वैश्विक विकल्प अवलम्बित: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 32: | Line 32: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 13/02/2023]] | [[Category:Created On 13/02/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 16:32, 10 March 2023
गणित में, विशेष रूप से वर्ग सिद्धांतों में, वैश्विक विकल्प का स्वयंसिद्ध विकल्प के स्वयंसिद्ध का एक शक्तिशाली रूप है जो समुच्चय के उचित वर्गों के साथ-साथ समुच्चय के समुच्चय पर भी प्रयुक्त होता है। अनौपचारिक रूप से यह बताता है कि एक साथ प्रत्येक गैर-खाली समुच्चय से एक तत्व चुन सकता है।
कथन
वैश्विक विकल्प का स्वयंसिद्ध बताता है कि वैश्विक विकल्प फलन या बॉरबाकी ताऊ फलन τ है, जिसका अर्थ है कि प्रत्येक गैर-खाली समुच्चय z के लिए, τ(z) z का तत्व है।
वैश्विक विकल्प के स्वयंसिद्ध को सीधे जेडएफसी की भाषा में नहीं कहा जा सकता है (अर्नेस्ट ज़र्मेलो समुच्चय थ्योरी विथ द एक्सिओम ऑफ़ विकल्प), क्योंकि विकल्प फलन τ उचित वर्ग है और जेडएफसी में कोई भी कक्षाओं की मात्रा निर्धारित नहीं कर सकता है। इसे जेडएफसी की भाषा में नया फलन प्रतीक τ जोड़कर कहा जा सकता है, संपत्ति के साथ कि τ वैश्विक विकल्प फलन है। यह जेडएफसी का रूढ़िवादी विस्तार है: इस विस्तारित सिद्धांत का प्रत्येक सिद्ध कथन जो जेडएफसी की भाषा में कहा जा सकता है, जेडएफसी में पहले से ही सिद्ध है। (फ्रेंकेल, बार-हिल्लेल & लेवी 1973, पी.72) . वैकल्पिक रूप से, कर्ट गोडेल | गोडेल ने दिखाया कि निर्माण के स्वयंसिद्ध को देखते हुए स्पष्ट (चूंकि कुछ जटिल) विकल्प फलन τ को जेडएफसी की भाषा में लिखा जा सकता है, इसलिए कुछ अर्थों में निर्माण क्षमता का स्वयंसिद्ध वैश्विक विकल्प (वास्तव में, (जेडएफसी) साबित करता है कि) यूनरी फलन प्रतीक τ द्वारा विस्तारित भाषा में, निर्माण के स्वयंसिद्ध का अर्थ है कि यदि τ को स्पष्ट रूप से निश्चित फलन कहा जाता है, तो यह τ वैश्विक विकल्प फलन है। और फिर वैश्विक विकल्प नैतिक रूप से, τ को गवाह के रूप में रखता है ( अंक शास्त्र))।
वॉन न्यूमैन-बर्नेज़-गोडेल समुच्चय थ्योरी (एनबीजी) और मोर्स-केली समुच्चय थ्योरी की भाषा में, वैश्विक विकल्प के स्वयंसिद्ध को सीधे कहा जा सकता है (फ्रेंकेल, बार-हिल्लेल & लेवी 1973, पी.133) , और कई अन्य बयानों के सामान्य है:
- गैर-खाली समुच्चयों के प्रत्येक वर्ग में विकल्प कार्य होता है।
- V \ {∅} का विकल्प फलन है (जहाँ V वॉन न्यूमैन ब्रह्मांड है)।
- V का सुक्रम है।
- V और सभी क्रमिक संख्याओं के वर्ग के बीच आक्षेप है।
वॉन न्यूमैन-बर्नेज़-गोडेल समुच्चय सिद्धांत में, वैश्विक विकल्प 'समुच्चय' (उचित वर्ग नहीं) के बारे में कोई परिणाम नहीं जोड़ता है, जो विकल्प के सामान्य स्वयंसिद्ध से निकाला जा सकता है।
वैश्विक विकल्प आकार की सीमा के स्वयंसिद्ध का परिणाम है।
संदर्भ
- Fraenkel, Abraham A.; Bar-Hillel, Yehoshua; Levy, Azriel (1973), Foundations of set theory, Studies in Logic and the Foundations of Mathematics, vol. 67 (Second revised ed.), Amsterdam-London: North-Holland Publishing Co., ISBN 978-0720422702, MR 0345816
- Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.
- John L. Kelley; General Topology; ISBN 0-387-90125-6