जैकोबी बहुपद: Difference between revisions

From Vigyanwiki
m (6 revisions imported from alpha:जैकोबी_बहुपद)
(No difference)

Revision as of 10:42, 17 March 2023

गणित में, जैकोबी बहुपद(कभी-कभी अतिज्यामितीय बहुपद कहा जाता है) शास्त्रीय लंबकोणीय बहुपदों का एक वर्ग हैं। वे अंतराल पर प्रभाव के संबंध में लंबकोणीय हैं। गेंगेंबोइर बहुपद, और इस प्रकार लेजेंड्रे बहुपद, ज़र्निके बहुपद और चेबिशेव बहुपद, जैकोबी बहुपद के विशेष स्थितियां हैं।[1]

जैकोबी बहुपद कार्ल गुस्ताव जैकब जैकोबी द्वारा प्रस्तुत किए गए थे।

परिभाषाएँ

हाइपरज्यामितीय फलन के माध्यम से

जैकोबी बहुपदों को हाइपरज्यामितीय फलन के माध्यम से निम्नानुसार परिभाषित किया गया है:[2]

जहाँ पोछाम्मेर का प्रतीक है(बढ़ते तथ्यात्मक के लिए)। इस स्थिति में, हाइपरज्यामितीय फलन के लिए श्रृंखला परिमित है, इसलिए निम्नलिखित अनुरूप अभिव्यक्ति प्राप्त होती है:


रोड्रिग्स का सूत्र

रोड्रिग्स के सूत्र द्वारा एक समतुल्य परिभाषा दी गई है:[1][3]

अगर , तो यह लीजेंड्रे बहुपदों को कम कर देता है:


वास्तविक तर्क के लिए वैकल्पिक अभिव्यक्ति

यथार्थ जैकोबी बहुपद को वैकल्पिक रूप से लिखा जा सकता है

और पूर्णांक के लिए

जहाँ गामा फलन है।

विशेष स्थितियों में कि चार मात्राएँ , , , गैर-ऋणात्मक पूर्णांक हैं, जैकोबी बहुपद को इस रूप में लिखा जा सकता है

 

 

 

 

(1)

इस रूप में लिखा जा सकता है।

योग के सभी पूर्णांक मानों पर विस्तृत होता है जिसके लिए भाज्य के तर्क गैर-ऋणात्मक होते हैं।

विशेष स्थितियां


मूल गुण

लंबकोणीयता

जैकोबी बहुपद लंबकोणीयता की स्थिति

को संतुष्ट करते हैं।

जैसा कि परिभाषित किया गया है, प्रभाव के संबंध में उनके समीप इकाई मानदंड नहीं है। इसे उपरोक्त समीकरण के दाहिने हाथ की ओर के वर्गमूल से विभाजित करके ठीक किया जा सकता है, जब

यद्यपि यह एक प्रसामान्य लांबिक विश्लेषण आधार नहीं देता है, कभी-कभी इसकी सरलता के कारण एक वैकल्पिक सामान्यीकरण को प्राथमिकता दी जाती है:


सममिति संबंध

बहुपदों में सममिति संबंध

है,इस प्रकार अन्य टर्मिनल मान
है।

व्युत्पन्न

स्पष्ट अभिव्यक्ति का वां व्युत्पन्न

की ओर जाता है।

विभेदक समीकरण

जैकोबी बहुपद दूसरे क्रम रैखिक सजातीय अंतर समीकरण[1]

का एक हल है।

पुनरावृत्ति संबंध

निश्चित , के जैकोबी बहुपदों के लिए पुनरावृत्ति संबंध है:[1]

के लिए

संक्षिप्तता , और के लिए लेखन, यह

के संदर्भ में हो जाता है।

चूँकि जैकोबी बहुपदों को हाइपरज्यामितीय फलन के संदर्भ में वर्णित किया जा सकता है, हाइपरज्यामितीय फलन की पुनरावृत्ति जैकोबी बहुपदों के अनुरूप पुनरावृत्ति देती है। विशेष रूप से, गॉस के सन्निहित संबंध सर्वसमिकाओं