प्रकाशीय हेटेरोडाइन अनुसंधान: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
'''ऑप्टिकल [[होमोडाइन का पता लगाना]]''' दृश्य या [[अवरक्त]] प्रकाश के [[तरंग दैर्ध्य]] बैंड में चरण [[मॉडुलन]], आवृत्ति मॉडुलन या दोनों [[विद्युत चुम्बकीय विकिरण]] [[आवृति का उतार - चढ़ाव]] के रूप में एन्कोडेड जानकारी निकालने की विधि है। प्रकाश संकेत की तुलना स्थानीय दोलित्र (एलओ) से मानक या संदर्भ प्रकाश से की जाती है, जिसकी आवृत्ति और चरण में संकेत से निश्चित ऑफसेट होगा यदि बाद में अशक्त जानकारी होती है। होमोडाइन पहचान में नियोजित एकल आवृत्ति के विपरीत, हेटेरोडाइन से अधिक आवृत्ति का प्रतीक है।<ref name=Renishaw>{{cite web |publisher=Renishaw plc (UK) |url=http://resources.renishaw.com/en/download/white-paper-homodyne-and-heterodyne-interferometry--5653 |title=Optical detection techniques: homodyne versus heterodyne |date=2002 |access-date=15 February 2017 |archive-url=https://web.archive.org/web/20170726073548/http://resources.renishaw.com/en/download/white-paper-homodyne-and-heterodyne-interferometry--5653 |archive-date=26 July 2017 |url-status=dead }}</ref> | '''ऑप्टिकल [[होमोडाइन का पता लगाना]]''' दृश्य या [[अवरक्त]] प्रकाश के [[तरंग दैर्ध्य]] बैंड में चरण [[मॉडुलन]], आवृत्ति मॉडुलन या दोनों [[विद्युत चुम्बकीय विकिरण]] [[आवृति का उतार - चढ़ाव]] के रूप में एन्कोडेड जानकारी निकालने की विधि है। प्रकाश संकेत की तुलना स्थानीय दोलित्र (एलओ) से मानक या संदर्भ प्रकाश से की जाती है, जिसकी आवृत्ति और चरण में संकेत से निश्चित ऑफसेट होगा यदि बाद में अशक्त जानकारी होती है। होमोडाइन पहचान में नियोजित एकल आवृत्ति के विपरीत, हेटेरोडाइन से अधिक आवृत्ति का प्रतीक है।<ref name=Renishaw>{{cite web |publisher=Renishaw plc (UK) |url=http://resources.renishaw.com/en/download/white-paper-homodyne-and-heterodyne-interferometry--5653 |title=Optical detection techniques: homodyne versus heterodyne |date=2002 |access-date=15 February 2017 |archive-url=https://web.archive.org/web/20170726073548/http://resources.renishaw.com/en/download/white-paper-homodyne-and-heterodyne-interferometry--5653 |archive-date=26 July 2017 |url-status=dead }}</ref> | ||
दो प्रकाश संकेतों की तुलना | दो प्रकाश संकेतों की तुलना सामान्यतः उन्हें [[ photodiode | फोटोडायोड]] संसूचक में जोड़कर पूरा किया जाता है, जिसकी प्रतिक्रिया [[ऊर्जा]] में रैखिक होती है, और इसलिए [[विद्युत चुम्बकीय]] क्षेत्र के [[आयाम]] में द्विघात कार्य करता है। विशिष्ट रूप से, दो प्रकाश आवृत्तियाँ पर्याप्त समान होती हैं कि संसूचक द्वारा उत्पादित उनका अंतर या बीट (ध्वनिक) रेडियो या माइक्रोवेव बैंड में होता है जिसे इलेक्ट्रॉनिक माध्यमों से आसानी से संसाधित किया जा सकता है। | ||
1990 के दशक में सिंथेटिक ऐरे हेटेरोडाइन | 1990 के दशक में सिंथेटिक ऐरे हेटेरोडाइन संसूचक के आविष्कार के साथ यह तकनीक स्थलाकृति और [[वेग]]-संवेदनशील [[LIDAR|लेसर अवरक्त रेडार(लिडार)]] पर विस्तृत रूप से प्रायुक्त हो गई।<ref name="SAHD" /> लक्षित दृश्य से परावर्तित प्रकाश अपेक्षाकृत सस्ते फोटोडेटेक्टर पर केंद्रित होता है जिसमें बड़ा भौतिक पिक्सेल होता है, जबकि अलग एलओ आवृत्ति भी इस संसूचक के प्रत्येक आभासी पिक्सेल पर कसकर केंद्रित होती है, जिसके परिणामस्वरूप संसूचक से मिश्रण ले जाने वाला विद्युत संकेत मिलता है। बीट आवृत्ति की जिन्हें इलेक्ट्रॉनिक रूप से अलग किया जा सकता है और दृश्य की छवि पेश करने के लिए स्थानिक रूप से वितरित किया जा सकता है।<ref name="SAHD">{{cite journal |doi=10.1364/OL.19.001609 |pmid=19855597 |title=Synthetic-array heterodyne detection: a single-element detector acts as an array |year=1994 |last1=Strauss|first1=Charlie E. M. |journal=Optics Letters |volume=19 |issue=20 |pages=1609–11 |bibcode = 1994OptL...19.1609S |url=https://zenodo.org/record/1235660 }}</ref> | ||
== इतिहास == | == इतिहास == | ||
पहले [[लेज़र]] के निर्माण के दो वर्षों के | पहले [[लेज़र]] के निर्माण के दो वर्षों के अन्दर, कम से कम 1962 के प्रारंभ में ऑप्टिकल हेटेरोडाइन का पता लगाने का अध्ययन किया जाने लगा था।<ref name="MIL-TRG">{{cite report |title=ऑप्टिकल कम्युनिकेशंस में हेटेरोडाइन डिटेक्शन पर तकनीकी नोट|last=Jacobs|first=Stephen |publisher=Technical Research Group, Inc. |number=RADC-TDR-62-491 |ref=TRG-168-TDR-1 |location=Syosset, New York |date=30 November 1962 |access-date=15 February 2017 |url=http://www.dtic.mil/dtic/tr/fulltext/u2/296362.pdf|archive-url=https://web.archive.org/web/20170210015715/http://www.dtic.mil/dtic/tr/fulltext/u2/296362.pdf|url-status=dead|archive-date=February 10, 2017}}</ref> चूंकि, स्थानिक रूप से सुसंगत प्रकाश उत्पन्न करने का एकमात्र विधि लेजर रोशनी नहीं है। 1995 में, गुएरा<ref>{{Cite journal |last=Guerra |first=John M. |date=1995-06-26 |title=Super‐resolution through illumination by diffraction‐born evanescent waves |url=http://aip.scitation.org/doi/10.1063/1.113814 |journal=Applied Physics Letters |language=en |volume=66 |issue=26 |pages=3555–3557 |doi=10.1063/1.113814 |issn=0003-6951}}</ref> प्रकाशित परिणाम जिसमें उन्होंने झंझरी का पता लगाने और छवि बनाने के लिए ऑप्टिकल हेटेरोडाइनिंग के रूप का उपयोग किया, जो रोशनी की तरंग दैर्ध्य की तुलना में कई गुना कम आवृत्ति के साथ होता है, और इसलिए माइक्रोस्कोप के रिज़ॉल्यूशन, या पासबैंड से छोटा होता है, यह एक समान लेकिन पारदर्शी झंझरी के रूप में एक स्थानीय दोलित्र के विरुद्ध है। सुपर-रिज़ॉल्यूशन माइक्रोस्कोपी का रूप, यह काम परिवार और जीवन विज्ञान में विशेष उपयोग के सूक्ष्मदर्शी की पीढ़ी को जारी रखता है, जिसे संरचित रोशनी माइक्रोस्कोपी के रूप में जाना जाता है, पोलरॉइड कॉर्प ने 1997 में गुएरा के आविष्कार का पेटेंट कराया था।<ref>U.S. Pat. No. 5,666,197; "Apparatus and methods employing phase control and analysis of evanescent illumination for imaging and metrology of subwavelength lateral surface topography"; John M. Guerra, inventor; Assigned to Polaroid Corp.; Sept. 1997.</ref> | ||
== पारंपरिक [[ आकाशवाणी आवृति ]] ( | == पारंपरिक [[ आकाशवाणी आवृति ]] (आरएफ) [[Heterodyne|हेटेरोडाइन]] संसूचक के विपरीत == | ||
[[ऑप्टिकल बैंड]] | [[ऑप्टिकल बैंड]] संसूचक के व्यावहारिक पहलुओं को रेडियो आवृति (आरएफ) बैंड हेटेरोडाइन संसूचक के विपरीत करना शिक्षाप्रद है। | ||
=== ऊर्जा बनाम विद्युत क्षेत्र पहचान === | === ऊर्जा बनाम विद्युत क्षेत्र पहचान === | ||
आरएफ बैंड संसूचक के विपरीत, ऑप्टिकल आवृति इलेक्ट्रॉनिक रूप से विद्युत क्षेत्र को सीधे मापने और संसाधित करने के लिए बहुत तेज़ी से दोलन करती है। इसके अतिरिक्त ऑप्टिकल फोटॉन (सामान्यतः) फोटॉन की ऊर्जा को अवशोषित करके पता लगाया जाता है, इस प्रकार केवल परिमाण प्रकट होता है, न कि विद्युत क्षेत्र चरण का पालन करके पता लगाया जा सकता है। इसलिए हेटेरोडाइन मिश्रण का प्राथमिक उद्देश्य सिग्नल को ऑप्टिकल बैंड से इलेक्ट्रॉनिक रूप से ट्रैक्टेबल आवृति रेंज में शिफ्ट करना है। | |||
आरएफ बैंड पहचान में, | आरएफ बैंड पहचान में, सामान्यतः, विद्युत चुम्बकीय क्षेत्र [[एंटीना (रेडियो)]] में इलेक्ट्रॉनों की दोलनशील गति को संचालित करता है; कैप्चर किए गए विद्युत चुम्बकीय क्षेत्र बाद में किसी भी सुविधाजनक गैर-रैखिक परिपथ तत्व द्वारा द्विघात शब्द (सामान्यतः दिष्टकारी) के साथ स्थानीय दोलित्र (एलओ) के साथ इलेक्ट्रॉनिक रूप से मिश्रित होता है। ऑप्टिकल संसूचक में, वांछित गैर-रैखिकता फोटॉन अवशोषण प्रक्रिया में ही निहित है। परंपरागत प्रकाश संसूचक-तथाकथित वर्ग-लॉ संसूचक-मुक्त बाध्य इलेक्ट्रॉनों के लिए फोटॉन ऊर्जा का जवाब देते हैं, और चूंकि ऊर्जा प्रवाह विद्युत क्षेत्र के वर्ग के रूप में होता है, इसलिए इलेक्ट्रॉनों को मुक्त करने की दर भी होती है। अंतर आवृत्ति केवल संसूचक आउटपुट करंट में दिखाई देती है जब एलओ और सिग्नल दोनों ही समय में संसूचक को रोशन करते हैं, जिससे उनके संयुक्त क्षेत्रों के वर्ग में क्रॉस टर्म या अंतर आवृत्ति होती है जो औसत दर को संशोधित करती है जिस पर मुक्त इलेक्ट्रॉन उत्पन्न होते हैं। | ||
=== सुसंगत पहचान के लिए [[वाइडबैंड]] स्थानीय ऑसिलेटर्स === | === सुसंगत पहचान के लिए [[वाइडबैंड]] स्थानीय ऑसिलेटर्स === | ||
इसके विपरीत का अन्य बिंदु सिग्नल और स्थानीय ऑसिलेटर की अपेक्षित बैंडविड्थ है। | इसके विपरीत का अन्य बिंदु सिग्नल और स्थानीय ऑसिलेटर की अपेक्षित बैंडविड्थ है। सामान्यतः, आरएफ स्थानीय दोलक शुद्ध आवृत्ति है; व्यावहारिक रूप से, शुद्धता का अर्थ है कि स्थानीय ऑसिलेटर की आवृत्ति बैंडविड्थ अंतर आवृत्ति से बहुत कम है। ऑप्टिकल संकेतों के साथ, यहां तक कि लेजर के साथ, तात्कालिक बैंडविड्थ या लंबी अवधि की अस्थायी स्थिरता के लिए पर्याप्त रूप से शुद्ध संदर्भ आवृत्ति का उत्पादन करना आसान नहीं है जो विशिष्ट मेगाहर्ट्ज़ या किलोहर्ट्ज़ स्केल अंतर आवृत्ति से कम है। इस कारण से, एलओ और सिग्नल उत्पन्न करने के लिए अक्सर ही स्रोत का उपयोग किया जाता है जिससे केंद्र आवृत्ति के अस्थिर होने पर भी उनकी अंतर आवृत्ति को स्थिर रखा जा सके। | ||
परिणामस्वरुप, दो शुद्ध स्वरों के योग को वर्ग करने का गणित, सामान्यतः आरएफ हेटेरोडाइन पहचान की व्याख्या करने के लिए प्रायुक्त किया जाता है, ऑप्टिकल हेटेरोडाइन पहचान का अतिसरलीकृत मॉडल है। फिर भी, सहज ज्ञान युक्त शुद्ध-आवृत्ति हेटेरोडाइन अवधारणा अभी भी वाईडबैंड मामले के लिए पूरी तरह से प्रायुक्त होती है, बशर्ते कि संकेत और एलओ पारस्परिक रूप से सुसंगत हों। महत्वपूर्ण रूप से, सुसंगत ब्रॉडबैंड स्रोतों से संकीर्ण-बैंड हस्तक्षेप प्राप्त किया जा सकता है: यह [[ सफेद प्रकाश स्कैनर ]] और ऑप्टिकल सुसंगतता टोमोग्राफी का आधार है। पारस्परिक सामंजस्य न्यूटन के छल्लों में इंद्रधनुष और अलौकिक इंद्रधनुषों की अनुमति देता है। | |||
परिणामस्वरुप, ऑप्टिकल [[हेटेरोडाइन का पता लगाना]] सामान्यतः [[इंटरफेरोमेट्री]] के रूप में किया जाता है जहां एलओ और सिग्नल सामान्य उत्पत्ति साझा करते हैं, अतिरिक्त रेडियो में, रिमोट रिसीवर को भेजने वाला ट्रांसमीटर। रिमोट रिसीवर ज्यामिति असामान्य है क्योंकि स्थानीय दोलित्र संकेत उत्पन्न करना जो स्वतंत्र मूल के संकेत के साथ सुसंगत है, ऑप्टिकल आवृत्तियों पर तकनीकी रूप से कठिन है। चूंकि, सिग्नल और एलओओ को अलग-अलग लेज़रों से उत्पन्न करने की अनुमति देने के लिए पर्याप्त रूप से संकीर्ण लाइनविड्थ के लेजर उपस्थित हैं।<ref>{{cite journal|doi=10.1103/PhysRevLett.23.277|title=थ्रेसहोल्ड से ऊपर एक लेजर में क्वांटम चरण शोर द्वारा सीमित के रूप में लोरेंट्ज़ियन रेखा आकार का प्रत्यक्ष अवलोकन|year=1969|last1=Hinkley|first1=E.|last2=Freed|first2=Charles|journal=Physical Review Letters|volume=23|pages=277|bibcode=1969PhRvL..23..277H|issue=6}}</ref> | |||
Line 36: | Line 36: | ||
=== पता लगाने में लाभ === | === पता लगाने में लाभ === | ||
डाउन-मिश्रित अंतर आवृत्ति का आयाम मूल संकेत के आयाम से ही बड़ा हो सकता है। अंतर आवृत्ति संकेत एलओ और सिग्नल विद्युत क्षेत्रों के एम्पलीट्यूड के उत्पाद के समानुपाती होता है। इस प्रकार | डाउन-मिश्रित अंतर आवृत्ति का आयाम मूल संकेत के आयाम से ही बड़ा हो सकता है। अंतर आवृत्ति संकेत एलओ और सिग्नल विद्युत क्षेत्रों के एम्पलीट्यूड के उत्पाद के समानुपाती होता है। इस प्रकार एलओ आयाम जितना बड़ा होगा, अंतर-आवृत्ति आयाम उतना ही बड़ा होगा। इसलिए फोटॉन रूपांतरण प्रक्रिया में ही लाभ होता है। | ||
:<math>I\propto \left[ E_\mathrm{sig}\cos(\omega_\mathrm{sig}t+\varphi) + E_\mathrm{LO}\cos(\omega_\mathrm{LO}t) \right]^2 \propto \frac{1}{2}E_\mathrm{sig}^2+\frac{1}{2}E_\mathrm{LO}^2+2E_\mathrm{LO}E_\mathrm{sig}\cos(\omega_\mathrm{sig}t+\varphi)\cos(\omega_\mathrm{LO}t) </math> | :<math>I\propto \left[ E_\mathrm{sig}\cos(\omega_\mathrm{sig}t+\varphi) + E_\mathrm{LO}\cos(\omega_\mathrm{LO}t) \right]^2 \propto \frac{1}{2}E_\mathrm{sig}^2+\frac{1}{2}E_\mathrm{LO}^2+2E_\mathrm{LO}E_\mathrm{sig}\cos(\omega_\mathrm{sig}t+\varphi)\cos(\omega_\mathrm{LO}t) </math> | ||
पहले दो शब्द औसत (डीसी) ऊर्जा प्रवाह अवशोषित (या, समतुल्य, फोटॉन गिनती के मामले में औसत वर्तमान) के आनुपातिक हैं। तीसरा पद समय परिवर्तनशील है और योग और अंतर आवृत्तियों को बनाता है। ऑप्टिकल शासन में बाद के इलेक्ट्रॉनिक्स से गुजरने के लिए योग आवृत्ति बहुत अधिक होगी। कई अनुप्रयोगों में संकेत एलओ से कमजोर है, इस प्रकार यह देखा जा सकता है कि अंतर आवृत्ति में ऊर्जा प्रवाह के कारण लाभ होता है <math>E_\mathrm{LO}E_\mathrm{sig}</math> सिग्नल के डीसी ऊर्जा प्रवाह से स्वयं ही अधिक है <math>E_\mathrm{sig}^2</math>. | पहले दो शब्द औसत (डीसी) ऊर्जा प्रवाह अवशोषित (या, समतुल्य, फोटॉन गिनती के मामले में औसत वर्तमान) के आनुपातिक हैं। तीसरा पद समय परिवर्तनशील है और योग और अंतर आवृत्तियों को बनाता है। ऑप्टिकल शासन में बाद के इलेक्ट्रॉनिक्स से गुजरने के लिए योग आवृत्ति बहुत अधिक होगी। कई अनुप्रयोगों में संकेत एलओ से कमजोर है, इस प्रकार यह देखा जा सकता है कि अंतर आवृत्ति में ऊर्जा प्रवाह के कारण लाभ होता है <math>E_\mathrm{LO}E_\mathrm{sig}</math> सिग्नल के डीसी ऊर्जा प्रवाह से स्वयं ही अधिक है <math>E_\mathrm{sig}^2</math>. | ||
=== ऑप्टिकल चरण का संरक्षण === | === ऑप्टिकल चरण का संरक्षण === | ||
अपने आप में, सिग्नल बीम का ऊर्जा प्रवाह, <math>E_\mathrm{sig}^2</math>, डीसी है और इस प्रकार इसकी ऑप्टिकल आवृत्ति से जुड़े चरण को मिटा देता है; हेटेरोडाइन का पता लगाने से इस चरण का पता लगाया जा सकता है। यदि सिग्नल बीम का ऑप्टिकल चरण कोण फाई द्वारा स्थानांतरित होता है, तो इलेक्ट्रॉनिक अंतर आवृत्ति का चरण बिल्कुल उसी कोण फाई द्वारा स्थानांतरित होता है। अधिक ठीक से, ऑप्टिकल चरण बदलाव पर चर्चा करने के लिए सामान्य समय आधार संदर्भ होना आवश्यक है। | अपने आप में, सिग्नल बीम का ऊर्जा प्रवाह, <math>E_\mathrm{sig}^2</math>, डीसी है और इस प्रकार इसकी ऑप्टिकल आवृत्ति से जुड़े चरण को मिटा देता है; हेटेरोडाइन का पता लगाने से इस चरण का पता लगाया जा सकता है। यदि सिग्नल बीम का ऑप्टिकल चरण कोण फाई द्वारा स्थानांतरित होता है, तो इलेक्ट्रॉनिक अंतर आवृत्ति का चरण बिल्कुल उसी कोण फाई द्वारा स्थानांतरित होता है। अधिक ठीक से, ऑप्टिकल चरण बदलाव पर चर्चा करने के लिए सामान्य समय आधार संदर्भ होना आवश्यक है। सामान्यतः सिग्नल बीम उसी लेजर से प्राप्त होता है जो एलओ के रूप में होता है लेकिन आवृत्ति में कुछ न्यूनाधिक द्वारा स्थानांतरित किया जाता है। अन्य मामलों में, गतिमान वस्तु से प्रतिबिंब से आवृत्ति बदलाव उत्पन्न हो सकता है। जब तक मॉड्यूलेशन स्रोत एलओ और सिग्नल स्रोत के बीच निरंतर ऑफसेट चरण बनाए रखता है, रिटर्न सिग्नल के बाहरी संशोधन से उत्पन्न होने वाले समय के साथ कोई भी जोड़ा ऑप्टिकल चरण अंतर आवृत्ति के चरण में जोड़ा जाता है और इस प्रकार औसत दर्जे का होता है। | ||
===इलेक्ट्रॉनिक आवृत्तियों के लिए ऑप्टिकल आवृत्तियों का मानचित्रण संवेदनशील माप === की अनुमति देता है | ===इलेक्ट्रॉनिक आवृत्तियों के लिए ऑप्टिकल आवृत्तियों का मानचित्रण संवेदनशील माप === की अनुमति देता है | ||
जैसा कि ऊपर उल्लेख किया गया है, अंतर आवृत्ति लाइनविड्थ सिग्नल और एलओ सिग्नल के ऑप्टिकल लाइनविड्थ से बहुत कम हो सकता है, बशर्ते दोनों परस्पर सुसंगत हों। इस प्रकार ऑप्टिकल सिग्नल सेंटर- | जैसा कि ऊपर उल्लेख किया गया है, अंतर आवृत्ति लाइनविड्थ सिग्नल और एलओ सिग्नल के ऑप्टिकल लाइनविड्थ से बहुत कम हो सकता है, बशर्ते दोनों परस्पर सुसंगत हों। इस प्रकार ऑप्टिकल सिग्नल सेंटर-आवृति में छोटे बदलावों को मापा जा सकता है: उदाहरण के लिए, डॉपलर [[ LIDAR का | लेसर अवरक्त रेडार का]] सिस्टम 1 मीटर प्रति सेकंड से बेहतर रिज़ॉल्यूशन के साथ हवा के वेगों में भेदभाव कर सकता है, जो ऑप्टिकल आवृति में बिलियन डॉपलर शिफ्ट के हिस्से से कम है। इसी तरह छोटे सुसंगत चरण बदलावों को नाममात्र रूप से असंगत ब्रॉडबैंड प्रकाश के लिए भी मापा जा सकता है, जिससे ऑप्टिकल सुसंगतता टोमोग्राफी को छवि माइक्रोमीटर-आकार की विशेषताओं की अनुमति मिलती है। इस वजह से, इलेक्ट्रॉनिक फ़िल्टर प्रभावी ऑप्टिकल आवृति बैंडपास को परिभाषित कर सकता है जो प्रकाश पर चलने वाले किसी भी वास्तविक तरंग दैर्ध्य फ़िल्टर की तुलना में संकरा होता है, और इस तरह पृष्ठभूमि प्रकाश अस्वीकृति को सक्षम करता है और इसलिए कमजोर संकेतों का पता लगाता है। | ||
=== [[शॉट शोर]] सीमा तक शोर में कमी === | === [[शॉट शोर]] सीमा तक शोर में कमी === | ||
किसी भी छोटे सिग्नल प्रवर्धन के साथ, सिग्नल इंटरसेप्शन के | किसी भी छोटे सिग्नल प्रवर्धन के साथ, सिग्नल इंटरसेप्शन के प्रारंभिक बिंदु के जितना संभव हो उतना लाभ प्राप्त करना सबसे अधिक वांछनीय है: किसी भी सिग्नल प्रोसेसिंग से आगे बढ़ने से रोकनेवाला जॉनसन-निक्विस्ट शोर, या इलेक्ट्रिकल जैसे प्रभावों के योगात्मक योगदान को कम करता है। सक्रिय परिपथ में शोर। ऑप्टिकल हेटेरोडाइन संसूचक में, मिश्रण-लाभ सीधे प्रारंभिक फोटॉन अवशोषण घटना के भौतिकी में होता है, जिससे यह आदर्श बन जाता है। इसके अतिरिक्त, पहले सन्निकटन के लिए, डायोड गैर-रैखिकता द्वारा आरएफ पहचान के विपरीत, अवशोषण पूरी तरह से द्विघात है। | ||
हेटेरोडाइन पहचान के गुणों में से यह है कि अंतर आवृत्ति | हेटेरोडाइन पहचान के गुणों में से यह है कि अंतर आवृत्ति सामान्यतः सिग्नल या एलओ सिग्नल उत्पन्न करने की प्रक्रिया के दौरान निकलने वाली संभावित शोर से आवृत्ति स्पेक्ट्रम को दूर कर देती है, इस प्रकार अंतर आवृत्ति के निकट वर्णक्रमीय क्षेत्र अपेक्षाकृत शांत हो सकता है। इसलिए, अंतर आवृत्ति के पास संकीर्ण इलेक्ट्रॉनिक फ़िल्टरिंग शेष, आम तौर पर ब्रॉडबैंड, शोर स्रोतों को हटाने में अत्यधिक प्रभावी होती है। | ||
शोर का प्राथमिक शेष स्रोत नाममात्र स्थिर डीसी स्तर से फोटॉन शॉट शोर है, जो | शोर का प्राथमिक शेष स्रोत नाममात्र स्थिर डीसी स्तर से फोटॉन शॉट शोर है, जो सामान्यतः स्थानीय दोलित्र (एलओ) का प्रभुत्व है। चूंकि शॉट शोर एलओ विद्युत क्षेत्र स्तर के आयाम के रूप में होता है, और हेटेरोडाइन लाभ भी उसी तरह से होता है, शॉट शोर का मिश्रित सिग्नल का अनुपात स्थिर होता है, चाहे कितना भी बड़ा एलओ हो। | ||
इस प्रकार व्यवहार में कोई एलओ स्तर को बढ़ाता है, जब तक कि सिग्नल पर लाभ इसे अन्य सभी योज्य शोर स्रोतों से ऊपर नहीं उठाता, केवल शॉट शोर छोड़ देता है। इस सीमा में, सिग्नल-टू-शोर अनुपात केवल सिग्नल के शॉट शोर से प्रभावित होता है (यानी शक्तिशाली एलओ से कोई शोर योगदान नहीं होता है क्योंकि यह अनुपात से बाहर विभाजित होता है)। उस बिंदु पर शोर के संकेत में कोई बदलाव नहीं होता है क्योंकि लाभ और बढ़ जाता है। (बेशक, यह उच्च आदर्शीकृत विवरण है; वास्तविक संसूचकों में एलओ तीव्रता मामले पर व्यावहारिक सीमाएं और अशुद्ध एलओ अंतर आवृत्ति पर कुछ शोर ले सकता है) | इस प्रकार व्यवहार में कोई एलओ स्तर को बढ़ाता है, जब तक कि सिग्नल पर लाभ इसे अन्य सभी योज्य शोर स्रोतों से ऊपर नहीं उठाता, केवल शॉट शोर छोड़ देता है। इस सीमा में, सिग्नल-टू-शोर अनुपात केवल सिग्नल के शॉट शोर से प्रभावित होता है (यानी शक्तिशाली एलओ से कोई शोर योगदान नहीं होता है क्योंकि यह अनुपात से बाहर विभाजित होता है)। उस बिंदु पर शोर के संकेत में कोई बदलाव नहीं होता है क्योंकि लाभ और बढ़ जाता है। (बेशक, यह उच्च आदर्शीकृत विवरण है; वास्तविक संसूचकों में एलओ तीव्रता मामले पर व्यावहारिक सीमाएं और अशुद्ध एलओ अंतर आवृत्ति पर कुछ शोर ले सकता है) | ||
Line 58: | Line 58: | ||
=== ऐरे का पता लगाना और इमेजिंग === | === ऐरे का पता लगाना और इमेजिंग === | ||
प्रकाश की सरणी पहचान, यानी बड़ी संख्या में स्वतंत्र संसूचक पिक्सेल में प्रकाश का पता लगाना, डिजिटल कैमरा इमेज सेंसर में आम है। | प्रकाश की सरणी पहचान, यानी बड़ी संख्या में स्वतंत्र संसूचक पिक्सेल में प्रकाश का पता लगाना, डिजिटल कैमरा इमेज सेंसर में आम है। चूंकि, हेटेरोडाइन का पता लगाने में यह काफी मुश्किल हो जाता है, क्योंकि ब्याज का संकेत दोलन कर रहा है (जिसे परिपथ के अनुरूप वैकल्पिक धारा भी कहा जाता है), अक्सर लाखों चक्र प्रति सेकंड या उससे अधिक पर। [[छवि संवेदक]]ों के लिए विशिष्ट फ्रेम दर पर, जो बहुत धीमी हैं, प्रत्येक पिक्सेल कई दोलन चक्रों पर प्राप्त कुल प्रकाश को एकीकृत करेगा, और इस समय-एकीकरण से रुचि के संकेत नष्ट हो जाएंगे। इस प्रकार हेटेरोडाइन सरणी में सामान्यतः प्रत्येक सेंसर पिक्सेल से विद्युत एम्पलीफायरों, फिल्टर और प्रसंस्करण प्रणालियों को अलग करने के लिए समानांतर सीधा कनेक्शन होना चाहिए। यह बड़े, सामान्य उद्देश्य, हेटेरोडाइन इमेजिंग सिस्टम को निषेधात्मक रूप से महंगा बनाता है। उदाहरण के लिए, केवल 1 मिलियन लीड को मेगापिक्सेल सुसंगत सरणी से जोड़ना कठिन चुनौती है। | ||
इस समस्या को हल करने के लिए, सिंथेटिक ऐरे हेटेरोडाइन | इस समस्या को हल करने के लिए, सिंथेटिक ऐरे हेटेरोडाइन संसूचक (SAHD) विकसित किया गया था।<ref name="SAHD" />SAHD में, सिंगल रीडआउट लीड, सिंगल इलेक्ट्रिकल फिल्टर और सिंगल रिकॉर्डिंग सिस्टम के साथ सिंगल एलिमेंट संसूचक पर बड़े इमेजिंग एरेज़ को वर्चुअल पिक्सल्स में [[ बहुसंकेतन ]] किया जा सकता है।<ref name="RainbowHeterodyne">{{cite journal |title=Synthetic Array Heterodyne Detection: Developments within the Caliope CO2 DIAL Program |year=1995 |last1=Strauss|first1=Charlie E. M. |journal= Optical Society of America, Proceedings of the 1995 Coherent Laser Radar Topical Meeting |volume = 96|pages=13278 |url=https://www.researchgate.net/publication/265384183 |bibcode = 1995STIN...9613278R}}</ref> इस दृष्टिकोण का समय डोमेन संयुग्मन [[फूरियर ट्रांसफॉर्म हेटेरोडाइन डिटेक्शन|फूरियर ट्रांसफॉर्म हेटेरोडाइन संसूचक]] है,<ref name="Cooke1999">{{cite book |last1=Cooke|first1=Bradly J. |title=लेजर रडार प्रौद्योगिकी और अनुप्रयोग IV|last2=Galbraith|first2=Amy E. |last3=Laubscher|first3=Bryan E. |last4=Strauss|first4=Charlie E. M. |last5=Olivas|first5=Nicholas L. |last6=Grubler|first6=Andrew C. |chapter=Laser field imaging through Fourier transform heterodyne |journal=Proceedings of SPIE |volume=3707 |issue=1 |year=1999 |pages=390–408 |issn=0277-786X |doi=10.1117/12.351361 |s2cid=58918536 |chapter-url=http://www.citeulike.org/user/tino/article/1584658|url=https://digital.library.unt.edu/ark:/67531/metadc706850/ |editor1-last=Kamerman |editor1-first=Gary W |editor2-last=Werner |editor2-first=Christian }}</ref> जिसका मल्टीप्लेक्स लाभ भी है और एकल तत्व संसूचक को इमेजिंग सरणी की तरह कार्य करने की अनुमति भी देता है। SAHD को [[इंद्रधनुष हेटेरोडाइन का पता लगाना]] के रूप में प्रायुक्त किया गया है<ref>Strauss, C.E.M. and Rehse, S.J. "[http://ieeexplore.ieee.org/xpls/abs_all.jsp?tp=&arnumber=864560&isnumber=18726 Rainbow heterodyne detection]" | ||
Lasers and Electro-Optics, 1996. CLEO Pub Date: 2–7 June 1996 (200) {{isbn|1-55752-443-2}} [http://www.osti.gov/bridge/servlets/purl/94587-HpUg8K/webviewable/94587.PDF (See DOE archive)]</ref><ref>"Multi-Pixel Synthetic Array Heterodyne Detection Report", 1995, Strauss, C.E.M. and Rehse, S.J. [https://www.researchgate.net/publication/265384183_multi-pixel_synthetic_array_rainbow_heterodyne_detection_1995]</ref> जिसमें एकल आवृत्ति | Lasers and Electro-Optics, 1996. CLEO Pub Date: 2–7 June 1996 (200) {{isbn|1-55752-443-2}} [http://www.osti.gov/bridge/servlets/purl/94587-HpUg8K/webviewable/94587.PDF (See DOE archive)]</ref><ref>"Multi-Pixel Synthetic Array Heterodyne Detection Report", 1995, Strauss, C.E.M. and Rehse, S.J. [https://www.researchgate.net/publication/265384183_multi-pixel_synthetic_array_rainbow_heterodyne_detection_1995]</ref> जिसमें एकल आवृत्ति एलओ के अतिरिक्त, इंद्रधनुष की तरह संसूचक तत्व की सतह पर कई संकीर्ण दूरी वाली आवृत्तियाँ फैली हुई हैं। भौतिक स्थिति जहां प्रत्येक फोटॉन पहुंचे, परिणामी अंतर आवृत्ति में एन्कोड किया गया है, तत्व संसूचक पर वर्चुअल 1 डी सरणी बना रहा है। यदि आवृति कंघी समान रूप से फैली हुई है, तो आसानी से, आउटपुट वेवफॉर्म का [[फूरियर रूपांतरण]] छवि ही है। 2D में ऐरे भी बनाए जा सकते हैं, और चूंकि एरेज़ वर्चुअल हैं, पिक्सेल की संख्या, उनके आकार और उनके व्यक्तिगत लाभ को गतिशील रूप से अनुकूलित किया जा सकता है। मल्टीप्लेक्स का नुकसान यह है कि सभी पिक्सेल से शॉट शोर गठबंधन होता है क्योंकि वे भौतिक रूप से अलग नहीं होते हैं। | ||
=== धब्बेदार और विविधता का स्वागत === | === धब्बेदार और विविधता का स्वागत === | ||
जैसा कि चर्चा की गई है, एलओ और सिग्नल अस्थायी रूप से [[सुसंगत प्रकाश]] होना चाहिए। उन्हें संसूचक के चेहरे पर स्थानिक रूप से सुसंगत होने की भी आवश्यकता है या वे विनाशकारी रूप से हस्तक्षेप करेंगे। कई उपयोग परिदृश्यों में संकेत वैकल्पिक रूप से खुरदरी सतहों से परिलक्षित होता है या वैकल्पिक रूप से अशांत मीडिया से होकर गुजरता है जो [[ wavefront ]]्स की ओर जाता है जो स्थानिक रूप से असंगत हैं। लेज़र स्कैटरिंग में इसे [[धब्बेदार पैटर्न]] के रूप में जाना जाता है।<ref name="name=Dainty">Dainty C (Ed), Laser Speckle and Related Phenomena, 1984, Springer Verlag, {{isbn|0-387-13169-8}}</ref> | जैसा कि चर्चा की गई है, एलओ और सिग्नल अस्थायी रूप से [[सुसंगत प्रकाश]] होना चाहिए। उन्हें संसूचक के चेहरे पर स्थानिक रूप से सुसंगत होने की भी आवश्यकता है या वे विनाशकारी रूप से हस्तक्षेप करेंगे। कई उपयोग परिदृश्यों में संकेत वैकल्पिक रूप से खुरदरी सतहों से परिलक्षित होता है या वैकल्पिक रूप से अशांत मीडिया से होकर गुजरता है जो [[ wavefront ]]्स की ओर जाता है जो स्थानिक रूप से असंगत हैं। लेज़र स्कैटरिंग में इसे [[धब्बेदार पैटर्न]] के रूप में जाना जाता है।<ref name="name=Dainty">Dainty C (Ed), Laser Speckle and Related Phenomena, 1984, Springer Verlag, {{isbn|0-387-13169-8}}</ref> | ||
आरएफ संसूचक में ऐन्टेना तरंग दैर्ध्य की तुलना में शायद ही कभी बड़ा होता है, इसलिए सभी उत्साहित इलेक्ट्रॉन ऐन्टेना के अन्दर सुसंगत रूप से चलते हैं, जबकि प्रकाशिकी में संसूचक सामान्यतः तरंग दैर्ध्य की तुलना में बहुत बड़ा होता है और इस तरह विकृत चरण सामने को रोक सकता है, जिसके परिणामस्वरूप विनाशकारी हस्तक्षेप होता है। संसूचक के अन्दर चरण फोटो-जनित इलेक्ट्रॉन। | |||
जबकि विनाशकारी हस्तक्षेप सिग्नल स्तर को नाटकीय रूप से कम कर देता है, स्थानिक रूप से असंगत मिश्रण का अभिव्यक्त आयाम शून्य तक नहीं पहुंचता है, बल्कि स्पेकल का औसत आयाम होता है।<ref name="name=Dainty"></ref> | जबकि विनाशकारी हस्तक्षेप सिग्नल स्तर को नाटकीय रूप से कम कर देता है, स्थानिक रूप से असंगत मिश्रण का अभिव्यक्त आयाम शून्य तक नहीं पहुंचता है, बल्कि स्पेकल का औसत आयाम होता है।<ref name="name=Dainty"></ref> चूंकि, चूँकि स्पेकल्स के सुसंगत योग का मानक विचलन माध्य स्पेकल इंटेंसिटी के बिल्कुल बराबर है, स्क्रैम्बल्ड फेज मोर्चों का ऑप्टिकल हेटेरोडाइन संसूचक कभी भी सिग्नल के आकार से कम त्रुटि बार के साथ पूर्ण प्रकाश स्तर को माप नहीं सकता है। एकता का यह ऊपरी बाउंड सिग्नल-टू-शोर अनुपात केवल पूर्ण परिमाण माप के लिए है: यह स्थिर धब्बेदार क्षेत्र में चरण, आवृत्ति या समय-भिन्न सापेक्ष-आयाम माप के लिए एकता से बेहतर सिग्नल-टू-शोर अनुपात हो सकता है। | ||
आरएफ संसूचक में, डायवर्सिटी रिसेप्शन का उपयोग अक्सर कम संकेतों को कम करने के लिए किया जाता है जब प्राथमिक ऐन्टेना अनजाने में हस्तक्षेप शून्य बिंदु पर स्थित होता है: से अधिक ऐन्टेना होने से कोई भी ऐन्टेना में सबसे मजबूत सिग्नल के लिए अनुकूल रूप से स्विच कर सकता है या यहां तक कि असंगत रूप से सभी को जोड़ सकता है। एंटीना संकेत। बस एंटीना को सुसंगत रूप से जोड़ने से विनाशकारी हस्तक्षेप उत्पन्न हो सकता है जैसा कि ऑप्टिकल क्षेत्र में होता है। | |||
ऑप्टिकल हेटेरोडाइन के लिए अनुरूप विविधता रिसेप्शन को फोटॉन-गिनती संसूचकों के सरणी के साथ प्रदर्शित किया गया है।<ref name="JiangLuu2008">{{cite journal|doi=10.1364/AO.47.001486|pmid=18382577 |issn=0003-6935 |title=एक कमजोर स्थानीय दोलक के साथ हेटेरोडाइन का पता लगाना|year=2008|last1=Jiang|first1=Leaf A.|last2=Luu|first2=Jane X.|journal=Applied Optics|volume=47|issue=10|pages=1486–503|bibcode = 2008ApOpt..47.1486J }}</ref> यादृच्छिक धब्बेदार क्षेत्र में कई तत्व संसूचकों के असंगत जोड़ के लिए, मानक विचलन के माध्य का अनुपात स्वतंत्र रूप से मापे गए धब्बों की संख्या के वर्गमूल के रूप में होगा। यह बेहतर सिग्नल-टू-शोर अनुपात हेटेरोडाइन | ऑप्टिकल हेटेरोडाइन के लिए अनुरूप विविधता रिसेप्शन को फोटॉन-गिनती संसूचकों के सरणी के साथ प्रदर्शित किया गया है।<ref name="JiangLuu2008">{{cite journal|doi=10.1364/AO.47.001486|pmid=18382577 |issn=0003-6935 |title=एक कमजोर स्थानीय दोलक के साथ हेटेरोडाइन का पता लगाना|year=2008|last1=Jiang|first1=Leaf A.|last2=Luu|first2=Jane X.|journal=Applied Optics|volume=47|issue=10|pages=1486–503|bibcode = 2008ApOpt..47.1486J }}</ref> यादृच्छिक धब्बेदार क्षेत्र में कई तत्व संसूचकों के असंगत जोड़ के लिए, मानक विचलन के माध्य का अनुपात स्वतंत्र रूप से मापे गए धब्बों की संख्या के वर्गमूल के रूप में होगा। यह बेहतर सिग्नल-टू-शोर अनुपात हेटेरोडाइन संसूचक में पूर्ण आयाम माप को संभव बनाता है। | ||
चूंकि, जैसा कि ऊपर उल्लेख किया गया है, आउटपुट सिग्नल की दोलन या यहां तक कि बहु-आवृत्ति प्रकृति के कारण भौतिक सरणियों को बड़े तत्व की संख्या में स्केल करना हेटेरोडाइन का पता लगाने के लिए चुनौतीपूर्ण है। इसके अतिरिक्त, एकल-तत्व ऑप्टिकल संसूचक भी सिंथेटिक सरणी हेटेरोडाइन संसूचक या फूरियर ट्रांसफॉर्म हेटेरोडाइन संसूचक के माध्यम से विविधता रिसीवर की तरह कार्य कर सकता है। आभासी सरणी के साथ या तो अनुकूल रूप से एलओ आवृत्तियों में से केवल का चयन कर सकते हैं, धीरे-धीरे चलने वाले उज्ज्वल धब्बे को ट्रैक कर सकते हैं, या उन सभी को इलेक्ट्रॉनिक्स द्वारा पोस्ट-प्रोसेसिंग में जोड़ सकते हैं। | |||
=== सुसंगत लौकिक योग === | === सुसंगत लौकिक योग === | ||
प्राप्त करने के लिए एन स्वतंत्र दालों की समय श्रृंखला के परिमाण को असंगत रूप से जोड़ सकते हैं {{radic|''N''}} आयाम पर शोर के संकेत में सुधार, लेकिन चरण की जानकारी खोने की कीमत पर। इसके | प्राप्त करने के लिए एन स्वतंत्र दालों की समय श्रृंखला के परिमाण को असंगत रूप से जोड़ सकते हैं {{radic|''N''}} आयाम पर शोर के संकेत में सुधार, लेकिन चरण की जानकारी खोने की कीमत पर। इसके अतिरिक्त कई पल्स वेवफॉर्म के सुसंगत जोड़ (जटिल परिमाण और चरण को जोड़ना) N के कारक द्वारा शोर के संकेत में सुधार करेगा, न कि इसके वर्गमूल में, और चरण की जानकारी को संरक्षित करेगा। व्यावहारिक सीमा ठेठ लेजर से आसन्न दालों में मिनट आवृत्ति बहाव है जो किसी भी लंबी दूरी के रिटर्न सिग्नल में बड़े यादृच्छिक चरण बदलाव में अनुवाद करता है, और इस प्रकार स्थानिक रूप से तले हुए चरण पिक्सेल के मामले की तरह, सुसंगत रूप से जोड़े जाने पर विनाशकारी रूप से हस्तक्षेप करता है। चूंकि, उन्नत लेजर सिस्टम के साथ कई दालों का सुसंगत जोड़ संभव है जो अंतर आवृत्ति (मध्यवर्ती आवृत्ति) के नीचे आवृत्ति बहाव को कम करता है। इस तकनीक को मल्टी-पल्स सुसंगत डॉपलर लिडार में प्रदर्शित किया गया है।<ref>Gabriel Lombardi, Jerry Butman, Torrey Lyons, David Terry, and Garrett Piech, "[http://www.phasecoherence.com/other/atmos/paper.pdf Multiple-pulse coherent laser radar waveform]"</ref> | ||
Revision as of 04:44, 15 March 2023
ऑप्टिकल होमोडाइन का पता लगाना दृश्य या अवरक्त प्रकाश के तरंग दैर्ध्य बैंड में चरण मॉडुलन, आवृत्ति मॉडुलन या दोनों विद्युत चुम्बकीय विकिरण आवृति का उतार - चढ़ाव के रूप में एन्कोडेड जानकारी निकालने की विधि है। प्रकाश संकेत की तुलना स्थानीय दोलित्र (एलओ) से मानक या संदर्भ प्रकाश से की जाती है, जिसकी आवृत्ति और चरण में संकेत से निश्चित ऑफसेट होगा यदि बाद में अशक्त जानकारी होती है। होमोडाइन पहचान में नियोजित एकल आवृत्ति के विपरीत, हेटेरोडाइन से अधिक आवृत्ति का प्रतीक है।[1]
दो प्रकाश संकेतों की तुलना सामान्यतः उन्हें फोटोडायोड संसूचक में जोड़कर पूरा किया जाता है, जिसकी प्रतिक्रिया ऊर्जा में रैखिक होती है, और इसलिए विद्युत चुम्बकीय क्षेत्र के आयाम में द्विघात कार्य करता है। विशिष्ट रूप से, दो प्रकाश आवृत्तियाँ पर्याप्त समान होती हैं कि संसूचक द्वारा उत्पादित उनका अंतर या बीट (ध्वनिक) रेडियो या माइक्रोवेव बैंड में होता है जिसे इलेक्ट्रॉनिक माध्यमों से आसानी से संसाधित किया जा सकता है।
1990 के दशक में सिंथेटिक ऐरे हेटेरोडाइन संसूचक के आविष्कार के साथ यह तकनीक स्थलाकृति और वेग-संवेदनशील लेसर अवरक्त रेडार(लिडार) पर विस्तृत रूप से प्रायुक्त हो गई।[2] लक्षित दृश्य से परावर्तित प्रकाश अपेक्षाकृत सस्ते फोटोडेटेक्टर पर केंद्रित होता है जिसमें बड़ा भौतिक पिक्सेल होता है, जबकि अलग एलओ आवृत्ति भी इस संसूचक के प्रत्येक आभासी पिक्सेल पर कसकर केंद्रित होती है, जिसके परिणामस्वरूप संसूचक से मिश्रण ले जाने वाला विद्युत संकेत मिलता है। बीट आवृत्ति की जिन्हें इलेक्ट्रॉनिक रूप से अलग किया जा सकता है और दृश्य की छवि पेश करने के लिए स्थानिक रूप से वितरित किया जा सकता है।[2]
इतिहास
पहले लेज़र के निर्माण के दो वर्षों के अन्दर, कम से कम 1962 के प्रारंभ में ऑप्टिकल हेटेरोडाइन का पता लगाने का अध्ययन किया जाने लगा था।[3] चूंकि, स्थानिक रूप से सुसंगत प्रकाश उत्पन्न करने का एकमात्र विधि लेजर रोशनी नहीं है। 1995 में, गुएरा[4] प्रकाशित परिणाम जिसमें उन्होंने झंझरी का पता लगाने और छवि बनाने के लिए ऑप्टिकल हेटेरोडाइनिंग के रूप का उपयोग किया, जो रोशनी की तरंग दैर्ध्य की तुलना में कई गुना कम आवृत्ति के साथ होता है, और इसलिए माइक्रोस्कोप के रिज़ॉल्यूशन, या पासबैंड से छोटा होता है, यह एक समान लेकिन पारदर्शी झंझरी के रूप में एक स्थानीय दोलित्र के विरुद्ध है। सुपर-रिज़ॉल्यूशन माइक्रोस्कोपी का रूप, यह काम परिवार और जीवन विज्ञान में विशेष उपयोग के सूक्ष्मदर्शी की पीढ़ी को जारी रखता है, जिसे संरचित रोशनी माइक्रोस्कोपी के रूप में जाना जाता है, पोलरॉइड कॉर्प ने 1997 में गुएरा के आविष्कार का पेटेंट कराया था।[5]
पारंपरिक आकाशवाणी आवृति (आरएफ) हेटेरोडाइन संसूचक के विपरीत
ऑप्टिकल बैंड संसूचक के व्यावहारिक पहलुओं को रेडियो आवृति (आरएफ) बैंड हेटेरोडाइन संसूचक के विपरीत करना शिक्षाप्रद है।
ऊर्जा बनाम विद्युत क्षेत्र पहचान
आरएफ बैंड संसूचक के विपरीत, ऑप्टिकल आवृति इलेक्ट्रॉनिक रूप से विद्युत क्षेत्र को सीधे मापने और संसाधित करने के लिए बहुत तेज़ी से दोलन करती है। इसके अतिरिक्त ऑप्टिकल फोटॉन (सामान्यतः) फोटॉन की ऊर्जा को अवशोषित करके पता लगाया जाता है, इस प्रकार केवल परिमाण प्रकट होता है, न कि विद्युत क्षेत्र चरण का पालन करके पता लगाया जा सकता है। इसलिए हेटेरोडाइन मिश्रण का प्राथमिक उद्देश्य सिग्नल को ऑप्टिकल बैंड से इलेक्ट्रॉनिक रूप से ट्रैक्टेबल आवृति रेंज में शिफ्ट करना है।
आरएफ बैंड पहचान में, सामान्यतः, विद्युत चुम्बकीय क्षेत्र एंटीना (रेडियो) में इलेक्ट्रॉनों की दोलनशील गति को संचालित करता है; कैप्चर किए गए विद्युत चुम्बकीय क्षेत्र बाद में किसी भी सुविधाजनक गैर-रैखिक परिपथ तत्व द्वारा द्विघात शब्द (सामान्यतः दिष्टकारी) के साथ स्थानीय दोलित्र (एलओ) के साथ इलेक्ट्रॉनिक रूप से मिश्रित होता है। ऑप्टिकल संसूचक में, वांछित गैर-रैखिकता फोटॉन अवशोषण प्रक्रिया में ही निहित है। परंपरागत प्रकाश संसूचक-तथाकथित वर्ग-लॉ संसूचक-मुक्त बाध्य इलेक्ट्रॉनों के लिए फोटॉन ऊर्जा का जवाब देते हैं, और चूंकि ऊर्जा प्रवाह विद्युत क्षेत्र के वर्ग के रूप में होता है, इसलिए इलेक्ट्रॉनों को मुक्त करने की दर भी होती है। अंतर आवृत्ति केवल संसूचक आउटपुट करंट में दिखाई देती है जब एलओ और सिग्नल दोनों ही समय में संसूचक को रोशन करते हैं, जिससे उनके संयुक्त क्षेत्रों के वर्ग में क्रॉस टर्म या अंतर आवृत्ति होती है जो औसत दर को संशोधित करती है जिस पर मुक्त इलेक्ट्रॉन उत्पन्न होते हैं।
सुसंगत पहचान के लिए वाइडबैंड स्थानीय ऑसिलेटर्स
इसके विपरीत का अन्य बिंदु सिग्नल और स्थानीय ऑसिलेटर की अपेक्षित बैंडविड्थ है। सामान्यतः, आरएफ स्थानीय दोलक शुद्ध आवृत्ति है; व्यावहारिक रूप से, शुद्धता का अर्थ है कि स्थानीय ऑसिलेटर की आवृत्ति बैंडविड्थ अंतर आवृत्ति से बहुत कम है। ऑप्टिकल संकेतों के साथ, यहां तक कि लेजर के साथ, तात्कालिक बैंडविड्थ या लंबी अवधि की अस्थायी स्थिरता के लिए पर्याप्त रूप से शुद्ध संदर्भ आवृत्ति का उत्पादन करना आसान नहीं है जो विशिष्ट मेगाहर्ट्ज़ या किलोहर्ट्ज़ स्केल अंतर आवृत्ति से कम है। इस कारण से, एलओ और सिग्नल उत्पन्न करने के लिए अक्सर ही स्रोत का उपयोग किया जाता है जिससे केंद्र आवृत्ति के अस्थिर होने पर भी उनकी अंतर आवृत्ति को स्थिर रखा जा सके।
परिणामस्वरुप, दो शुद्ध स्वरों के योग को वर्ग करने का गणित, सामान्यतः आरएफ हेटेरोडाइन पहचान की व्याख्या करने के लिए प्रायुक्त किया जाता है, ऑप्टिकल हेटेरोडाइन पहचान का अतिसरलीकृत मॉडल है। फिर भी, सहज ज्ञान युक्त शुद्ध-आवृत्ति हेटेरोडाइन अवधारणा अभी भी वाईडबैंड मामले के लिए पूरी तरह से प्रायुक्त होती है, बशर्ते कि संकेत और एलओ पारस्परिक रूप से सुसंगत हों। महत्वपूर्ण रूप से, सुसंगत ब्रॉडबैंड स्रोतों से संकीर्ण-बैंड हस्तक्षेप प्राप्त किया जा सकता है: यह सफेद प्रकाश स्कैनर और ऑप्टिकल सुसंगतता टोमोग्राफी का आधार है। पारस्परिक सामंजस्य न्यूटन के छल्लों में इंद्रधनुष और अलौकिक इंद्रधनुषों की अनुमति देता है।
परिणामस्वरुप, ऑप्टिकल हेटेरोडाइन का पता लगाना सामान्यतः इंटरफेरोमेट्री के रूप में किया जाता है जहां एलओ और सिग्नल सामान्य उत्पत्ति साझा करते हैं, अतिरिक्त रेडियो में, रिमोट रिसीवर को भेजने वाला ट्रांसमीटर। रिमोट रिसीवर ज्यामिति असामान्य है क्योंकि स्थानीय दोलित्र संकेत उत्पन्न करना जो स्वतंत्र मूल के संकेत के साथ सुसंगत है, ऑप्टिकल आवृत्तियों पर तकनीकी रूप से कठिन है। चूंकि, सिग्नल और एलओओ को अलग-अलग लेज़रों से उत्पन्न करने की अनुमति देने के लिए पर्याप्त रूप से संकीर्ण लाइनविड्थ के लेजर उपस्थित हैं।[6]
फोटॉन गिनती
ऑप्टिकल हेटरोडाइन के स्थापित तकनीक बनने के बाद, ऐसे कम सिग्नल प्रकाश स्तरों पर संचालन के लिए वैचारिक आधार पर विचार किया गया था कि केवल कुछ, या यहां तक कि कुछ अंश, फोटॉन विशिष्ट समय अंतराल में रिसीवर में प्रवेश करते हैं।[7] यह निष्कर्ष निकाला गया कि जब अलग-अलग (यादृच्छिक) समय पर संसूचक द्वारा अलग-अलग ऊर्जा के फोटॉन को गणनीय दर पर अवशोषित किया जाता है, तब भी संसूचक अंतर आवृत्ति उत्पन्न कर सकता है। इसलिए ऐसा प्रतीत होता है कि प्रकाश में तरंग जैसे गुण होते हैं, न केवल यह अंतरिक्ष के माध्यम से फैलता है, बल्कि जब यह पदार्थ के साथ संपर्क करता है।[8] फोटॉन काउंटिंग के साथ प्रगति ऐसी थी कि 2008 तक यह प्रस्तावित किया गया था कि बड़ी सिग्नल स्ट्रेंथ उपलब्ध होने के बावजूद, फोटॉन काउंटिंग द्वारा बीट सिग्नल का पता लगाने की अनुमति देने के लिए स्थानीय ऑसिलेटर पावर को कम करना फायदेमंद हो सकता है। इसे उपलब्ध और तेजी से विकसित होने वाले बड़े-प्रारूप वाले बहु-पिक्सेल काउंटिंग फोटोडेटेक्टरों के साथ इमेजिंग का मुख्य लाभ समझा गया।[9]
फोटॉन काउंटिंग को आवृत्ति मॉड्यूलेशन | आवृत्ति-मॉड्यूलेटेड निरंतर तरंग (FMCW) लेजर के साथ प्रायुक्त किया गया था। फोटॉन काउंटिंग से डेटा के विश्लेषण के सांख्यिकीय प्रदर्शन को अनुकूलित करने के लिए संख्यात्मक विश्लेषण विकसित किए गए थे।[10][11][12]
मुख्य लाभ
पता लगाने में लाभ
डाउन-मिश्रित अंतर आवृत्ति का आयाम मूल संकेत के आयाम से ही बड़ा हो सकता है। अंतर आवृत्ति संकेत एलओ और सिग्नल विद्युत क्षेत्रों के एम्पलीट्यूड के उत्पाद के समानुपाती होता है। इस प्रकार एलओ आयाम जितना बड़ा होगा, अंतर-आवृत्ति आयाम उतना ही बड़ा होगा। इसलिए फोटॉन रूपांतरण प्रक्रिया में ही लाभ होता है।
पहले दो शब्द औसत (डीसी) ऊर्जा प्रवाह अवशोषित (या, समतुल्य, फोटॉन गिनती के मामले में औसत वर्तमान) के आनुपातिक हैं। तीसरा पद समय परिवर्तनशील है और योग और अंतर आवृत्तियों को बनाता है। ऑप्टिकल शासन में बाद के इलेक्ट्रॉनिक्स से गुजरने के लिए योग आवृत्ति बहुत अधिक होगी। कई अनुप्रयोगों में संकेत एलओ से कमजोर है, इस प्रकार यह देखा जा सकता है कि अंतर आवृत्ति में ऊर्जा प्रवाह के कारण लाभ होता है सिग्नल के डीसी ऊर्जा प्रवाह से स्वयं ही अधिक है .
ऑप्टिकल चरण का संरक्षण
अपने आप में, सिग्नल बीम का ऊर्जा प्रवाह, , डीसी है और इस प्रकार इसकी ऑप्टिकल आवृत्ति से जुड़े चरण को मिटा देता है; हेटेरोडाइन का पता लगाने से इस चरण का पता लगाया जा सकता है। यदि सिग्नल बीम का ऑप्टिकल चरण कोण फाई द्वारा स्थानांतरित होता है, तो इलेक्ट्रॉनिक अंतर आवृत्ति का चरण बिल्कुल उसी कोण फाई द्वारा स्थानांतरित होता है। अधिक ठीक से, ऑप्टिकल चरण बदलाव पर चर्चा करने के लिए सामान्य समय आधार संदर्भ होना आवश्यक है। सामान्यतः सिग्नल बीम उसी लेजर से प्राप्त होता है जो एलओ के रूप में होता है लेकिन आवृत्ति में कुछ न्यूनाधिक द्वारा स्थानांतरित किया जाता है। अन्य मामलों में, गतिमान वस्तु से प्रतिबिंब से आवृत्ति बदलाव उत्पन्न हो सकता है। जब तक मॉड्यूलेशन स्रोत एलओ और सिग्नल स्रोत के बीच निरंतर ऑफसेट चरण बनाए रखता है, रिटर्न सिग्नल के बाहरी संशोधन से उत्पन्न होने वाले समय के साथ कोई भी जोड़ा ऑप्टिकल चरण अंतर आवृत्ति के चरण में जोड़ा जाता है और इस प्रकार औसत दर्जे का होता है।
===इलेक्ट्रॉनिक आवृत्तियों के लिए ऑप्टिकल आवृत्तियों का मानचित्रण संवेदनशील माप === की अनुमति देता है जैसा कि ऊपर उल्लेख किया गया है, अंतर आवृत्ति लाइनविड्थ सिग्नल और एलओ सिग्नल के ऑप्टिकल लाइनविड्थ से बहुत कम हो सकता है, बशर्ते दोनों परस्पर सुसंगत हों। इस प्रकार ऑप्टिकल सिग्नल सेंटर-आवृति में छोटे बदलावों को मापा जा सकता है: उदाहरण के लिए, डॉपलर लेसर अवरक्त रेडार का सिस्टम 1 मीटर प्रति सेकंड से बेहतर रिज़ॉल्यूशन के साथ हवा के वेगों में भेदभाव कर सकता है, जो ऑप्टिकल आवृति में बिलियन डॉपलर शिफ्ट के हिस्से से कम है। इसी तरह छोटे सुसंगत चरण बदलावों को नाममात्र रूप से असंगत ब्रॉडबैंड प्रकाश के लिए भी मापा जा सकता है, जिससे ऑप्टिकल सुसंगतता टोमोग्राफी को छवि माइक्रोमीटर-आकार की विशेषताओं की अनुमति मिलती है। इस वजह से, इलेक्ट्रॉनिक फ़िल्टर प्रभावी ऑप्टिकल आवृति बैंडपास को परिभाषित कर सकता है जो प्रकाश पर चलने वाले किसी भी वास्तविक तरंग दैर्ध्य फ़िल्टर की तुलना में संकरा होता है, और इस तरह पृष्ठभूमि प्रकाश अस्वीकृति को सक्षम करता है और इसलिए कमजोर संकेतों का पता लगाता है।
शॉट शोर सीमा तक शोर में कमी
किसी भी छोटे सिग्नल प्रवर्धन के साथ, सिग्नल इंटरसेप्शन के प्रारंभिक बिंदु के जितना संभव हो उतना लाभ प्राप्त करना सबसे अधिक वांछनीय है: किसी भी सिग्नल प्रोसेसिंग से आगे बढ़ने से रोकनेवाला जॉनसन-निक्विस्ट शोर, या इलेक्ट्रिकल जैसे प्रभावों के योगात्मक योगदान को कम करता है। सक्रिय परिपथ में शोर। ऑप्टिकल हेटेरोडाइन संसूचक में, मिश्रण-लाभ सीधे प्रारंभिक फोटॉन अवशोषण घटना के भौतिकी में होता है, जिससे यह आदर्श बन जाता है। इसके अतिरिक्त, पहले सन्निकटन के लिए, डायोड गैर-रैखिकता द्वारा आरएफ पहचान के विपरीत, अवशोषण पूरी तरह से द्विघात है।
हेटेरोडाइन पहचान के गुणों में से यह है कि अंतर आवृत्ति सामान्यतः सिग्नल या एलओ सिग्नल उत्पन्न करने की प्रक्रिया के दौरान निकलने वाली संभावित शोर से आवृत्ति स्पेक्ट्रम को दूर कर देती है, इस प्रकार अंतर आवृत्ति के निकट वर्णक्रमीय क्षेत्र अपेक्षाकृत शांत हो सकता है। इसलिए, अंतर आवृत्ति के पास संकीर्ण इलेक्ट्रॉनिक फ़िल्टरिंग शेष, आम तौर पर ब्रॉडबैंड, शोर स्रोतों को हटाने में अत्यधिक प्रभावी होती है।
शोर का प्राथमिक शेष स्रोत नाममात्र स्थिर डीसी स्तर से फोटॉन शॉट शोर है, जो सामान्यतः स्थानीय दोलित्र (एलओ) का प्रभुत्व है। चूंकि शॉट शोर एलओ विद्युत क्षेत्र स्तर के आयाम के रूप में होता है, और हेटेरोडाइन लाभ भी उसी तरह से होता है, शॉट शोर का मिश्रित सिग्नल का अनुपात स्थिर होता है, चाहे कितना भी बड़ा एलओ हो।
इस प्रकार व्यवहार में कोई एलओ स्तर को बढ़ाता है, जब तक कि सिग्नल पर लाभ इसे अन्य सभी योज्य शोर स्रोतों से ऊपर नहीं उठाता, केवल शॉट शोर छोड़ देता है। इस सीमा में, सिग्नल-टू-शोर अनुपात केवल सिग्नल के शॉट शोर से प्रभावित होता है (यानी शक्तिशाली एलओ से कोई शोर योगदान नहीं होता है क्योंकि यह अनुपात से बाहर विभाजित होता है)। उस बिंदु पर शोर के संकेत में कोई बदलाव नहीं होता है क्योंकि लाभ और बढ़ जाता है। (बेशक, यह उच्च आदर्शीकृत विवरण है; वास्तविक संसूचकों में एलओ तीव्रता मामले पर व्यावहारिक सीमाएं और अशुद्ध एलओ अंतर आवृत्ति पर कुछ शोर ले सकता है)
प्रमुख समस्याएं और उनके समाधान
ऐरे का पता लगाना और इमेजिंग
प्रकाश की सरणी पहचान, यानी बड़ी संख्या में स्वतंत्र संसूचक पिक्सेल में प्रकाश का पता लगाना, डिजिटल कैमरा इमेज सेंसर में आम है। चूंकि, हेटेरोडाइन का पता लगाने में यह काफी मुश्किल हो जाता है, क्योंकि ब्याज का संकेत दोलन कर रहा है (जिसे परिपथ के अनुरूप वैकल्पिक धारा भी कहा जाता है), अक्सर लाखों चक्र प्रति सेकंड या उससे अधिक पर। छवि संवेदकों के लिए विशिष्ट फ्रेम दर पर, जो बहुत धीमी हैं, प्रत्येक पिक्सेल कई दोलन चक्रों पर प्राप्त कुल प्रकाश को एकीकृत करेगा, और इस समय-एकीकरण से रुचि के संकेत नष्ट हो जाएंगे। इस प्रकार हेटेरोडाइन सरणी में सामान्यतः प्रत्येक सेंसर पिक्सेल से विद्युत एम्पलीफायरों, फिल्टर और प्रसंस्करण प्रणालियों को अलग करने के लिए समानांतर सीधा कनेक्शन होना चाहिए। यह बड़े, सामान्य उद्देश्य, हेटेरोडाइन इमेजिंग सिस्टम को निषेधात्मक रूप से महंगा बनाता है। उदाहरण के लिए, केवल 1 मिलियन लीड को मेगापिक्सेल सुसंगत सरणी से जोड़ना कठिन चुनौती है।
इस समस्या को हल करने के लिए, सिंथेटिक ऐरे हेटेरोडाइन संसूचक (SAHD) विकसित किया गया था।[2]SAHD में, सिंगल रीडआउट लीड, सिंगल इलेक्ट्रिकल फिल्टर और सिंगल रिकॉर्डिंग सिस्टम के साथ सिंगल एलिमेंट संसूचक पर बड़े इमेजिंग एरेज़ को वर्चुअल पिक्सल्स में बहुसंकेतन किया जा सकता है।[13] इस दृष्टिकोण का समय डोमेन संयुग्मन फूरियर ट्रांसफॉर्म हेटेरोडाइन संसूचक है,[14] जिसका मल्टीप्लेक्स लाभ भी है और एकल तत्व संसूचक को इमेजिंग सरणी की तरह कार्य करने की अनुमति भी देता है। SAHD को इंद्रधनुष हेटेरोडाइन का पता लगाना के रूप में प्रायुक्त किया गया है[15][16] जिसमें एकल आवृत्ति एलओ के अतिरिक्त, इंद्रधनुष की तरह संसूचक तत्व की सतह पर कई संकीर्ण दूरी वाली आवृत्तियाँ फैली हुई हैं। भौतिक स्थिति जहां प्रत्येक फोटॉन पहुंचे, परिणामी अंतर आवृत्ति में एन्कोड किया गया है, तत्व संसूचक पर वर्चुअल 1 डी सरणी बना रहा है। यदि आवृति कंघी समान रूप से फैली हुई है, तो आसानी से, आउटपुट वेवफॉर्म का फूरियर रूपांतरण छवि ही है। 2D में ऐरे भी बनाए जा सकते हैं, और चूंकि एरेज़ वर्चुअल हैं, पिक्सेल की संख्या, उनके आकार और उनके व्यक्तिगत लाभ को गतिशील रूप से अनुकूलित किया जा सकता है। मल्टीप्लेक्स का नुकसान यह है कि सभी पिक्सेल से शॉट शोर गठबंधन होता है क्योंकि वे भौतिक रूप से अलग नहीं होते हैं।
धब्बेदार और विविधता का स्वागत
जैसा कि चर्चा की गई है, एलओ और सिग्नल अस्थायी रूप से सुसंगत प्रकाश होना चाहिए। उन्हें संसूचक के चेहरे पर स्थानिक रूप से सुसंगत होने की भी आवश्यकता है या वे विनाशकारी रूप से हस्तक्षेप करेंगे। कई उपयोग परिदृश्यों में संकेत वैकल्पिक रूप से खुरदरी सतहों से परिलक्षित होता है या वैकल्पिक रूप से अशांत मीडिया से होकर गुजरता है जो wavefront ्स की ओर जाता है जो स्थानिक रूप से असंगत हैं। लेज़र स्कैटरिंग में इसे धब्बेदार पैटर्न के रूप में जाना जाता है।[17] आरएफ संसूचक में ऐन्टेना तरंग दैर्ध्य की तुलना में शायद ही कभी बड़ा होता है, इसलिए सभी उत्साहित इलेक्ट्रॉन ऐन्टेना के अन्दर सुसंगत रूप से चलते हैं, जबकि प्रकाशिकी में संसूचक सामान्यतः तरंग दैर्ध्य की तुलना में बहुत बड़ा होता है और इस तरह विकृत चरण सामने को रोक सकता है, जिसके परिणामस्वरूप विनाशकारी हस्तक्षेप होता है। संसूचक के अन्दर चरण फोटो-जनित इलेक्ट्रॉन।
जबकि विनाशकारी हस्तक्षेप सिग्नल स्तर को नाटकीय रूप से कम कर देता है, स्थानिक रूप से असंगत मिश्रण का अभिव्यक्त आयाम शून्य तक नहीं पहुंचता है, बल्कि स्पेकल का औसत आयाम होता है।[17] चूंकि, चूँकि स्पेकल्स के सुसंगत योग का मानक विचलन माध्य स्पेकल इंटेंसिटी के बिल्कुल बराबर है, स्क्रैम्बल्ड फेज मोर्चों का ऑप्टिकल हेटेरोडाइन संसूचक कभी भी सिग्नल के आकार से कम त्रुटि बार के साथ पूर्ण प्रकाश स्तर को माप नहीं सकता है। एकता का यह ऊपरी बाउंड सिग्नल-टू-शोर अनुपात केवल पूर्ण परिमाण माप के लिए है: यह स्थिर धब्बेदार क्षेत्र में चरण, आवृत्ति या समय-भिन्न सापेक्ष-आयाम माप के लिए एकता से बेहतर सिग्नल-टू-शोर अनुपात हो सकता है।
आरएफ संसूचक में, डायवर्सिटी रिसेप्शन का उपयोग अक्सर कम संकेतों को कम करने के लिए किया जाता है जब प्राथमिक ऐन्टेना अनजाने में हस्तक्षेप शून्य बिंदु पर स्थित होता है: से अधिक ऐन्टेना होने से कोई भी ऐन्टेना में सबसे मजबूत सिग्नल के लिए अनुकूल रूप से स्विच कर सकता है या यहां तक कि असंगत रूप से सभी को जोड़ सकता है। एंटीना संकेत। बस एंटीना को सुसंगत रूप से जोड़ने से विनाशकारी हस्तक्षेप उत्पन्न हो सकता है जैसा कि ऑप्टिकल क्षेत्र में होता है।
ऑप्टिकल हेटेरोडाइन के लिए अनुरूप विविधता रिसेप्शन को फोटॉन-गिनती संसूचकों के सरणी के साथ प्रदर्शित किया गया है।[9] यादृच्छिक धब्बेदार क्षेत्र में कई तत्व संसूचकों के असंगत जोड़ के लिए, मानक विचलन के माध्य का अनुपात स्वतंत्र रूप से मापे गए धब्बों की संख्या के वर्गमूल के रूप में होगा। यह बेहतर सिग्नल-टू-शोर अनुपात हेटेरोडाइन संसूचक में पूर्ण आयाम माप को संभव बनाता है।
चूंकि, जैसा कि ऊपर उल्लेख किया गया है, आउटपुट सिग्नल की दोलन या यहां तक कि बहु-आवृत्ति प्रकृति के कारण भौतिक सरणियों को बड़े तत्व की संख्या में स्केल करना हेटेरोडाइन का पता लगाने के लिए चुनौतीपूर्ण है। इसके अतिरिक्त, एकल-तत्व ऑप्टिकल संसूचक भी सिंथेटिक सरणी हेटेरोडाइन संसूचक या फूरियर ट्रांसफॉर्म हेटेरोडाइन संसूचक के माध्यम से विविधता रिसीवर की तरह कार्य कर सकता है। आभासी सरणी के साथ या तो अनुकूल रूप से एलओ आवृत्तियों में से केवल का चयन कर सकते हैं, धीरे-धीरे चलने वाले उज्ज्वल धब्बे को ट्रैक कर सकते हैं, या उन सभी को इलेक्ट्रॉनिक्स द्वारा पोस्ट-प्रोसेसिंग में जोड़ सकते हैं।
सुसंगत लौकिक योग
प्राप्त करने के लिए एन स्वतंत्र दालों की समय श्रृंखला के परिमाण को असंगत रूप से जोड़ सकते हैं √N आयाम पर शोर के संकेत में सुधार, लेकिन चरण की जानकारी खोने की कीमत पर। इसके अतिरिक्त कई पल्स वेवफॉर्म के सुसंगत जोड़ (जटिल परिमाण और चरण को जोड़ना) N के कारक द्वारा शोर के संकेत में सुधार करेगा, न कि इसके वर्गमूल में, और चरण की जानकारी को संरक्षित करेगा। व्यावहारिक सीमा ठेठ लेजर से आसन्न दालों में मिनट आवृत्ति बहाव है जो किसी भी लंबी दूरी के रिटर्न सिग्नल में बड़े यादृच्छिक चरण बदलाव में अनुवाद करता है, और इस प्रकार स्थानिक रूप से तले हुए चरण पिक्सेल के मामले की तरह, सुसंगत रूप से जोड़े जाने पर विनाशकारी रूप से हस्तक्षेप करता है। चूंकि, उन्नत लेजर सिस्टम के साथ कई दालों का सुसंगत जोड़ संभव है जो अंतर आवृत्ति (मध्यवर्ती आवृत्ति) के नीचे आवृत्ति बहाव को कम करता है। इस तकनीक को मल्टी-पल्स सुसंगत डॉपलर लिडार में प्रदर्शित किया गया है।[18]
यह भी देखें
- इंद्रधनुष विधर्मी पहचान
- इंटरफेरोमेट्री
- हेटेरोडाइन
- सुपरहेट्रोडाइन
- होमोडाइन
- ऑप्टिकल कोहरेन्स टोमोग्राफी
संदर्भ
- ↑ "Optical detection techniques: homodyne versus heterodyne". Renishaw plc (UK). 2002. Archived from the original on 26 July 2017. Retrieved 15 February 2017.
- ↑ 2.0 2.1 2.2 Strauss, Charlie E. M. (1994). "Synthetic-array heterodyne detection: a single-element detector acts as an array". Optics Letters. 19 (20): 1609–11. Bibcode:1994OptL...19.1609S. doi:10.1364/OL.19.001609. PMID 19855597.
- ↑ Jacobs, Stephen (30 November 1962). ऑप्टिकल कम्युनिकेशंस में हेटेरोडाइन डिटेक्शन पर तकनीकी नोट (PDF) (Report). Syosset, New York: Technical Research Group, Inc. Archived from the original (PDF) on February 10, 2017. Retrieved 15 February 2017.
- ↑ Guerra, John M. (1995-06-26). "Super‐resolution through illumination by diffraction‐born evanescent waves". Applied Physics Letters (in English). 66 (26): 3555–3557. doi:10.1063/1.113814. ISSN 0003-6951.
- ↑ U.S. Pat. No. 5,666,197; "Apparatus and methods employing phase control and analysis of evanescent illumination for imaging and metrology of subwavelength lateral surface topography"; John M. Guerra, inventor; Assigned to Polaroid Corp.; Sept. 1997.
- ↑ Hinkley, E.; Freed, Charles (1969). "थ्रेसहोल्ड से ऊपर एक लेजर में क्वांटम चरण शोर द्वारा सीमित के रूप में लोरेंट्ज़ियन रेखा आकार का प्रत्यक्ष अवलोकन". Physical Review Letters. 23 (6): 277. Bibcode:1969PhRvL..23..277H. doi:10.1103/PhysRevLett.23.277.
- ↑ Winzer, Peter J.; Leeb, Walter R. (1998). "Coherent lidar at low signal powers: Basic considerations on optical heterodyning". Journal of Modern Optics. 45 (8): 1549–1555. Bibcode:1998JMOp...45.1549W. doi:10.1080/09500349808230651. ISSN 0950-0340.
- ↑ Feynman, Richard P.; Leighton, Robert B.; Sands, Matthew (2005) [1970]. The Feynman Lectures on Physics: The Definitive and Extended Edition. Vol. 2 (2nd ed.). Addison Wesley. p. 111. ISBN 978-0-8053-9045-2.
- ↑ 9.0 9.1 Jiang, Leaf A.; Luu, Jane X. (2008). "एक कमजोर स्थानीय दोलक के साथ हेटेरोडाइन का पता लगाना". Applied Optics. 47 (10): 1486–503. Bibcode:2008ApOpt..47.1486J. doi:10.1364/AO.47.001486. ISSN 0003-6935. PMID 18382577.
- ↑ Erkmen, Baris I.; Barber, Zeb W.; Dahl, Jason (2013). "फोटॉन-काउंटिंग डिटेक्टरों का उपयोग करते हुए फ़्रीक्वेंसी-मॉड्युलेटेड निरंतर-वेव लेज़र के लिए अधिकतम-संभावना का अनुमान". Applied Optics. 52 (10): 2008–18. Bibcode:2013ApOpt..52.2008E. doi:10.1364/AO.52.002008. ISSN 0003-6935. PMID 23545955.
- ↑ Erkmen, Baris; Dahl, Jason R.; Barber, Zeb W. (2013). "Performance Analysis for FMCW Ranging Using Photon-Counting Detectors". Cleo: 2013. pp. CTu1H.7. doi:10.1364/CLEO_SI.2013.CTu1H.7. ISBN 978-1-55752-972-5. S2CID 44697963.
- ↑ Liu, Lisheng; Zhang, Heyong; Guo, Jin; Zhao, Shuai; Wang, Tingfeng (2012). "फोटॉन काउंटर के साथ लेजर हेटेरोडाइन सिग्नल के विश्लेषण के लिए लागू फोटॉन समय-अंतराल आँकड़े". Optics Communications. 285 (18): 3820–3826. Bibcode:2012OptCo.285.3820L. doi:10.1016/j.optcom.2012.05.019. ISSN 0030-4018.
- ↑ Strauss, Charlie E. M. (1995). "Synthetic Array Heterodyne Detection: Developments within the Caliope CO2 DIAL Program". Optical Society of America, Proceedings of the 1995 Coherent Laser Radar Topical Meeting. 96: 13278. Bibcode:1995STIN...9613278R.
- ↑ Cooke, Bradly J.; Galbraith, Amy E.; Laubscher, Bryan E.; Strauss, Charlie E. M.; Olivas, Nicholas L.; Grubler, Andrew C. (1999). "Laser field imaging through Fourier transform heterodyne". In Kamerman, Gary W; Werner, Christian (eds.). लेजर रडार प्रौद्योगिकी और अनुप्रयोग IV. pp. 390–408. doi:10.1117/12.351361. ISSN 0277-786X. S2CID 58918536.
{{cite book}}
:|journal=
ignored (help) - ↑ Strauss, C.E.M. and Rehse, S.J. "Rainbow heterodyne detection" Lasers and Electro-Optics, 1996. CLEO Pub Date: 2–7 June 1996 (200) ISBN 1-55752-443-2 (See DOE archive)
- ↑ "Multi-Pixel Synthetic Array Heterodyne Detection Report", 1995, Strauss, C.E.M. and Rehse, S.J. [1]
- ↑ 17.0 17.1 Dainty C (Ed), Laser Speckle and Related Phenomena, 1984, Springer Verlag, ISBN 0-387-13169-8
- ↑ Gabriel Lombardi, Jerry Butman, Torrey Lyons, David Terry, and Garrett Piech, "Multiple-pulse coherent laser radar waveform"
बाहरी संबंध
- Rüdiger Paschotta (2011-04-29). "Optical Heterodyne Detection". Encyclopedia of Laser Physics and Technology. RP Photonics.
- US Patent 5689335 — Synthetic Array Heterodyne Detection invention
- LANL Report LA-UR-99-1055 (1999) — Field Imaging in लेसर अवरक्त रेडार via Fourier Transform Heterodyne
- Daher, Carlos; Torres, Jeremie; Iniguez-de-la-Torre, Ignacio; Nouvel, Philippe; Varani, Luca; Sangare, Paul; Ducournau, Guillaume; Gaquiere, Christophe; Mateos, Javier; Gonzalez, Tomas (2016). "Room Temperature Direct and Heterodyne Detection of 0.28–0.69-THz Waves Based on GaN 2-DEG Unipolar Nanochannels" (PDF). IEEE Transactions on Electron Devices. 63 (1): 353–359. Bibcode:2016ITED...63..353D. doi:10.1109/TED.2015.2503987. hdl:10366/130697. ISSN 0018-9383. S2CID 33231377.