नियंत्रण भवन नहीं था, लेकिन कोर को अंततः कंक्रीट नींव से रोक दिया गया था। इस चिंता के कारण कि कोर कंक्रीट के माध्यम से अपना रास्ता पिघला देगा, कोर पकड़ने वाला का आविष्कार किया गया था, और इस तरह के उपकरण को स्थापित करने के इरादे से संयंत्र के नीचे खदान को जल्दी से खोदा गया था। डिवाइस में धातु की मात्रा होती है जिसे पिघलाने के लिए डिज़ाइन किया गया है, कोरियम (परमाणु रिएक्टर) को पतला करता है और इसकी तापीय चालकता बढ़ाता है; पतला धात्विक द्रव्यमान तब फर्श में पानी के प्रवाह से ठंडा हो सकता है। आज, सभी नए रूसी-डिज़ाइन किए गए रिएक्टर नियंत्रण भवन के निचले भाग में कोर-कैचर से लैस हैं।[12] यूरोपीय दाबित रिएक्टर, SNR-300, SWR1000, ESBWR, और Atmea I रिएक्टर में कोर कैचर हैं।[citation needed]


अतिरिक्त गैस उपचार

एक अतिरिक्त गैस उपचार प्रणाली (SGTS) द्वितीयक नियंत्रण प्रणाली का हिस्सा है। SGTS सिस्टम सेकेंडरी कंटेनमेंट से पर्यावरण में हवा को फिल्टर और पंप करता है और रेडियोधर्मी सामग्री के रिलीज को सीमित करने के लिए सेकेंडरी कंटेनमेंट के भीतर नकारात्मक दबाव बनाए रखता है।

प्रत्येक एसजीटीएस ट्रेन में आम तौर पर मिस्ट एलिमिनेटर/रफिंग फिल्टर होता है; इलेक्ट्रिक हीटर; प्रीफ़िल्टर; दो निरपेक्ष (HEPA) फिल्टर; सक्रिय चारकोल फ़िल्टर; निकास पंखा; और संबंधित वाल्व, डक्टवर्क, डैम्पर्स, इंस्ट्रूमेंटेशन और नियंत्रण। SGTS सिस्टम को ट्रिप करने वाले सिग्नल प्लांट-विशिष्ट हैं; हालाँकि, स्वचालित यात्राएं आमतौर पर इलेक्ट्रिक हीटर और चारकोल फिल्टर में उच्च तापमान की स्थिति से जुड़ी होती हैं।

वेंटिलेशन और विकिरण सुरक्षा

रेडियोधर्मी रिलीज के मामले में, अधिकांश संयंत्रों में कर्मचारियों और जनता पर रेडियोधर्मिता रिलीज के प्रभाव को कम करने के लिए हवा से रेडियोधर्मिता को हटाने के लिए प्रणाली तैयार की गई है। इस प्रणाली में आमतौर पर रोकथाम वेंटिलेशन होता है जो प्राथमिक रोकथाम से रेडियोधर्मिता और भाप को हटा देता है। कंट्रोल रूम वेंटिलेशन सुनिश्चित करता है कि प्लांट संचालक सुरक्षित हैं। इस प्रणाली में अक्सर सक्रिय चारकोल फिल्टर होते हैं जो हवा से रेडियोधर्मी समस्थानिकों को हटाते हैं।

यह भी देखें

संदर्भ

  1. "Glossary: Safety-related". Retrieved 2011-03-20.
  2. 2.0 2.1 Jabsen, Felix S. (10 May 1967). "Nuclear reactor rod controller" (PDF). p. 3. Retrieved 4 June 2019.
  3. Fisher, John R. (8 July 1968). "Nuclear reactor control rod" (PDF). p. 7. Retrieved 4 June 2019.
  4. Fensin, ML. "Optimum Boiling Water Reactor Fuel Design Strategies to Enhance Reactor Shutdown by the Standby Liquid Control System" (PDF). University of Florida. pp. 24–25. Retrieved 4 June 2019.
  5. Corcoran, W.R.; Finnicum, D.J.; Hubbard, F.R., III; Musick, C.R.; Walzer, P.F. (May 1980). "The operator's role and safety functions" (PDF). p. 5. Retrieved 4 June 2019.{{cite web}}: CS1 maint: multiple names: authors list (link)
  6. Carlton, James D.; Kane, Edward R.; Parece, Martin V. (15 November 1993). "Method and system for emergency core cooling" (PDF). pp. 1, 7. Retrieved 4 June 2019.
  7. 7.0 7.1 Pre-construction safety report - Sub-chapter 9.2 – Water Systems AREVA NP / EDF, published 2009-06-29, accessed 2011-03-23
  8. Got Water? Union of Concerned Scientists, published October 2007, accessed 2011-03-23
  9. Generic Results and Conclusions of Re-evaluating the Flooding in French and German Nuclear Power Plants Archived 2011-10-06 at the Wayback Machine J. M. Mattéi, E. Vial, V. Rebour, H. Liemersdorf, M. Türschmann, Eurosafe Forum 2001, published 2001, accessed 2011-03-21
  10. 10.0 10.1 The great lesson France has to learn from Fukushima Archived 2012-10-29 at the Wayback Machine Deciphering Fukushima, published 2011-03-08, accessed 2012-05-08
  11. "Insight to Fukushima engineering challenges". World Nuclear News. March 18, 2011. Retrieved March 19, 2011.
  12. Nuclear Industry in Russia Sells Safety, Taught by Chernobyl



मानक

  • अमेरिकन नेशनल स्टैंडर्ड, ANSI N18.2, "स्टेशनरी प्रेशराइज्ड वाटर रिएक्टर प्लांट्स के डिजाइन के लिए परमाणु सुरक्षा मानदंड," अगस्त 1973।
  • IEEE 279, "परमाणु ऊर्जा उत्पादन स्टेशनों के लिए सुरक्षा प्रणाली के लिए मानदंड।"


श्रेणी:परमाणु रिएक्टर सुरक्षा श्रेणी:परमाणु सुरक्षा और संरक्षा|*प्रणाली श्रेणी:परमाणु ऊर्जा संयंत्र घटक