संतुलन बिंदु: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{short description|Constant solution to a differential equation}} | {{short description|Constant solution to a differential equation}} | ||
[[File:Stability_Diagram.png|thumb|550px | [[File:Stability_Diagram.png|thumb|550px|स्वायत्त प्रणाली <math>x' = Ax,</math> उनकी विशेषताओं के अनुसार स्थिर या अस्थिर। स्थिरता सामान्यतः आरेख के बाईं ओर बढ़ जाती है।<ref>[http://www.egwald.ca/linearalgebra/lineardifferentialequationsstabilityanalysis.php Egwald Mathematics - Linear Algebra: Systems of Linear Differential Equations: Linear Stability Analysis] Accessed 10 October 2019.</ref> कुछ सिंक, स्रोत या नोड समतोल बिंदु हैं।]]गणित में, विशेष रूप से अंतर समीकरणों में, एक संतुलन बिंदु एक अंतर समीकरण का निरंतर समाधान होता है। | ||
== औपचारिक परिभाषा == | == औपचारिक परिभाषा == | ||
Line 8: | Line 6: | ||
:<math>\frac{d\mathbf{x}}{dt} = \mathbf{f}(t,\mathbf{x})</math> | :<math>\frac{d\mathbf{x}}{dt} = \mathbf{f}(t,\mathbf{x})</math> | ||
: | :यदि <math>\mathbf{f}(t,\tilde{\mathbf{x}})=\mathbf{0}</math> सभी के लिए <math>t</math>. | ||
इसी प्रकार बिंदु <math>\tilde{\mathbf{x}}\in \mathbb{R}^n</math> [[अंतर समीकरण]] के लिए एक संतुलन बिंदु (या [[निश्चित बिंदु (गणित)]]) है | इसी प्रकार बिंदु <math>\tilde{\mathbf{x}}\in \mathbb{R}^n</math> [[अंतर समीकरण]] के लिए एक संतुलन बिंदु (या [[निश्चित बिंदु (गणित)]]) है | ||
:<math display="inline">\mathbf{x}_{k+1} = \mathbf{f}(k,\mathbf{x}_k)</math> | :<math display="inline">\mathbf{x}_{k+1} = \mathbf{f}(k,\mathbf{x}_k)</math> | ||
यदि <math>\mathbf{f}(k,\tilde{\mathbf{x}})= \tilde{\mathbf{x}} </math> के लिए <math>k=0,1,2,\ldots</math>. | |||
साम्यावस्था के बारे में समीकरणों के रेखीयकरण के | साम्यावस्था के बारे में समीकरणों के रेखीयकरण के ईजेनवेल्यू के संकेतों को देखकर संतुलन को वर्गीकृत किया जा सकता है। कहने का मतलब यह है कि प्रणाली के प्रत्येक संतुलन बिंदु पर [[ जैकबियन मैट्रिक्स ]] का मूल्यांकन करके, और फिर परिणामी ईजेनवेल्यू का पता लगाकर, संतुलन को वर्गीकृत किया जा सकता है। फिर प्रत्येक संतुलन बिंदु के निकटतम प्रणाली के व्यवहार को गुणात्मक रूप से निर्धारित किया जा सकता है, (या कुछ स्थितियों में मात्रात्मक रूप से भी निर्धारित किया जाता है), प्रत्येक ईजेनवेल्यू से जुड़े ईजेनवेक्टर (एस) को ढूंढकर। | ||
एक संतुलन बिंदु [[अतिशयोक्तिपूर्ण संतुलन बिंदु]] है यदि किसी भी ईजेनवेल्यू का वास्तविक भाग शून्य नहीं है। यदि सभी | एक संतुलन बिंदु [[अतिशयोक्तिपूर्ण संतुलन बिंदु]] है यदि किसी भी ईजेनवेल्यू का वास्तविक भाग शून्य नहीं है। यदि सभी ईजेनवेल्यू में नकारात्मक वास्तविक भाग होते हैं, तो बिंदु स्थिर होता है। यदि कम से कम एक सकारात्मक वास्तविक भाग है, तो बिंदु अस्थिर है। यदि कम से कम एक ईजेनवेल्यू का नकारात्मक वास्तविक भाग है और कम से कम एक का सकारात्मक वास्तविक भाग है, तो संतुलन एक बिंदु है और यह अस्थिर है। यदि सभी ईजेनवेल्यू वास्तविक हैं और समान चिह्न हैं तो बिंदु को नोड कहा जाता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 23:27, 6 March 2023
गणित में, विशेष रूप से अंतर समीकरणों में, एक संतुलन बिंदु एक अंतर समीकरण का निरंतर समाधान होता है।
औपचारिक परिभाषा
बिंदु अंतर समीकरण के लिए एक संतुलन बिंदु है
- यदि सभी के लिए .
इसी प्रकार बिंदु अंतर समीकरण के लिए एक संतुलन बिंदु (या निश्चित बिंदु (गणित)) है
यदि के लिए .
साम्यावस्था के बारे में समीकरणों के रेखीयकरण के ईजेनवेल्यू के संकेतों को देखकर संतुलन को वर्गीकृत किया जा सकता है। कहने का मतलब यह है कि प्रणाली के प्रत्येक संतुलन बिंदु पर जैकबियन मैट्रिक्स का मूल्यांकन करके, और फिर परिणामी ईजेनवेल्यू का पता लगाकर, संतुलन को वर्गीकृत किया जा सकता है। फिर प्रत्येक संतुलन बिंदु के निकटतम प्रणाली के व्यवहार को गुणात्मक रूप से निर्धारित किया जा सकता है, (या कुछ स्थितियों में मात्रात्मक रूप से भी निर्धारित किया जाता है), प्रत्येक ईजेनवेल्यू से जुड़े ईजेनवेक्टर (एस) को ढूंढकर।
एक संतुलन बिंदु अतिशयोक्तिपूर्ण संतुलन बिंदु है यदि किसी भी ईजेनवेल्यू का वास्तविक भाग शून्य नहीं है। यदि सभी ईजेनवेल्यू में नकारात्मक वास्तविक भाग होते हैं, तो बिंदु स्थिर होता है। यदि कम से कम एक सकारात्मक वास्तविक भाग है, तो बिंदु अस्थिर है। यदि कम से कम एक ईजेनवेल्यू का नकारात्मक वास्तविक भाग है और कम से कम एक का सकारात्मक वास्तविक भाग है, तो संतुलन एक बिंदु है और यह अस्थिर है। यदि सभी ईजेनवेल्यू वास्तविक हैं और समान चिह्न हैं तो बिंदु को नोड कहा जाता है।
यह भी देखें
संदर्भ
- ↑ Egwald Mathematics - Linear Algebra: Systems of Linear Differential Equations: Linear Stability Analysis Accessed 10 October 2019.
- Boyce, William E.; DiPrima, Richard C. (2012). Elementary Differential Equations and Boundary Value Problems (10th ed.). Wiley. ISBN 978-0-470-45831-0.
- Perko, Lawrence (2001). Differential Equations and Dynamical Systems (3rd ed.). Springer. pp. 102–104. ISBN 1-4613-0003-7.