हेक्सागोनल संख्या: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
पहले कुछ हेक्सागोनल नंबर {{OEIS|id=A000384}} हैं: | पहले कुछ हेक्सागोनल नंबर {{OEIS|id=A000384}} हैं: | ||
:[[1 (संख्या)]], [[6 (संख्या)]], [[15 (संख्या)]], [[28 (संख्या)]], [[45 (संख्या)]], [[66 (संख्या)]], [[91 (संख्या)]], [[120 (संख्या)]], [[153 (संख्या)]], [[190 (संख्या)]] , 231, 276, 325, 378, 435, [[496 (संख्या)]], 561, 630, 703, 780, 861, 946... | :[[1 (संख्या)]], [[6 (संख्या)]], [[15 (संख्या)]], [[28 (संख्या)]], [[45 (संख्या)]], [[66 (संख्या)]], [[91 (संख्या)]], [[120 (संख्या)]], [[153 (संख्या)]], [[190 (संख्या)]], 231, 276, 325, 378, 435, [[496 (संख्या)]], 561, 630, 703, 780, 861, 946... | ||
हेक्सागोनल संख्या एक [[त्रिकोणीय संख्या]] है, किन्तु केवल दूसरी त्रिकोणीय संख्या (पहली, तीसरी, पांचवीं, सातवीं, आदि) हेक्सागोनल संख्या है। त्रिकोणीय संख्या की तरह, हेक्सागोनल संख्या के आधार 10 में [[ डिजिटल जड़ | डिजिटल रूप]] | हेक्सागोनल संख्या एक [[त्रिकोणीय संख्या]] है, किन्तु केवल दूसरी त्रिकोणीय संख्या (पहली, तीसरी, पांचवीं, सातवीं, आदि) हेक्सागोनल संख्या है। त्रिकोणीय संख्या की तरह, हेक्सागोनल संख्या के आधार 10 में [[ डिजिटल जड़ |डिजिटल रूप]] में केवल 1, 3, 6 या 9 हो सकता है। डिजिटल रूट पैटर्न, हर नौ शब्दों को दोहराता है, 1 6 6 1 9 3 1 3 9 है। | ||
सूत्र द्वारा दी गई प्रत्येक सम पूर्ण संख्या षटकोणीय होती है | सूत्र द्वारा दी गई प्रत्येक सम पूर्ण संख्या षटकोणीय होती है | ||
Line 71: | Line 71: | ||
{{Classes of natural numbers}} | {{Classes of natural numbers}} | ||
[[Category: संख्याओं का अंकन करें]] | |||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 01/03/2023]] | [[Category:Created On 01/03/2023]] |
Revision as of 15:45, 6 March 2023
हेक्सागोनल संख्या एक आलंकारिक संख्या है। एनवीं हेक्सागोनल संख्या hn डॉट्स के पैटर्न में अलग-अलग डॉट्स की संख्या है, जिसमें n डॉट्स के पक्षों के साथ नियमित हेक्सागोन्स की रूपरेखा होती है, जब हेक्सागोन्स को आवरण किया जाता है जिससे की वे एक शीर्ष (ज्यामिति) साझा कर सकें।
एनवें हेक्सागोनल संख्या के लिए सूत्र
पहले कुछ हेक्सागोनल नंबर (sequence A000384 in the OEIS) हैं:
- 1 (संख्या), 6 (संख्या), 15 (संख्या), 28 (संख्या), 45 (संख्या), 66 (संख्या), 91 (संख्या), 120 (संख्या), 153 (संख्या), 190 (संख्या), 231, 276, 325, 378, 435, 496 (संख्या), 561, 630, 703, 780, 861, 946...
हेक्सागोनल संख्या एक त्रिकोणीय संख्या है, किन्तु केवल दूसरी त्रिकोणीय संख्या (पहली, तीसरी, पांचवीं, सातवीं, आदि) हेक्सागोनल संख्या है। त्रिकोणीय संख्या की तरह, हेक्सागोनल संख्या के आधार 10 में डिजिटल रूप में केवल 1, 3, 6 या 9 हो सकता है। डिजिटल रूट पैटर्न, हर नौ शब्दों को दोहराता है, 1 6 6 1 9 3 1 3 9 है।
सूत्र द्वारा दी गई प्रत्येक सम पूर्ण संख्या षटकोणीय होती है
- जहां Mp मेर्सन प्रीमियम है। कोई विषम पूर्ण संख्याएँ ज्ञात नहीं हैं, इसलिए सभी ज्ञात पूर्ण संख्याएँ षटकोणीय हैं।
- उदाहरण के लिए, दूसरी हेक्सागोनल संख्या 2×3 = 6 है; चौथा 4×7 = 28 है; 16वाँ 16×31 = 496 है; और 64वाँ 64×127 = 8128 है।
अधिकतम चार षट्कोणीय संख्याओं के योग के रूप में लिखी जाने वाली सबसे बड़ी संख्या 130 (संख्या) है। एड्रियन मैरी लीजेंड्रे ने 1830 में सिद्ध किया कि 1791 से बड़ा कोई भी पूर्णांक को इस प्रकार व्यक्त किया जा सकता है।
हेक्सागोनल नंबरों को केंद्रित हेक्सागोनल नंबरों के साथ भ्रमित नहीं होना चाहिए, जो वियना सॉसेज के मानक पैकेजिंग को मॉडल करते हैं। अस्पष्टता से बचने के लिए, हेक्सागोनल संख्याओं को कभी-कभी केंद्रित हेक्सागोनल संख्या कहा जाता है।
हेक्सागोनल संख्याओं के लिए टेस्ट
कंप्यूटिंग द्वारा सकारात्मक पूर्णांक x एक हेक्सागोनल संख्या है या नहीं, इसका कुशलतापूर्वक परीक्षण किया जा सकता है
यदि n एक पूर्णांक है, तो x nवीं हेक्सागोनल संख्या है। यदि n पूर्णांक नहीं है, तो x षटकोणीय नहीं है।
सर्वांगसमता संबंध
अन्य गुण
अभिव्यक्ति सिग्मा संकेतन का उपयोग कर
हेक्सागोनल अनुक्रम की nवीं संख्या को सिग्मा संकेतन के रूप में भी व्यक्त किया जा सकता है
जहां खाली योग 0 लिया जाता है।
व्युत्क्रम षटकोणीय संख्याओं का योग
व्युत्क्रम षटकोणीय संख्याओं का योग है 2ln(2), जहाँ एलएन प्राकृतिक लघुगणक को दर्शाता है।
इंडेक्स को गुणा करना
पुनर्व्यवस्था का उपयोग करते हुए, सूत्रों का अगला सेट दिया गया है:
अनुपात संबंध
m और फिर n के संबंध में पहले से अंतिम सूत्र का उपयोग करना, और फिर कुछ कम करना और आगे बढ़ना, निम्न समीकरण प्राप्त कर सकता है:
n> 0 के लिए भाजक हैं।
हेक्सागोनल वर्ग संख्या
संख्याओं का क्रम जो हेक्सागोनल और पूर्ण वर्ग दोनों हैं, 1, 1225, 1413721,... OEIS: A046177 से प्रारंभ होता हैं।
यह भी देखें
- केंद्रित हेक्सागोनल संख्या
बाहरी संबंध