Template:QM AM GM HM inequality visual proof.svg: Difference between revisions

From Vigyanwiki
(Created page with "thumb|{{{1|230px}}}|Geometric [[proof without words that {{nowrap|''max'' (''a'',''b'')}} > {{nowrap|root mean squ...")
 
 
(No difference)

Latest revision as of 09:37, 17 March 2023

Geometric proof without words that max (a,b) > root mean square (RMS) or quadratic mean (QM) > arithmetic mean (AM) > geometric mean (GM) > harmonic mean (HM) > min (a,b) of two distinct positive numbers a and b [1]
Template documentation

[[Category:Template documentation pages{{#translation:}}]]

  1. If AC = a and BC = b. OC = AM of a and b, and radius r = QO = OG.
    Using Pythagoras' theorem, QC² = QO² + OC² ∴ QC = √QO² + OC² = QM.
    Using Pythagoras' theorem, OC² = OG² + GC² ∴ GC = √OC² − OG² = GM.
    Using similar triangles, HC/GC = GC/OC ∴ HC = GC²/OC = HM.