हाइपरसाइकिल (ज्यामिति): Difference between revisions
No edit summary |
|||
Line 7: | Line 7: | ||
== यूक्लिडियन रेखाओं के समान गुण == | == यूक्लिडियन रेखाओं के समान गुण == | ||
अतिपरवलीय ज्यामिति में अतिचक्र में [[यूक्लिडियन ज्यामिति]] की रेखाओं के समान कुछ गुण होते हैं: | |||
* एक समतल में, एक रेखा दी गई है और एक बिंदु उस पर नहीं है, दी गई रेखा का केवल एक अतिचक्र होता है (यूक्लिडियन ज्यामिति के लिए | * एक समतल में, एक रेखा दी गई है और एक बिंदु उस पर नहीं है, दी गई रेखा का केवल एक अतिचक्र होता है (यूक्लिडियन ज्यामिति के लिए प्लैफेयर के अभिगृहीत से तुलना करें)। | ||
* | * अतिचक्र के कोई तीन बिंदु वृत्त पर नहीं होते हैं। | ||
* एक | * एक अतिचक्र इसके लंबवत प्रत्येक रेखा के लिए सममित है। (अतिचक्र के लम्बवत् एक रेखा में अतिचक्र को परावर्तित करने से समान अतिचक्र होता है।) | ||
== यूक्लिडियन मंडलियों के समान गुण == | == यूक्लिडियन मंडलियों के समान गुण == | ||
अतिशयोक्तिपूर्ण ज्यामिति में | अतिशयोक्तिपूर्ण ज्यामिति में अतिचक्रमें यूक्लिडियन ज्यामिति में हलकों के समान कुछ गुण होते हैं: | ||
* किसी अतिचक्र की जीवा के मध्य बिंदु पर लम्बवत् रेखा एक त्रिज्या होती है और यह जीवा द्वारा अंतरित चाप को समद्विभाजित करती है। | * किसी अतिचक्र की जीवा के मध्य बिंदु पर लम्बवत् रेखा एक त्रिज्या होती है और यह जीवा द्वारा अंतरित चाप को समद्विभाजित करती है। | ||
*: मान लीजिए AB जीवा है और M इसका मध्य बिंदु है। | *: मान लीजिए AB जीवा है और M इसका मध्य बिंदु है। | ||
Line 22: | Line 22: | ||
*: साथ ही सममिति द्वारा, R चाप AB को समद्विभाजित करेगा। | *: साथ ही सममिति द्वारा, R चाप AB को समद्विभाजित करेगा। | ||
* हाइपरसायकल की धुरी और दूरी विशिष्ट रूप से निर्धारित की जाती है। | * हाइपरसायकल की धुरी और दूरी विशिष्ट रूप से निर्धारित की जाती है। | ||
*: आइए मान लें कि एक | *: आइए मान लें कि एक अतिचक्रC में दो अलग-अलग अक्ष L हैं<sub>1</sub> और मैं<sub>2</sub>. | ||
*: पिछली संपत्ति का दो बार अलग-अलग तारों के साथ उपयोग करके हम दो अलग त्रिज्या आर निर्धारित कर सकते हैं<sub>1</sub> और आर<sub>2</sub>. आर<sub>1</sub> और आर<sub>2</sub> फिर दोनों एल के लिए लंबवत होना होगा<sub>1</sub> और मैं<sub>2</sub>, हमें एक आयत दे रहा है। यह एक विरोधाभास है क्योंकि अतिशयोक्तिपूर्ण ज्यामिति में आयत एक असंभव आकृति है। | *: पिछली संपत्ति का दो बार अलग-अलग तारों के साथ उपयोग करके हम दो अलग त्रिज्या आर निर्धारित कर सकते हैं<sub>1</sub> और आर<sub>2</sub>. आर<sub>1</sub> और आर<sub>2</sub> फिर दोनों एल के लिए लंबवत होना होगा<sub>1</sub> और मैं<sub>2</sub>, हमें एक आयत दे रहा है। यह एक विरोधाभास है क्योंकि अतिशयोक्तिपूर्ण ज्यामिति में आयत एक असंभव आकृति है। | ||
* दो हाइपर साइकिलों की दूरी समान होती है यदि और केवल यदि वे सर्वांगसम हों। | * दो हाइपर साइकिलों की दूरी समान होती है यदि और केवल यदि वे सर्वांगसम हों। | ||
*: यदि उनके पास समान दूरी है, तो हमें केवल अक्षों को एक कठोर गति से मिलाने की आवश्यकता है और साथ ही सभी त्रिज्याएं भी मिल जाएंगी; चूंकि दूरी समान है, इसलिए दोनों अतिचक्रों के बिंदु भी संपाती होंगे। | *: यदि उनके पास समान दूरी है, तो हमें केवल अक्षों को एक कठोर गति से मिलाने की आवश्यकता है और साथ ही सभी त्रिज्याएं भी मिल जाएंगी; चूंकि दूरी समान है, इसलिए दोनों अतिचक्रों के बिंदु भी संपाती होंगे। | ||
*: इसके विपरीत, यदि वे सर्वांगसम हैं तो पिछली संपत्ति द्वारा दूरी समान होनी चाहिए। | *: इसके विपरीत, यदि वे सर्वांगसम हैं तो पिछली संपत्ति द्वारा दूरी समान होनी चाहिए। | ||
* एक सीधी रेखा | * एक सीधी रेखा अतिचक्रको अधिक से अधिक दो बिंदुओं पर काटती है। | ||
*: मान लें कि लाइन K | *: मान लें कि लाइन K अतिचक्रC को दो बिंदुओं A और B में काटती है। पहले की तरह, हम AB के मध्य बिंदु M के माध्यम से C की त्रिज्या R का निर्माण कर सकते हैं। ध्यान दें कि K अक्ष L के समानांतर है क्योंकि उनके पास सामान्य लंब R है। इसके अलावा, दो [[अति समानांतर]] रेखाओं की सामान्य लंब और नीरस रूप से बढ़ती दूरी पर न्यूनतम दूरी होती है क्योंकि हम लंब से दूर जाते हैं। | ||
*: इसका अर्थ है कि AB के अंदर K के बिंदुओं की दूरी L से A और B की सामान्य दूरी की तुलना में L से कम होगी, जबकि AB के बाहर K के बिंदुओं की दूरी अधिक होगी। अंत में, K का कोई अन्य बिंदु C पर नहीं हो सकता। | *: इसका अर्थ है कि AB के अंदर K के बिंदुओं की दूरी L से A और B की सामान्य दूरी की तुलना में L से कम होगी, जबकि AB के बाहर K के बिंदुओं की दूरी अधिक होगी। अंत में, K का कोई अन्य बिंदु C पर नहीं हो सकता। | ||
* दो | * दो अतिचक्रअधिक से अधिक दो बिंदुओं पर प्रतिच्छेद करती हैं। | ||
*: मान लीजिए सी<sub>1</sub> और सी<sub>2</sub> तीन बिंदुओं A, B और C में प्रतिच्छेद करने वाली | *: मान लीजिए सी<sub>1</sub> और सी<sub>2</sub> तीन बिंदुओं A, B और C में प्रतिच्छेद करने वाली अतिचक्रहो। | ||
*: यदि आर<sub>1</sub> अपने मध्य बिंदु के माध्यम से AB के लिए ओर्थोगोनल रेखा है, हम जानते हैं कि यह दोनों C की त्रिज्या है<sub>1</sub> और सी<sub>2</sub>. | *: यदि आर<sub>1</sub> अपने मध्य बिंदु के माध्यम से AB के लिए ओर्थोगोनल रेखा है, हम जानते हैं कि यह दोनों C की त्रिज्या है<sub>1</sub> और सी<sub>2</sub>. | ||
*: इसी प्रकार हम R का निर्माण करते हैं<sub>2</sub>, बीसी के मध्य बिंदु के माध्यम से त्रिज्या। | *: इसी प्रकार हम R का निर्माण करते हैं<sub>2</sub>, बीसी के मध्य बिंदु के माध्यम से त्रिज्या। | ||
Line 38: | Line 38: | ||
*: फिर सी<sub>1</sub> और सी<sub>2</sub> एक ही अक्ष और कम से कम एक सामान्य बिंदु है, इसलिए उनकी दूरी समान है और वे संपाती हैं। | *: फिर सी<sub>1</sub> और सी<sub>2</sub> एक ही अक्ष और कम से कम एक सामान्य बिंदु है, इसलिए उनकी दूरी समान है और वे संपाती हैं। | ||
* हाइपरसाइकिल के कोई भी तीन बिंदु संरेख नहीं होते हैं। | * हाइपरसाइकिल के कोई भी तीन बिंदु संरेख नहीं होते हैं। | ||
*: यदि | *: यदि अतिचक्रके बिंदु A, B और C संरेख हैं तो जीवा AB और BC एक ही रेखा K पर हैं। मान लीजिए R<sub>1</sub> और आर<sub>2</sub> एबी और बीसी के मध्य बिंदुओं के माध्यम से त्रिज्या बनें। हम जानते हैं कि अतिचक्र का अक्ष L, R का उभयनिष्ठ लंब है<sub>1</sub> और आर<sub>2</sub>. | ||
*: लेकिन K वह सामान्य लंब है। तब दूरी 0 होनी चाहिए और | *: लेकिन K वह सामान्य लंब है। तब दूरी 0 होनी चाहिए और अतिचक्रएक लाइन में बदल जाती है। | ||
== अन्य गुण == | == अन्य गुण == | ||
Line 48: | Line 48: | ||
** उन दो बिंदुओं के बीच किसी भी वृत्त चाप से छोटा। | ** उन दो बिंदुओं के बीच किसी भी वृत्त चाप से छोटा। | ||
* एक हाइपर साइकिल और एक कुंडली अधिकतम दो बिंदुओं पर प्रतिच्छेद करती है। | * एक हाइपर साइकिल और एक कुंडली अधिकतम दो बिंदुओं पर प्रतिच्छेद करती है। | ||
*त्रिज्या r का एक | *त्रिज्या r का एक अतिचक्र<math>\sinh</math>(2r) = 1 व्युत्क्रम द्वारा अतिशयोक्तिपूर्ण तल की अर्ध-समरूपता को प्रेरित करता है। (इस प्रकार का अतिचक्र अपनी धुरी से π/4 के कोण पर मिलता है।) विशेष रूप से, अक्ष के खुले अर्ध-तल में एक बिंदु P' P' पर पलटता है जिसका समांतरता का कोण P का पूरक है। यह अर्ध-समरूपता उच्च आयाम के हाइपरबॉलिक रिक्त स्थान को सामान्य करता है जहां यह हाइपरबॉलिक मैनिफोल्ड के अध्ययन की सुविधा प्रदान करता है। यह अतिशयोक्तिपूर्ण तल में शांकवों के वर्गीकरण में बड़े पैमाने पर उपयोग किया जाता है जहां इसे विभक्त उलटा कहा गया है। हालांकि अनुरूप, विभाजित उलटा एक वास्तविक समरूपता नहीं है क्योंकि यह अक्ष को विमान की सीमा के साथ बदल देता है और निश्चित रूप से, एक आइसोमेट्री नहीं है। | ||
== एक चाप की लंबाई == | == एक चाप की लंबाई == | ||
निरंतर [[गॉसियन वक्रता]] -1 के हाइपरबॉलिक विमान में, | निरंतर [[गॉसियन वक्रता]] -1 के हाइपरबॉलिक विमान में, अतिचक्रके एक चाप की लंबाई की गणना त्रिज्या r और उन बिंदुओं के बीच की दूरी से की जा सकती है जहां सूत्र सूत्र का उपयोग करके अक्ष d के साथ प्रतिच्छेद करते हैं {{nowrap|1=''l'' = ''d'' [[Hyperbolic functions|cosh]] ''r''}}.<ref>{{cite book|last1=Smogorzhevsky |first1=A.S.|title=लोबचेवस्कियन ज्यामिति|url=https://archive.org/details/lobachevskiangeo00smog |url-access=limited |date=1982|publisher=Mir |location=Moscow|page=[https://archive.org/details/lobachevskiangeo00smog/page/n68 68] }}</ref> | ||
== निर्माण == | == निर्माण == | ||
हाइपरबोलिक तल के पॉइनकेयर डिस्क मॉडल में, | हाइपरबोलिक तल के पॉइनकेयर डिस्क मॉडल में, अतिचक्रको रेखाओं और वृत्त चापों द्वारा दर्शाया जाता है जो गैर-समकोण पर सीमा वृत्त को काटते हैं। अक्ष का निरूपण सीमा वृत्त को उन्हीं बिंदुओं पर प्रतिच्छेद करता है, लेकिन समकोण पर। | ||
हाइपरबोलिक तल के पॉइनकेयर अर्ध-विमान मॉडल में, | हाइपरबोलिक तल के पॉइनकेयर अर्ध-विमान मॉडल में, अतिचक्रको रेखाओं और वृत्त चापों द्वारा दर्शाया जाता है जो गैर-समकोण पर सीमा रेखा को काटते हैं। अक्ष का निरूपण सीमा रेखा को उन्हीं बिंदुओं पर काटता है, लेकिन समकोण पर। | ||
== स्टाइनर परवलय के सर्वांगसम वर्ग == | == स्टाइनर परवलय के सर्वांगसम वर्ग == | ||
अतिशयोक्तिपूर्ण तल में स्टाइनर परवलय के सर्वांगसमता वर्ग दिए गए अक्ष के दिए गए अर्ध-तल H में अतिचक्रों के साथ एक-से-एक संगति में हैं। एक आपतन ज्यामिति में, एक बिंदु P पर स्टाइनर शंक्वाकार एक समतलीकरण T द्वारा उत्पन्न होता है, जो प्रतिच्छेदन L का बिंदुपथ होता है। <math>\cap</math> पी के माध्यम से सभी लाइनों एल के लिए टी (एल)। यह एक क्षेत्र पर प्रक्षेपी विमान में एक शांकव की स्टेनर की परिभाषा का एनालॉग है। अतिशयोक्तिपूर्ण तल में स्टेनर शंकुओं के सर्वांगसम वर्ग दूरी द्वारा निर्धारित किए जाते हैं <math>s</math> पी और टी (पी) और रोटेशन के कोण के बीच <math>\phi</math> टी द्वारा टी (पी) के बारे में प्रेरित किया गया। प्रत्येक स्टाइनर पैराबोला उन बिंदुओं का स्थान है, जिनकी फ़ोकस F से दूरी एक | अतिशयोक्तिपूर्ण तल में स्टाइनर परवलय के सर्वांगसमता वर्ग दिए गए अक्ष के दिए गए अर्ध-तल H में अतिचक्रों के साथ एक-से-एक संगति में हैं। एक आपतन ज्यामिति में, एक बिंदु P पर स्टाइनर शंक्वाकार एक समतलीकरण T द्वारा उत्पन्न होता है, जो प्रतिच्छेदन L का बिंदुपथ होता है। <math>\cap</math> पी के माध्यम से सभी लाइनों एल के लिए टी (एल)। यह एक क्षेत्र पर प्रक्षेपी विमान में एक शांकव की स्टेनर की परिभाषा का एनालॉग है। अतिशयोक्तिपूर्ण तल में स्टेनर शंकुओं के सर्वांगसम वर्ग दूरी द्वारा निर्धारित किए जाते हैं <math>s</math> पी और टी (पी) और रोटेशन के कोण के बीच <math>\phi</math> टी द्वारा टी (पी) के बारे में प्रेरित किया गया। प्रत्येक स्टाइनर पैराबोला उन बिंदुओं का स्थान है, जिनकी फ़ोकस F से दूरी एक अतिचक्रडायरेक्ट्रिक्स की दूरी के बराबर है जो एक रेखा नहीं है। अतिचक्रके लिए एक सामान्य अक्ष मानकर, F का स्थान किसके द्वारा निर्धारित किया जाता है <math>\phi</math> निम्नलिखित नुसार। फिक्सिंग <math>\sinh(s)=1</math>, पैराबोलस के वर्ग एक-से-एक पत्राचार में हैं <math>\phi</math> ∈ (0,π/2). अनुरूप डिस्क मॉडल में, प्रत्येक बिंदु P |P| के साथ एक सम्मिश्र संख्या है <math><1.</math> सामान्य अक्ष को वास्तविक रेखा होने दें और मान लें कि अतिचक्रआधे विमान H में हैं | ||
'मैं' (पी) <math>>0</math>. तब प्रत्येक परवलय का शीर्ष H में होगा, और परवलय अक्ष के लंबवत शीर्ष के माध्यम से रेखा के बारे में सममित है। यदि हाइपर साइकिल दूरी पर है <math>d</math> अक्ष से, के साथ <math>\tanh(d)=\tan(\phi/2)</math>, तो F = ((1-टैन<math>\phi</math>)/(1+टैन<math>\phi</math>))<math>i</math>. विशेष रूप से, F = 0 जब <math>\phi=</math> π/4. इस मामले में, ध्यान अक्ष पर है; समतुल्य रूप से, संबंधित | 'मैं' (पी) <math>>0</math>. तब प्रत्येक परवलय का शीर्ष H में होगा, और परवलय अक्ष के लंबवत शीर्ष के माध्यम से रेखा के बारे में सममित है। यदि हाइपर साइकिल दूरी पर है <math>d</math> अक्ष से, के साथ <math>\tanh(d)=\tan(\phi/2)</math>, तो F = ((1-टैन<math>\phi</math>)/(1+टैन<math>\phi</math>))<math>i</math>. विशेष रूप से, F = 0 जब <math>\phi=</math> π/4. इस मामले में, ध्यान अक्ष पर है; समतुल्य रूप से, संबंधित अतिचक्रमें व्युत्क्रम एच अपरिवर्तनीय छोड़ देता है। यह हार्मोनिक केस है, यानी हाइपरबोलिक प्लेन के किसी भी उलटे मॉडल में पैराबोला का प्रतिनिधित्व एक हार्मोनिक, जीनस 1 कर्व है। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 17:54, 12 March 2023
अतिपरवलयिक ज्यामिति में, एक अतिचक्र , अतिचक्र या समदूरस्थ वक्र एक वक्र होता है जिसके बिंदुओं की दी गई सीधी रेखा (इसकी धुरी) के समान लंबकोणीय दूरी होती है।
एक सीधी रेखा एल और एक बिंदु पी दिया गया है जो एल पर नहीं है,एल के एक ही तरफ के सभी बिंदुओं क्यू को पी के रूप में लेकर एक अतिचक्र का निर्माण किया जा सकता है, पी के बराबर एल की लंबवत दूरी के साथ। रेखा एल को अतिचक्र की धुरी, केंद्र या आधार रेखा कहा जाता है। एल के लंबवत रेखाएँ , जो अतिचक्र के लम्बवत् भी हैं, अतिचक्र के सामान्य कहलाती हैं। एल और अतिचक्र के बीच के सामान्य खंड को त्रिज्या कहा जाता है। उनकी सामान्य लंबाई को अतिचक्र की दूरी या त्रिज्या कहा जाता है।[1]
किसी दिए गए बिंदु के माध्यम से अतिचक्र जो उस बिंदु के माध्यम से एक स्पर्शरेखा साझा करते हैं, एक कुंडली की ओर अभिसरण करते हैं क्योंकि उनकी दूरी अनंत की ओर जाती है।
यूक्लिडियन रेखाओं के समान गुण
अतिपरवलीय ज्यामिति में अतिचक्र में यूक्लिडियन ज्यामिति की रेखाओं के समान कुछ गुण होते हैं:
- एक समतल में, एक रेखा दी गई है और एक बिंदु उस पर नहीं है, दी गई रेखा का केवल एक अतिचक्र होता है (यूक्लिडियन ज्यामिति के लिए प्लैफेयर के अभिगृहीत से तुलना करें)।
- अतिचक्र के कोई तीन बिंदु वृत्त पर नहीं होते हैं।
- एक अतिचक्र इसके लंबवत प्रत्येक रेखा के लिए सममित है। (अतिचक्र के लम्बवत् एक रेखा में अतिचक्र को परावर्तित करने से समान अतिचक्र होता है।)
यूक्लिडियन मंडलियों के समान गुण
अतिशयोक्तिपूर्ण ज्यामिति में अतिचक्रमें यूक्लिडियन ज्यामिति में हलकों के समान कुछ गुण होते हैं:
- किसी अतिचक्र की जीवा के मध्य बिंदु पर लम्बवत् रेखा एक त्रिज्या होती है और यह जीवा द्वारा अंतरित चाप को समद्विभाजित करती है।
- मान लीजिए AB जीवा है और M इसका मध्य बिंदु है।
- सममिति के अनुसार रेखा R से M के माध्यम से AB पर लम्बवत् रेखा L को अक्ष L के लिए ओर्थोगोनल होना चाहिए।
- इसलिए R एक त्रिज्या है।
- साथ ही सममिति द्वारा, R चाप AB को समद्विभाजित करेगा।
- हाइपरसायकल की धुरी और दूरी विशिष्ट रूप से निर्धारित की जाती है।
- आइए मान लें कि एक अतिचक्रC में दो अलग-अलग अक्ष L हैं1 और मैं2.
- पिछली संपत्ति का दो बार अलग-अलग तारों के साथ उपयोग करके हम दो अलग त्रिज्या आर निर्धारित कर सकते हैं1 और आर2. आर1 और आर2 फिर दोनों एल के लिए लंबवत होना होगा1 और मैं2, हमें एक आयत दे रहा है। यह एक विरोधाभास है क्योंकि अतिशयोक्तिपूर्ण ज्यामिति में आयत एक असंभव आकृति है।
- दो हाइपर साइकिलों की दूरी समान होती है यदि और केवल यदि वे सर्वांगसम हों।
- यदि उनके पास समान दूरी है, तो हमें केवल अक्षों को एक कठोर गति से मिलाने की आवश्यकता है और साथ ही सभी त्रिज्याएं भी मिल जाएंगी; चूंकि दूरी समान है, इसलिए दोनों अतिचक्रों के बिंदु भी संपाती होंगे।
- इसके विपरीत, यदि वे सर्वांगसम हैं तो पिछली संपत्ति द्वारा दूरी समान होनी चाहिए।
- एक सीधी रेखा अतिचक्रको अधिक से अधिक दो बिंदुओं पर काटती है।
- मान लें कि लाइन K अतिचक्रC को दो बिंदुओं A और B में काटती है। पहले की तरह, हम AB के मध्य बिंदु M के माध्यम से C की त्रिज्या R का निर्माण कर सकते हैं। ध्यान दें कि K अक्ष L के समानांतर है क्योंकि उनके पास सामान्य लंब R है। इसके अलावा, दो अति समानांतर रेखाओं की सामान्य लंब और नीरस रूप से बढ़ती दूरी पर न्यूनतम दूरी होती है क्योंकि हम लंब से दूर जाते हैं।
- इसका अर्थ है कि AB के अंदर K के बिंदुओं की दूरी L से A और B की सामान्य दूरी की तुलना में L से कम होगी, जबकि AB के बाहर K के बिंदुओं की दूरी अधिक होगी। अंत में, K का कोई अन्य बिंदु C पर नहीं हो सकता।
- दो अतिचक्रअधिक से अधिक दो बिंदुओं पर प्रतिच्छेद करती हैं।
- मान लीजिए सी1 और सी2 तीन बिंदुओं A, B और C में प्रतिच्छेद करने वाली अतिचक्रहो।
- यदि आर1 अपने मध्य बिंदु के माध्यम से AB के लिए ओर्थोगोनल रेखा है, हम जानते हैं कि यह दोनों C की त्रिज्या है1 और सी2.
- इसी प्रकार हम R का निर्माण करते हैं2, बीसी के मध्य बिंदु के माध्यम से त्रिज्या।
- आर1 और आर2 अक्ष एल के साथ-साथ ऑर्थोगोनल हैं1 और मैं2 सी का1 और सी2, क्रमश।
- हम पहले ही साबित कर चुके हैं कि एल1 और मैं2 संयोग होना चाहिए (अन्यथा हमारे पास एक आयत है)।
- फिर सी1 और सी2 एक ही अक्ष और कम से कम एक सामान्य बिंदु है, इसलिए उनकी दूरी समान है और वे संपाती हैं।
- हाइपरसाइकिल के कोई भी तीन बिंदु संरेख नहीं होते हैं।
- यदि अतिचक्रके बिंदु A, B और C संरेख हैं तो जीवा AB और BC एक ही रेखा K पर हैं। मान लीजिए R1 और आर2 एबी और बीसी के मध्य बिंदुओं के माध्यम से त्रिज्या बनें। हम जानते हैं कि अतिचक्र का अक्ष L, R का उभयनिष्ठ लंब है1 और आर2.
- लेकिन K वह सामान्य लंब है। तब दूरी 0 होनी चाहिए और अतिचक्रएक लाइन में बदल जाती है।
अन्य गुण
- दो बिन्दुओं के बीच एक अतिचक्र के चाप की लंबाई होती है
- उन दो बिंदुओं के बीच रेखा खंड की लंबाई से अधिक,
- उन दो बिंदुओं के बीच दो चक्रों में से एक के चाप की लंबाई से कम, और
- उन दो बिंदुओं के बीच किसी भी वृत्त चाप से छोटा।
- एक हाइपर साइकिल और एक कुंडली अधिकतम दो बिंदुओं पर प्रतिच्छेद करती है।
- त्रिज्या r का एक अतिचक्र(2r) = 1 व्युत्क्रम द्वारा अतिशयोक्तिपूर्ण तल की अर्ध-समरूपता को प्रेरित करता है। (इस प्रकार का अतिचक्र अपनी धुरी से π/4 के कोण पर मिलता है।) विशेष रूप से, अक्ष के खुले अर्ध-तल में एक बिंदु P' P' पर पलटता है जिसका समांतरता का कोण P का पूरक है। यह अर्ध-समरूपता उच्च आयाम के हाइपरबॉलिक रिक्त स्थान को सामान्य करता है जहां यह हाइपरबॉलिक मैनिफोल्ड के अध्ययन की सुविधा प्रदान करता है। यह अतिशयोक्तिपूर्ण तल में शांकवों के वर्गीकरण में बड़े पैमाने पर उपयोग किया जाता है जहां इसे विभक्त उलटा कहा गया है। हालांकि अनुरूप, विभाजित उलटा एक वास्तविक समरूपता नहीं है क्योंकि यह अक्ष को विमान की सीमा के साथ बदल देता है और निश्चित रूप से, एक आइसोमेट्री नहीं है।
एक चाप की लंबाई
निरंतर गॉसियन वक्रता -1 के हाइपरबॉलिक विमान में, अतिचक्रके एक चाप की लंबाई की गणना त्रिज्या r और उन बिंदुओं के बीच की दूरी से की जा सकती है जहां सूत्र सूत्र का उपयोग करके अक्ष d के साथ प्रतिच्छेद करते हैं l = d cosh r.[2]
निर्माण
हाइपरबोलिक तल के पॉइनकेयर डिस्क मॉडल में, अतिचक्रको रेखाओं और वृत्त चापों द्वारा दर्शाया जाता है जो गैर-समकोण पर सीमा वृत्त को काटते हैं। अक्ष का निरूपण सीमा वृत्त को उन्हीं बिंदुओं पर प्रतिच्छेद करता है, लेकिन समकोण पर।
हाइपरबोलिक तल के पॉइनकेयर अर्ध-विमान मॉडल में, अतिचक्रको रेखाओं और वृत्त चापों द्वारा दर्शाया जाता है जो गैर-समकोण पर सीमा रेखा को काटते हैं। अक्ष का निरूपण सीमा रेखा को उन्हीं बिंदुओं पर काटता है, लेकिन समकोण पर।
स्टाइनर परवलय के सर्वांगसम वर्ग
अतिशयोक्तिपूर्ण तल में स्टाइनर परवलय के सर्वांगसमता वर्ग दिए गए अक्ष के दिए गए अर्ध-तल H में अतिचक्रों के साथ एक-से-एक संगति में हैं। एक आपतन ज्यामिति में, एक बिंदु P पर स्टाइनर शंक्वाकार एक समतलीकरण T द्वारा उत्पन्न होता है, जो प्रतिच्छेदन L का बिंदुपथ होता है। पी के माध्यम से सभी लाइनों एल के लिए टी (एल)। यह एक क्षेत्र पर प्रक्षेपी विमान में एक शांकव की स्टेनर की परिभाषा का एनालॉग है। अतिशयोक्तिपूर्ण तल में स्टेनर शंकुओं के सर्वांगसम वर्ग दूरी द्वारा निर्धारित किए जाते हैं पी और टी (पी) और रोटेशन के कोण के बीच टी द्वारा टी (पी) के बारे में प्रेरित किया गया। प्रत्येक स्टाइनर पैराबोला उन बिंदुओं का स्थान है, जिनकी फ़ोकस F से दूरी एक अतिचक्रडायरेक्ट्रिक्स की दूरी के बराबर है जो एक रेखा नहीं है। अतिचक्रके लिए एक सामान्य अक्ष मानकर, F का स्थान किसके द्वारा निर्धारित किया जाता है निम्नलिखित नुसार। फिक्सिंग , पैराबोलस के वर्ग एक-से-एक पत्राचार में हैं ∈ (0,π/2). अनुरूप डिस्क मॉडल में, प्रत्येक बिंदु P |P| के साथ एक सम्मिश्र संख्या है सामान्य अक्ष को वास्तविक रेखा होने दें और मान लें कि अतिचक्रआधे विमान H में हैं
'मैं' (पी) . तब प्रत्येक परवलय का शीर्ष H में होगा, और परवलय अक्ष के लंबवत शीर्ष के माध्यम से रेखा के बारे में सममित है। यदि हाइपर साइकिल दूरी पर है अक्ष से, के साथ , तो F = ((1-टैन)/(1+टैन)). विशेष रूप से, F = 0 जब π/4. इस मामले में, ध्यान अक्ष पर है; समतुल्य रूप से, संबंधित अतिचक्रमें व्युत्क्रम एच अपरिवर्तनीय छोड़ देता है। यह हार्मोनिक केस है, यानी हाइपरबोलिक प्लेन के किसी भी उलटे मॉडल में पैराबोला का प्रतिनिधित्व एक हार्मोनिक, जीनस 1 कर्व है।
संदर्भ
- ↑ Martin, George E. (1986). ज्यामिति की नींव और गैर-यूक्लिडियन विमान (1., corr. Springer ed.). New York: Springer-Verlag. p. 371. ISBN 3-540-90694-0.
- ↑ Smogorzhevsky, A.S. (1982). लोबचेवस्कियन ज्यामिति. Moscow: Mir. p. 68.
- Martin Gardner, Non-Euclidean Geometry, Chapter 4 of The Colossal Book of Mathematics, W. W. Norton & Company, 2001, ISBN 978-0-393-02023-6
- M. J. Greenberg, Euclidean and Non-Euclidean Geometries: Development and History, 3rd edition, W. H. Freeman, 1994.
- George E. Martin, The Foundations of Geometry and the Non-Euclidean Plane, Springer-Verlag, 1975.
- J. G. Ratcliffe, Foundation of Hyperbolic Manifolds, Springer, New York, 1994.
- David C. Royster, Neutral and Non-Euclidean Geometries.
- J. Sarli, Conics in the hyperbolic plane intrinsic to the collineation group, J. Geom. 103: 131-138 (2012)