हाइपरसाइकिल (ज्यामिति): Difference between revisions
Line 51: | Line 51: | ||
== एक चाप की लंबाई == | == एक चाप की लंबाई == | ||
निरंतर [[गॉसियन वक्रता]] -1 के | निरंतर [[गॉसियन वक्रता|वक्रता]] -1 के अतिपरवलय तल में, अतिचक्र के एक चाप की लंबाई की गणना त्रिज्या r और उन बिंदुओं के बीच की दूरी से की जा सकती है जहां सूत्र ''l'' = ''d'' cosh ''r का'' उपयोग करके मानक अक्ष d के साथ प्रतिच्छेद करते हैं| <ref>{{cite book|last1=Smogorzhevsky |first1=A.S.|title=लोबचेवस्कियन ज्यामिति|url=https://archive.org/details/lobachevskiangeo00smog |url-access=limited |date=1982|publisher=Mir |location=Moscow|page=[https://archive.org/details/lobachevskiangeo00smog/page/n68 68] }}</ref> | ||
Revision as of 20:46, 12 March 2023
अतिपरवलयिक ज्यामिति में, एक अतिचक्र , अतिचक्र या समदूरस्थ वक्र एक वक्र होता है जिसके बिंदुओं की दी गई सीधी रेखा (इसकी धुरी) के समान लंबकोणीय दूरी होती है।
एक सीधी रेखा एल और एक बिंदु पी दिया गया है जो एल पर नहीं है,एल के एक ही तरफ के सभी बिंदुओं क्यू को पी के रूप में लेकर एक अतिचक्र का निर्माण किया जा सकता है, पी के बराबर एल की लंबवत दूरी के साथ। रेखा एल को अतिचक्र की धुरी, केंद्र या आधार रेखा कहा जाता है। एल के लंबवत रेखाएँ , जो अतिचक्र के लम्बवत् भी हैं, अतिचक्र के सामान्य कहलाती हैं। एल और अतिचक्र के बीच के सामान्य खंड को त्रिज्या कहा जाता है। उनकी सामान्य लंबाई को अतिचक्र की दूरी या त्रिज्या कहा जाता है।[1]
किसी दिए गए बिंदु के माध्यम से अतिचक्र जो उस बिंदु के माध्यम से एक स्पर्शरेखा साझा करते हैं, एक कुंडली की ओर अभिसरण करते हैं क्योंकि उनकी दूरी अनंत की ओर जाती है।
यूक्लिडियन रेखाओं के समान गुण
अतिपरवलीय ज्यामिति में अतिचक्र में यूक्लिडियन ज्यामिति की रेखाओं के समान कुछ गुण होते हैं:
- एक समतल में, एक रेखा दी गई है और एक बिंदु उस पर नहीं है, दी गई रेखा का केवल एक अतिचक्र होता है (यूक्लिडियन ज्यामिति के लिए प्लैफेयर के अभिगृहीत से तुलना करें)।
- अतिचक्र के कोई तीन बिंदु वृत्त पर नहीं होते हैं।
- एक अतिचक्र इसके लंबवत प्रत्येक रेखा के लिए सममित है। (अतिचक्र के लम्बवत् एक रेखा में अतिचक्र को परावर्तित करने से समान अतिचक्र होता है।)
यूक्लिडियन वृत्तों के समान गुण
अतिपरवलीय ज्यामिति में अतिचक्र में यूक्लिडियन ज्यामिति में वृत्तों के समान कुछ गुण होते हैं:
- अपने मध्य बिंदु पर एक अतिचक्र की जीवा के लिए लम्बवत् रेखा एक त्रिज्या है और यह जीवा द्वारा अंतरित चाप को द्विभाजित करती है।
- मान लीजिए एबी जीवा है और एम इसका मध्य बिंदु है।
- सममिति के अनुसार रेखा आर से एम के माध्यम से एबी पर लम्बवत् रेखा एल को अक्ष एल के लिए लंबकोणीय होना चाहिए।
- इसलिए आर एक त्रिज्या है।
- साथ ही सममिति द्वारा, आर चाप एबी को समद्विभाजित करेगा।
- अतिचक्र की धुरी और दूरी विशिष्ट रूप से निर्धारित होती है।
- मान लें कि एक अतिचक्र सी के दो अलग-अलग अक्ष L1 और मै L1 हैं। पूर्व सामग्री का दो बार अलग-अलग जीवाओं के साथ उपयोग करके हम दो अलग त्रिज्या R1 और R2 निर्धारित कर सकते हैं | R1 और R2 को तब L1 और L2 दोनों के लंबवत होना होगा, जिससे हमें एक आयत मिलेगा।यह एक विरोधाभास है क्योंकि अतिपरवलीय ज्यामिति में आयत एक असंभव आकृति है।
- दो अतिचक्रों की दूरी समान होती है यदि और केवल यदि वे सर्वांगसम हों।
- यदि उनके पास समान दूरी है, तो हमें केवल अक्षों को एक कठोर गति से संपात लाने की आवश्यकता है और साथ ही सभी त्रिज्याएं संपाती होंगी; चूंकि दूरी समान है, इसलिए दोनों अतिचक्रों के बिंदु भी संपाती होंगे।
- इसके विपरीत, यदि वे सर्वांगसम हैं तो पूर्व सामग्री द्वारा दूरी समान होनी चाहिए।
- एक सीधी रेखा अतिचक्र को अधिक से अधिक दो बिंदुओं पर काटती है।
- बता दें कि रेखा K अतिचक्र सी को दो बिंदुओं ए और बी में काटती है। पहले की तरह, हम एबी के मध्य बिंदु एम के माध्यम से सी की त्रिज्या आर का निर्माण कर सकते हैं। ध्यान दें कि K अक्ष एल के समानांतर है क्योंकि उनके पास सामान्य लंब आर है।साथ ही, दो अति समानांतर रेखाओं की सामान्य लम्बवत और एकदिष्टत: रूप से बढ़ती दूरी पर न्यूनतम दूरी होती है क्योंकि हम लंब से दूर जाते हैं।
- इसका मतलब यह है कि एबी के अंदर K के बिंदुओं की दूरी एल से ए और बी की एल से सामान्य दूरी से कम होगी, जबकि एबी के बाहर K के बिंदुओं की दूरी अधिक होगी। अंत में, K का कोई अन्य बिंदु सी पर नहीं हो सकता।
- दो अतिचक्र अधिक से अधिक दो बिंदुओं पर प्रतिच्छेद करते हैं।
- मान लीजिए बता दें कि C1 और C2 अतिचक्र हैं जो तीन बिंदुओं A, B और C में प्रतिच्छेद करते हैं।
- यदि R1 अपने मध्य बिंदु के माध्यम से AB के लिए लंब कोणीय रेखा है, हम जानते हैं कि यह C1 और C2 दोनों C की त्रिज्या है |
- इसी प्रकार हम BC के मध्य बिंदु के माध्यम से त्रिज्या ,R2 का निर्माण करते हैं।
- R1 और R2 क्रमशः C1 और C2 के अक्षों L1 और L2 के साथ-साथ लंब कोणीय हैं।
- हम पहले ही सिद्ध कर चुके हैं कि L1 और L2 का संपातक होना चाहिए (अन्यथा हमारे पास एक आयत है)।
- तब C1 और C2 में समान अक्ष और कम से कम एक सामान्य बिंदु होता है, इसलिए उनकी दूरी समान होती है और वे संपाती होते हैं।
- अतिचक्र के कोई भी तीन बिंदु संरेख नहीं होते हैं।
- यदि अतिचक्र के बिंदु A, B और C संरेख हैं तो जीवा AB और BC एक ही रेखा K पर हैं। मान लीजिए R1 और R2 AB और BC के मध्य बिंदुओं से जाने वाली त्रिज्याएँ हैं। हम जानते हैं कि अतिचक्र का अक्ष L, R1 और R2 का सामान्य लंब है |
- लेकिन K वह सामान्य लंब है। तब दूरी 0 होनी चाहिए और अतिचक्र एक रेखा में बदल जाती है।
अन्य गुण
- दो बिन्दुओं के बीच एक अतिचक्र के चाप की लंबाई होती है
- उन दो बिंदुओं के बीच रेखा खंड की लंबाई से अधिक,
- उन दो बिंदुओं के बीच दो चक्रों में से एक के चाप की लंबाई से कम, और
- उन दो बिंदुओं के बीच किसी भी वृत्त चाप से छोटा।
- एक अतिचक्र और एक कुंडली अधिकतम दो बिंदुओं पर प्रतिच्छेद करती है।
- त्रिज्या r का एक अतिचक्र (2r) = 1 व्युत्क्रम द्वारा अतिपरवलीयतल की अर्ध-समरूपता को प्रेरित करता है। (इस प्रकार का अतिचक्र अपनी धुरी से π/4 के कोण पर मिलता है।) विशेष रूप से, अक्ष के खुले अर्ध-तल में एक बिंदु P' P' विपरीत होता है जिसका समांतरता का कोण P के कोण का पूरक होता है। यह अर्ध-समरूपता उच्च परिमाण के अतिपरवलयिक रिक्त स्थान को सामान्य करता है जहां यह अतिपरवलयिक बहुरूपता के अध्ययन की सुविधा प्रदान करता है। यह अतिपरवलीय तल में शांकवों के वर्गीकरण में बड़े पैमाने पर उपयोग किया जाता है जहां इसे विभाजित व्युत्क्रम कहा गया है। हालांकि अनुरूप, विभाजित व्युत्क्रम एक वास्तविक समरूपता नहीं है क्योंकि यह अक्ष को सतह की सीमा के साथ बदल देता है और निश्चित रूप से, एक समदूरीकता नहीं है।
एक चाप की लंबाई
निरंतर वक्रता -1 के अतिपरवलय तल में, अतिचक्र के एक चाप की लंबाई की गणना त्रिज्या r और उन बिंदुओं के बीच की दूरी से की जा सकती है जहां सूत्र l = d cosh r का उपयोग करके मानक अक्ष d के साथ प्रतिच्छेद करते हैं| [2]
निर्माण
हाइपरबोलिक तल के पॉइनकेयर डिस्क मॉडल में, अतिचक्रको रेखाओं और वृत्त चापों द्वारा दर्शाया जाता है जो गैर-समकोण पर सीमा वृत्त को काटते हैं। अक्ष का निरूपण सीमा वृत्त को उन्हीं बिंदुओं पर प्रतिच्छेद करता है, लेकिन समकोण पर।
हाइपरबोलिक तल के पॉइनकेयर अर्ध-विमान मॉडल में, अतिचक्रको रेखाओं और वृत्त चापों द्वारा दर्शाया जाता है जो गैर-समकोण पर सीमा रेखा को काटते हैं। अक्ष का निरूपण सीमा रेखा को उन्हीं बिंदुओं पर काटता है, लेकिन समकोण पर।
स्टाइनर परवलय के सर्वांगसम वर्ग
अतिपरवलीयतल में स्टाइनर परवलय के सर्वांगसमता वर्ग दिए गए अक्ष के दिए गए अर्ध-तल H में अतिचक्रों के साथ एक-से-एक संगति में हैं। एक आपतन ज्यामिति में, एक बिंदु P पर स्टाइनर शंक्वाकार एक समतलीकरण T द्वारा उत्पन्न होता है, जो प्रतिच्छेदन L का बिंदुपथ होता है। पी के माध्यम से सभी लाइनों एल के लिए टी (एल)। यह एक क्षेत्र पर प्रक्षेपी विमान में एक शांकव की स्टेनर की परिभाषा का एनालॉग है। अतिपरवलीयतल में स्टेनर शंकुओं के सर्वांगसम वर्ग दूरी द्वारा निर्धारित किए जाते हैं पी और टी (पी) और रोटेशन के कोण के बीच टी द्वारा टी (पी) के बारे में प्रेरित किया गया। प्रत्येक स्टाइनर पैराबोला उन बिंदुओं का स्थान है, जिनकी फ़ोकस F से दूरी एक अतिचक्रडायरेक्ट्रिक्स की दूरी के बराबर है जो एक रेखा नहीं है। अतिचक्रके लिए एक सामान्य अक्ष मानकर, F का स्थान किसके द्वारा निर्धारित किया जाता है निम्नलिखित नुसार। फिक्सिंग , पैराबोलस के वर्ग एक-से-एक पत्राचार में हैं ∈ (0,π/2). अनुरूप डिस्क मॉडल में, प्रत्येक बिंदु P |P| के साथ एक सम्मिश्र संख्या है सामान्य अक्ष को वास्तविक रेखा होने दें और मान लें कि अतिचक्रआधे विमान H में हैं
'मैं' (पी) . तब प्रत्येक परवलय का शीर्ष H में होगा, और परवलय अक्ष के लंबवत शीर्ष के माध्यम से रेखा के बारे में सममित है। यदि हाइपर साइकिल दूरी पर है अक्ष से, के साथ , तो F = ((1-टैन)/(1+टैन)). विशेष रूप से, F = 0 जब π/4. इस मामले में, ध्यान अक्ष पर है; समतुल्य रूप से, संबंधित अतिचक्रमें व्युत्क्रम एच अपरिवर्तनीय छोड़ देता है। यह हार्मोनिक केस है, यानी हाइपरबोलिक प्लेन के किसी भी उलटे मॉडल में पैराबोला का प्रतिनिधित्व एक हार्मोनिक, जीनस 1 कर्व है।
संदर्भ
- ↑ Martin, George E. (1986). ज्यामिति की नींव और गैर-यूक्लिडियन विमान (1., corr. Springer ed.). New York: Springer-Verlag. p. 371. ISBN 3-540-90694-0.
- ↑ Smogorzhevsky, A.S. (1982). लोबचेवस्कियन ज्यामिति. Moscow: Mir. p. 68.
- Martin Gardner, Non-Euclidean Geometry, Chapter 4 of The Colossal Book of Mathematics, W. W. Norton & Company, 2001, ISBN 978-0-393-02023-6
- M. J. Greenberg, Euclidean and Non-Euclidean Geometries: Development and History, 3rd edition, W. H. Freeman, 1994.
- George E. Martin, The Foundations of Geometry and the Non-Euclidean Plane, Springer-Verlag, 1975.
- J. G. Ratcliffe, Foundation of Hyperbolic Manifolds, Springer, New York, 1994.
- David C. Royster, Neutral and Non-Euclidean Geometries.
- J. Sarli, Conics in the hyperbolic plane intrinsic to the collineation group, J. Geom. 103: 131-138 (2012)