Line 64:
Line 64:
=== सममिति संबंध ===
=== सममिति संबंध ===
बहुपदों में सममिति संबंध होता है
बहुपदों में सममिति संबंध
:<math>P_n^{(\alpha, \beta)} (-z) = (-1)^n P_n^{(\beta, \alpha)} (z);</math>
:<math>P_n^{(\alpha, \beta)} (-z) = (-1)^n P_n^{(\beta, \alpha)} (z);</math>
इस प्रकार अन्य टर्मिनल मान है
:है, इस प्रकार अन्य टर्मिनल मान
:<math>P_n^{(\alpha, \beta)} (-1) = (-1)^n { n+\beta\choose n}</math>
:है।
:<math>P_n^{(\alpha, \beta)} (-1) = (-1)^n { n+\beta\choose n}.</math>
=== व्युत्पन्न ===
स्पष्ट अभिव्यक्ति का <math>k</math>वां व्युत्पन्न
=== संजात === <math>k</math>वें> वें व्युत्पन्न स्पष्ट अभिव्यक्ति की ओर जाता है
:<math>\frac{d^k}{dz^k} P_n^{(\alpha,\beta)} (z) = \frac{\Gamma (\alpha+\beta+n+1+k)}{2^k \Gamma (\alpha+\beta+n+1)} P_{n-k}^{(\alpha+k, \beta+k)} (z).</math>
:<math>\frac{d^k}{dz^k} P_n^{(\alpha,\beta)} (z) = \frac{\Gamma (\alpha+\beta+n+1+k)}{2^k \Gamma (\alpha+\beta+n+1)} P_{n-k}^{(\alpha+k, \beta+k)} (z)</math>
:की ओर जाता है।
=== विभेदक समीकरण ===
=== विभेदक समीकरण ===
जैकोबी बहुपद <math>P_n^{(\alpha,\beta)}</math> दूसरे क्रम के [[रैखिक सजातीय अंतर समीकरण]] का एक समाधान है<ref name=sz/>
जैकोबी बहुपद <math>P_n^{(\alpha,\beta)}</math> दूसरे क्रम [[रैखिक सजातीय अंतर समीकरण]]<ref name=" sz" />
:<math> \left (1-x^2 \right )y'' + ( \beta-\alpha - (\alpha + \beta + 2)x )y' + n(n+\alpha+\beta+1) y = 0.</math>
:<math> \left (1-x^2 \right )y'' + ( \beta-\alpha - (\alpha + \beta + 2)x )y' + n(n+\alpha+\beta+1) y = 0</math>
का एक हल है।
===पुनरावृत्ति संबंध===
===पुनरावृत्ति संबंध===
लंबकोणीय बहुपद # स्थिर के जैकोबी बहुपदों के लिए पुनरावृत्ति संबंध <math>\alpha</math>, <math>\beta</math> है:<ref name=sz/>
लंबकोणीय बहुपद # स्थिर के जैकोबी बहुपदों के लिए पुनरावृत्ति संबंध <math>\alpha</math>, <math>\beta</math> है:<ref name=sz/>
गणित में, जैकोबी बहुपद (कभी-कभी अतिज्यामितीय बहुपद कहा जाता है) P n ( α , β ) ( x ) {\displaystyle P_{n}^{(\alpha ,\beta )}(x)} शास्त्रीय लंबकोणीय बहुपदों का एक वर्ग हैं। वे अंतराल [ − 1 , 1 ] {\displaystyle [-1,1]} पर प्रभाव ( 1 − x ) α ( 1 + x ) β {\displaystyle (1-x)^{\alpha }(1+x)^{\beta }} के संबंध में लंबकोणीय हैं। गेंगेंबोइर बहुपद, और इस प्रकार लेजेंड्रे बहुपद, ज़र्निके बहुपद और चेबिशेव बहुपद , जैकोबी बहुपद के विशेष स्थितियां हैं।[1]
जैकोबी बहुपद कार्ल गुस्ताव जैकब जैकोबी द्वारा प्रस्तुत किए गए थे।
परिभाषाएँ
जैकोबी बहुपदों को हाइपरज्यामितीय फलन के माध्यम से निम्नानुसार परिभाषित किया गया है:[2]
P n ( α , β ) ( z ) = ( α + 1 ) n n ! 2 F 1 ( − n , 1 + α + β + n ; α + 1 ; 1 2 ( 1 − z ) ) , {\displaystyle P_{n}^{(\alpha ,\beta )}(z)={\frac {(\alpha +1)_{n}}{n!}}\,{}_{2}F_{1}\left(-n,1+\alpha +\beta +n;\alpha +1;{\tfrac {1}{2}}(1-z)\right),}
जहाँ ( α + 1 ) n {\displaystyle (\alpha +1)_{n}} पोछाम्मेर का प्रतीक है (बढ़ते तथ्यात्मक के लिए)। इस स्थिति में, हाइपरज्यामितीय फलन के लिए श्रृंखला परिमित है, इसलिए निम्नलिखित अनुरूप अभिव्यक्ति प्राप्त होती है:
P n ( α , β ) ( z ) = Γ ( α + n + 1 ) n ! Γ ( α + β + n + 1 ) ∑ m = 0 n ( n m ) Γ ( α + β + n + m + 1 ) Γ ( α + m + 1 ) ( z − 1 2 ) m {\displaystyle P_{n}^{(\alpha ,\beta )}(z)={\frac {\Gamma (\alpha +n+1)}{n!\,\Gamma (\alpha +\beta +n+1)}}\sum _{m=0}^{n}{n \choose m}{\frac {\Gamma (\alpha +\beta +n+m+1)}{\Gamma (\alpha +m+1)}}\left({\frac {z-1}{2}}\right)^{m}}
रोड्रिग्स का सूत्र
रोड्रिग्स के सूत्र द्वारा एक समतुल्य परिभाषा दी गई है:[1] [3]
P n ( α , β ) ( z ) = ( − 1 ) n 2 n n ! ( 1 − z ) − α ( 1 + z ) − β d n d z n { ( 1 − z ) α ( 1 + z ) β ( 1 − z 2 ) n } {\displaystyle P_{n}^{(\alpha ,\beta )}(z)={\frac {(-1)^{n}}{2^{n}n!}}(1-z)^{-\alpha }(1+z)^{-\beta }{\frac {d^{n}}{dz^{n}}}\left\{(1-z)^{\alpha }(1+z)^{\beta }\left(1-z^{2}\right)^{n}\right\}}
अगर α = β = 0 {\displaystyle \alpha =\beta =0} , तो यह लीजेंड्रे बहुपदों को कम कर देता है:
P n ( z ) = 1 2 n n ! d n d z n ( z 2 − 1 ) n . {\displaystyle P_{n}(z)={\frac {1}{2^{n}n!}}{\frac {d^{n}}{dz^{n}}}(z^{2}-1)^{n}\;.}
वास्तविक तर्क के लिए वैकल्पिक अभिव्यक्ति
यथार्थ x {\displaystyle x} जैकोबी बहुपद को वैकल्पिक रूप से लिखा जा सकता है
P n ( α , β ) ( x ) = ∑ s = 0 n ( n + α n − s ) ( n + β s ) ( x − 1 2 ) s ( x + 1 2 ) n − s {\displaystyle P_{n}^{(\alpha ,\beta )}(x)=\sum _{s=0}^{n}{n+\alpha \choose n-s}{n+\beta \choose s}\left({\frac {x-1}{2}}\right)^{s}\left({\frac {x+1}{2}}\right)^{n-s}}
और पूर्णांक n {\displaystyle n} के लिए
( z n ) = { Γ ( z + 1 ) Γ ( n + 1 ) Γ ( z − n + 1 ) n ≥ 0 0 n < 0 {\displaystyle {z \choose n}={\begin{cases}{\frac {\Gamma (z+1)}{\Gamma (n+1)\Gamma (z-n+1)}}&n\geq 0\\0&n<0\end{cases}}}
जहाँ Γ ( z ) {\displaystyle \Gamma (z)} गामा फलन है।
विशेष स्थितियों में कि चार मात्राएँ n {\displaystyle n} , n + α {\displaystyle n+\alpha } , n + β {\displaystyle n+\beta } , n + α + β {\displaystyle n+\alpha +\beta } गैर-ऋणात्मक पूर्णांक हैं, जैकोबी बहुपद को इस रूप में लिखा जा सकता है
P n ( α , β ) ( x ) = ( n + α ) ! ( n + β ) ! ∑ s = 0 n 1 s ! ( n + α − s ) ! ( β + s ) ! ( n − s ) ! ( x − 1 2 ) n − s ( x + 1 2 ) s {\displaystyle P_{n}^{(\alpha ,\beta )}(x)=(n+\alpha )!(n+\beta )!\sum _{s=0}^{n}{\frac {1}{s!(n+\alpha -s)!(\beta +s)!(n-s)!}}\left({\frac {x-1}{2}}\right)^{n-s}\left({\frac {x+1}{2}}\right)^{s}}
(1 )
इस रूप में लिखा जा सकता है।
योग s {\displaystyle s} के सभी पूर्णांक मानों पर विस्तृत होता है जिसके लिए भाज्य के तर्क गैर-ऋणात्मक होते हैं।
विशेष स्थितियां
P 0 ( α , β ) ( z ) = 1 , {\displaystyle P_{0}^{(\alpha ,\beta )}(z)=1,}
P 1 ( α , β ) ( z ) = ( α + 1 ) + ( α + β + 2 ) z − 1 2 , {\displaystyle P_{1}^{(\alpha ,\beta )}(z)=(\alpha +1)+(\alpha +\beta +2){\frac {z-1}{2}},}
P 2 ( α , β ) ( z ) = ( α + 1 ) ( α + 2 ) 2 + ( α + 2 ) ( α + β + 3 ) z − 1 2 + ( α + β + 3 ) ( α + β + 4 ) 2 ( z − 1 2 ) 2 . {\displaystyle P_{2}^{(\alpha ,\beta )}(z)={\frac {(\alpha +1)(\alpha +2)}{2}}+(\alpha +2)(\alpha +\beta +3){\frac {z-1}{2}}+{\frac {(\alpha +\beta +3)(\alpha +\beta +4)}{2}}\left({\frac {z-1}{2}}\right)^{2}.}
मूल गुण
लंबकोणीयता
जैकोबी बहुपद लंबकोणीयता की स्थिति
∫ − 1 1 ( 1 − x ) α ( 1 + x ) β P m ( α , β ) ( x ) P n ( α , β ) ( x ) d x = 2 α + β + 1 2 n + α + β + 1 Γ ( n + α + 1 ) Γ ( n + β + 1 ) Γ ( n + α + β + 1 ) n ! δ n m , α , β > − 1 {\displaystyle \int _{-1}^{1}(1-x)^{\alpha }(1+x)^{\beta }P_{m}^{(\alpha ,\beta )}(x)P_{n}^{(\alpha ,\beta )}(x)\,dx={\frac {2^{\alpha +\beta +1}}{2n+\alpha +\beta +1}}{\frac {\Gamma (n+\alpha +1)\Gamma (n+\beta +1)}{\Gamma (n+\alpha +\beta +1)n!}}\delta _{nm},\qquad \alpha ,\ \beta >-1}
को संतुष्ट करते हैं।
जैसा कि परिभाषित किया गया है, प्रभाव के संबंध में उनके समीप इकाई मानदंड नहीं है। इसे उपरोक्त समीकरण के दाहिने हाथ की ओर के वर्गमूल से विभाजित करके ठीक किया जा सकता है, जब n = m {\displaystyle n=m} ।
यद्यपि यह एक अलौकिक आधार नहीं देता है, कभी-कभी इसकी सरलता के कारण एक वैकल्पिक सामान्यीकरण को प्राथमिकता दी जाती है:
P n ( α , β ) ( 1 ) = ( n + α n ) . {\displaystyle P_{n}^{(\alpha ,\beta )}(1)={n+\alpha \choose n}.}
सममिति संबंध
बहुपदों में सममिति संबंध
P n ( α , β ) ( − z ) = ( − 1 ) n P n ( β , α ) ( z ) ; {\displaystyle P_{n}^{(\alpha ,\beta )}(-z)=(-1)^{n}P_{n}^{(\beta ,\alpha )}(z);}
है,इस प्रकार अन्य टर्मिनल मान
P n ( α , β ) ( − 1 ) = ( − 1 ) n ( n + β n ) {\displaystyle P_{n}^{(\alpha ,\beta )}(-1)=(-1)^{n}{n+\beta \choose n}}
है।
व्युत्पन्न
स्पष्ट अभिव्यक्ति का k {\displaystyle k} वां व्युत्पन्न
d k d z k P n ( α , β ) ( z ) = Γ ( α + β + n + 1 + k ) 2 k Γ ( α + β + n + 1 ) P n − k ( α + k , β + k ) ( z ) {\displaystyle {\frac {d^{k}}{dz^{k}}}P_{n}^{(\alpha ,\beta )}(z)={\frac {\Gamma (\alpha +\beta +n+1+k)}{2^{k}\Gamma (\alpha +\beta +n+1)}}P_{n-k}^{(\alpha +k,\beta +k)}(z)}
की ओर जाता है।
विभेदक समीकरण
जैकोबी बहुपद P n ( α , β ) {\displaystyle P_{n}^{(\alpha ,\beta )}} दूसरे क्रम रैखिक सजातीय अंतर समीकरण [1]
( 1 − x 2 ) y ″ + ( β − α − ( α + β + 2 ) x ) y ′ + n ( n + α + β + 1 ) y = 0 {\displaystyle \left(1-x^{2}\right)y''+(\beta -\alpha -(\alpha +\beta +2)x)y'+n(n+\alpha +\beta +1)y=0}
का एक हल है।
पुनरावृत्ति संबंध
लंबकोणीय बहुपद # स्थिर के जैकोबी बहुपदों के लिए पुनरावृत्ति संबंध α {\displaystyle \alpha } , β {\displaystyle \beta } है:[1]
2 n ( n + α + β ) ( 2 n + α + β − 2 ) P n ( α , β ) ( z ) = ( 2 n + α + β − 1 ) { ( 2 n + α + β ) ( 2 n + α + β − 2 ) z + α 2 − β 2 } P n − 1 ( α , β ) ( z ) − 2 ( n + α − 1 ) ( n + β − 1 ) ( 2 n + α + β ) P n − 2 ( α , β ) ( z ) , {\displaystyle {\begin{aligned}&2n(n+\alpha +\beta )(2n+\alpha +\beta -2)P_{n}^{(\alpha ,\beta )}(z)\\&\qquad =(2n+\alpha +\beta -1){\Big \{}(2n+\alpha +\beta )(2n+\alpha +\beta -2)z+\alpha ^{2}-\beta ^{2}{\Big \}}P_{n-1}^{(\alpha ,\beta )}(z)-2(n+\alpha -1)(n+\beta -1)(2n+\alpha +\beta )P_{n-2}^{(\alpha ,\beta )}(z),\end{aligned}}}
के लिए n = 2 , 3 , … {\displaystyle n=2,3,\ldots } ।
संक्षिप्तता के लिए लिख रहा हूँ a := n + α {\displaystyle a:=n+\alpha } , b := n + β {\displaystyle b:=n+\beta } और c := a + b = 2 n + α + β {\displaystyle c:=a+b=2n+\alpha +\beta } , यह के संदर्भ में हो जाता है a , b , c {\displaystyle a,b,c}
2 n ( c − n ) ( c − 2 ) P n ( α , β ) ( z ) = ( c − 1 ) { c ( c − 2 ) z + ( a − b ) ( c − 2 n ) } P n − 1 ( α , β ) ( z ) − 2 ( a − 1 ) ( b − 1 ) c P n − 2 ( α , β ) ( z ) . {\displaystyle 2n(c-n)(c-2)P_{n}^{(\alpha ,\beta )}(z)=(c-1){\Big \{}c(c-2)z+(a-b)(c-2n){\Big \}}P_{n-1}^{(\alpha ,\beta )}(z)-2(a-1)(b-1)c\;P_{n-2}^{(\alpha ,\beta )}(z).}
चूँकि जैकोबी बहुपदों को हाइपरज्यामितीय फलन के संदर्भ में वर्णित किया जा सकता है, हाइपरज्यामितीय फलन की पुनरावृत्ति जैकोबी बहुपदों के अनुरूप पुनरावृत्ति देती है। विशेष रूप से, गॉस के सन्निहित संबंध सर्वसमिकाओं के अनुरूप हैं
( z − 1 ) d d z P n ( α , β ) ( z ) = 1 2 ( z − 1 ) ( 1 + α + β + n ) P n − 1 ( α + 1 , β + 1 ) = n P n ( α , β ) − ( α + n ) P n − 1 ( α , β + 1 ) = ( 1 + α + β + n ) ( P n ( α , β + 1 ) − P n ( α , β ) ) = ( α + n ) P n ( α − 1 , β + 1 ) − α P n ( α , β ) = 2 ( n + 1 ) P n + 1 ( α , β − 1 ) − ( z ( 1 + α + β + n ) + α + 1 + n − β ) P n ( α , β ) 1 + z = ( 2 β + n + n z ) P n ( α , β ) −
जैकोबी बहुपदों का जनक फलन किसके द्वारा दिया जाता है
∑ n = 0 ∞ P n ( α , β ) ( z ) t n = 2 α + β R − 1 ( 1 − t + R ) − α ( 1 + t + R ) − β , {\displaystyle \sum _{n=0}^{\infty }P_{n}^{(\alpha ,\beta )}(z)t^{n}=2^{\alpha +\beta }R^{-1}(1-t+R)^{-\alpha }(1+t+R)^{-\beta },}
जहाँ
R = R ( z , t ) = ( 1 − 2 z t + t 2 ) 1 2 , {\displaystyle R=R(z,t)=\left(1-2zt+t^{2}\right)^{\frac {1}{2}}~,}
और वर्गमूल की मुख्य शाखा को चुना जाता है ताकि R ( z , 0 ) = 1 {\displaystyle R(z,0)=1} ।[1]
जैकोबी बहुपदों के स्पर्शोन्मुख
के लिए x {\displaystyle x} के भीतरी भाग में [ − 1 , 1 ] {\displaystyle [-1,1]} , के स्पर्शोन्मुख P n ( α , β ) {\displaystyle P_{n}^{(\alpha ,\beta )}} बड़े के लिए n {\displaystyle n} डार्बौक्स सूत्र द्वारा दिया गया है[1]
P n ( α , β ) ( cos θ ) = n − 1 2 k ( θ ) cos ( N θ + γ ) + O ( n − 3 2 ) , {\displaystyle P_{n}^{(\alpha ,\beta )}(\cos \theta )=n^{-{\frac {1}{2}}}k(\theta )\cos(N\theta +\gamma )+O\left(n^{-{\frac {3}{2}}}\right),}
जहाँ
k ( θ ) = π − 1 2 sin − α − 1 2 θ 2 cos − β − 1 2 θ 2 , N = n + 1 2 ( α + β + 1 ) , γ = − π 2 ( α + 1 2 ) , {\displaystyle {\begin{aligned}k(\theta )&=\pi ^{-{\frac {1}{2}}}\sin ^{-\alpha -{\frac {1}{2}}}{\tfrac {\theta }{2}}\cos ^{-\beta -{\frac {1}{2}}}{\tfrac {\theta }{2}},\\N&=n+{\tfrac {1}{2}}(\alpha +\beta +1),\\\gamma &=-{\tfrac {\pi }{2}}\left(\alpha +{\tfrac {1}{2}}\right),\end{aligned}}}
और यहO {\displaystyle O} अवधि अंतराल पर एक समान है [ ε , π − ε ] {\displaystyle [\varepsilon ,\pi -\varepsilon ]} हरएक के लिए ε > 0 {\displaystyle \varepsilon >0} ।
बिंदुओं के निकट जैकोबी बहुपदों की स्पर्शोन्मुखता ± 1 {\displaystyle \pm 1} मेहलर-हेन सूत्र द्वारा दिया गया है
lim n → ∞ n − α P n ( α , β ) ( cos ( z n ) ) = ( z 2 ) − α J α ( z ) lim n → ∞ n − β P n ( α , β ) ( cos ( π − z n ) ) = ( z 2 ) − β J β ( z ) {\displaystyle {\begin{aligned}\lim _{n\to \infty }n^{-\alpha }P_{n}^{(\alpha ,\beta )}\left(\cos \left({\tfrac {z}{n}}\right)\right)&=\left({\tfrac {z}{2}}\right)^{-\alpha }J_{\alpha }(z)\\\lim _{n\to \infty }n^{-\beta }P_{n}^{(\alpha ,\beta )}\left(\cos \left(\pi -{\tfrac {z}{n}}\right)\right)&=\left({\tfrac {z}{2}}\right)^{-\beta }J_{\beta }(z)\end{aligned}}}
जहां सीमाएं एक समान हैं z {\displaystyle z} एक बंधे हुए डोमेन (गणितीय विश्लेषण) में।
बाहर स्पर्शोन्मुख [ − 1 , 1 ] {\displaystyle [-1,1]} कम स्पष्ट है।
अनुप्रयोग
विग्नर डी-मैट्रिक्स
इजहार (1 ) Wigner D-मैट्रिक्स#Wigner (छोटा) d-मैट्रिक्स|Wigner d-मैट्रिक्स की अभिव्यक्ति की अनुमति देता है
d m ′ , m j ( ϕ ) {\displaystyle d_{m',m}^{j}(\phi )} (के लिए 0 ≤ ϕ ≤ 4 π {\displaystyle 0\leq \phi \leq 4\pi } )
जैकोबी बहुपदों के संदर्भ में:[4]
d m ′ m j ( ϕ ) = [ ( j + m ) ! ( j − m ) ! ( j + m ′ ) ! ( j − m ′ ) ! ] 1 2 ( sin ϕ 2 ) m − m ′ ( cos ϕ 2 ) m + m ′ P j − m ( m − m ′ , m + m ′ ) ( cos ϕ ) . {\displaystyle d_{m'm}^{j}(\phi )=\left[{\frac {(j+m)!(j-m)!}{(j+m')!(j-m')!}}\right]^{\frac {1}{2}}\left(\sin {\tfrac {\phi }{2}}\right)^{m-m'}\left(\cos {\tfrac {\phi }{2}}\right)^{m+m'}P_{j-m}^{(m-m',m+m')}(\cos \phi ).}
यह भी देखें
टिप्पणियाँ
↑ 1.0 1.1 1.2 1.3 1.4 1.5 Szegő, Gábor (1939). "IV. Jacobi polynomials.". ऑर्थोगोनल बहुपद . Colloquium Publications. Vol. XXIII. American Mathematical Society. ISBN 978-0-8218-1023-1 . MR 0372517 . The definition is in IV.1; the differential equation – in IV.2; Rodrigues' formula is in IV.3; the generating function is in IV.4; the recurrent relation is in IV.5.
↑ Abramowitz, Milton ; Stegun, Irene Ann , eds. (1983) [June 1964]. "Chapter 22" . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables . Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 561. ISBN 978-0-486-61272-0 . LCCN 64-60036 . MR 0167642 . LCCN 65-12253 .
↑ P.K. Suetin (2001) [1994], "Jacobi polynomials" , Encyclopedia of Mathematics , EMS Press
↑ Biedenharn, L.C.; Louck, J.D. (1981). क्वांटम भौतिकी में कोणीय गति . Reading: Addison-Wesley.
अग्रिम पठन
Andrews, George E.; Askey, Richard; Roy, Ranjan (1999), Special functions , Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press , ISBN 978-0-521-62321-6 , MR 1688958 , ISBN 978-0-521-78988-2
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Orthogonal Polynomials" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248
बाहरी संबंध