द्विपद प्रकार: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 19: Line 19:
* पी<sub>''n''</sub>(0) = 0 n > 0 के लिए।
* पी<sub>''n''</sub>(0) = 0 n > 0 के लिए।


(यह कथन कि यह ऑपरेटर शिफ्ट-समतुल्य है, यह कहने के समान है कि बहुपद अनुक्रम शेफ़र अनुक्रम है; द्विपद प्रकार के अनुक्रमों का सेट शेफ़र अनुक्रमों के सेट के भीतर ठीक से सम्मिलित है।)
(यह कथन कि यह ऑपरेटर शिफ्ट-समतुल्य है, यह कहने के समान है कि बहुपद अनुक्रम एक शेफ़र अनुक्रम है; द्विपद प्रकार के अनुक्रमों का सेट शेफ़र अनुक्रमों के सेट के भीतर ठीक से सम्मिलित है।)


=== [[डेल्टा ऑपरेटर]] ===
=== [[डेल्टा ऑपरेटर]] ===
वह रैखिक परिवर्तन स्पष्ट रूप से डेल्टा ऑपरेटर है, अर्थात, x में बहुपदों के स्थान पर शिफ्ट-समतुल्य रैखिक परिवर्तन जो बहुपदों की डिग्री को 1 से कम कर देता है। डेल्टा ऑपरेटरों के सबसे स्पष्ट उदाहरण [[अंतर ऑपरेटर]] और भेदभाव हैं। यह दिखाया जा सकता है कि प्रत्येक डेल्टा ऑपरेटर को प्रपत्र की शक्ति श्रृंखला के रूप में लिखा जा सकता है
वह रैखिक परिवर्तन स्पष्ट रूप से एक डेल्टा ऑपरेटर है, अर्थात, x में बहुपदों के स्थान पर एक शिफ्ट-समतुल्य रैखिक परिवर्तन जो बहुपदों की डिग्री को 1 से कम कर देता है। डेल्टा ऑपरेटरों के सबसे स्पष्ट उदाहरण [[अंतर ऑपरेटर]] और भेदभाव हैं। यह दिखाया जा सकता है कि प्रत्येक डेल्टा ऑपरेटर को प्रपत्र की शक्ति श्रृंखला के रूप में लिखा जा सकता है
:<math>Q=\sum_{n=1}^\infty c_n D^n</math>
:<math>Q=\sum_{n=1}^\infty c_n D^n</math>
जहाँ D अवकलन है (ध्यान दें कि योग की निचली सीमा 1 है)। प्रत्येक डेल्टा ऑपरेटर Q में मूल बहुपदों का अनूठा क्रम होता है, अर्थात, बहुपद अनुक्रम संतोषजनक होता है
जहाँ D अवकलन है (ध्यान दें कि योग की निचली सीमा 1 है)। प्रत्येक डेल्टा ऑपरेटर Q में मूल बहुपदों का एक अनूठा क्रम होता है, अर्थात, एक बहुपद अनुक्रम संतोषजनक होता है
#<math>p_0(x)=1,</math>
#<math>p_0(x)=1,</math>
#<math>p_n(0)=0\quad{\rm for\ }n\geq 1,{\rm\ and}</math>
#<math>p_n(0)=0\quad{\rm for\ }n\geq 1,{\rm\ and}</math>
#<math>Qp_n(x)=np_{n-1}(x). </math>
#<math>Qp_n(x)=np_{n-1}(x). </math>
यह 1973 में [[जियान-कार्लो रोटा]], काहनेर और [[एंड्रयू ओडलिज़्को]] द्वारा दिखाया गया था कि बहुपद अनुक्रम द्विपद प्रकार का है यदि और केवल यदि यह कुछ डेल्टा ऑपरेटर के मूल बहुपदों का अनुक्रम है। इसलिए, यह पैराग्राफ द्विपद प्रकार के बहुपद अनुक्रमों को उत्पन्न करने के लिए नुस्खा के रूप में हो सकता है, जैसा कोई भी हो सकता है।
यह 1973 में [[जियान-कार्लो रोटा]], काहनेर और [[एंड्रयू ओडलिज़्को]] द्वारा दिखाया गया था कि एक बहुपद अनुक्रम द्विपद प्रकार का होता है और केवल यदि यह कुछ डेल्टा ऑपरेटर के मूल बहुपदों का अनुक्रम है। इसलिए, यह पैराग्राफ द्विपद प्रकार के बहुपद अनुक्रमों को उत्पन्न करने के लिए एक नुस्खा के रूप में हो सकता है, जैसा कोई भी हो सकता है।


== बेल बहुपद द्वारा लक्षण वर्णन ==
== बेल बहुपद द्वारा लक्षण वर्णन ==
Line 41: Line 41:
प्रमेय: द्विपद प्रकार के सभी बहुपद क्रम इसी रूप के होते हैं।
प्रमेय: द्विपद प्रकार के सभी बहुपद क्रम इसी रूप के होते हैं।


मुलिन और रोटा में परिणाम, रोटा, काहनेर, और ओड्लीज़्को में दोहराया गया (नीचे ''संदर्भ'' देखें) बताता है कि हर बहुपद अनुक्रम { ''p''<sub>''n''</sub>(एक्स) }<sub>''n''</sub> द्विपद प्रकार का अनुक्रम { p द्वारा निर्धारित किया जाता है<sub>''n''</sub>′(0) }<sub>''n''</sub>, किन्तु उन स्रोतों में बेल बहुपदों का उल्लेख नहीं है।
मुलिन और रोटा में एक परिणाम, रोटा, काहनेर, और ओड्लीज़्को में दोहराया गया (नीचे ''संदर्भ'' देखें) बताता है कि द्विपद प्रकार का प्रत्येक बहुपद अनुक्रम {pn(x)}n अनुक्रम {pn′(0)}n ​​द्वारा निर्धारित किया जाता है, किन्तु उन स्रोतों में बेल बहुपदों का उल्लेख नहीं है।


अदिशों का यह क्रम डेल्टा संकारक से भी संबंधित है। होने देना
अदिशों का यह क्रम डेल्टा संकारक से भी संबंधित होने देता है।  


:<math>P(t)=\sum_{n=1}^\infty {a_n \over n!} t^n.</math>
:<math>P(t)=\sum_{n=1}^\infty {a_n \over n!} t^n.</math>

Revision as of 21:53, 16 March 2023

गणित में, [[बहुपद अनुक्रम]], अर्थात, गैर-ऋणात्मक पूर्णांकों द्वारा अनुक्रमित बहुपदों का क्रम जिसमें प्रत्येक बहुपद का सूचकांक बहुपद की अपनी डिग्री के बराबर होता है, इसे द्विपद प्रकार कहा जाता है यदि यह पहचान के अनुक्रम को संतुष्ट करता है

ऐसे कई क्रम में उपस्तिथ होते हैं। इस तरह के सभी अनुक्रमों का सेट, उम्ब्रल रचना के संचालन के अनुसार एक झूठ समूह बनाता है, जिसे नीचे समझाया गया है। बेल बहुपद के संदर्भ में द्विपद प्रकार के प्रत्येक क्रम को व्यक्त किया जा सकता है। द्विपद प्रकार का प्रत्येक क्रम शेफ़र अनुक्रम होते है (किन्तु अधिकांश शेफ़र अनुक्रम द्विपद प्रकार के नहीं हैं)। बहुपद अनुक्रमों ने अम्ब्रल कैलकुलस की अस्पष्ट 19वीं शताब्दी की धारणाओं को मजबूती से स्थापित किया गया है।

उदाहरण

  • इस परिभाषा के फलस्वरूप द्विपद प्रमेय को अनुक्रम कहकर किया जा सकता है द्विपद प्रकार का है।
  • कम भाज्य के अनुक्रम को किसके द्वारा परिभाषित किया गया है
    (विशेष कार्यों के सिद्धांत में, यही अंकन ऊपरी क्रमगुणों को दर्शाता है, किन्तु यह वर्तमान उपयोग साहचर्य के बीच सार्वभौमिक है।) उत्पाद को 1 समझा जाता है यदि n = 0, क्योंकि यह उस स्थितियोंमें खाली उत्पाद है। यह बहुपद अनुक्रम द्विपद प्रकार का है।
  • इसी तरह ऊपरी भाज्य
    द्विपद प्रकार का बहुपद अनुक्रम हैं।
  • हाबिल बहुपद
    द्विपद प्रकार का बहुपद अनुक्रम हैं।
  • टौचर्ड बहुपद
  • कहाँ आकार के सेट के विभाजन की संख्या है में विसंधित गैर-रिक्त उपसमुच्चय को अलग करना, द्विपद प्रकार का बहुपद अनुक्रम है। एरिक टेम्पल बेल ने इन्हें घातीय बहुपद कहा और यह शब्द कभी-कभी साहित्य में भी देखा जाता है। गुणांक दूसरी तरह की स्टर्लिंग संख्याएँ हैं। इस अनुक्रम का प्वासों वितरण के साथ जिज्ञासु संबंध है: यदि अपेक्षित मान के साथ प्वासों बंटन वाला यादृच्छिक चर है तब . विशेष रूप से, कब , हम देखते हैं कि अपेक्षित मान के साथ प्वासों बंटन का वां क्षण आकार के सेट के विभाजन की संख्या है , इसको कॉल किया गया वें बेल नंबर। इस तथ्य के बारे में उस विशेष प्वासों बंटन का वां क्षण है बेल संख्या|डोबिंस्की का सूत्र।

डेल्टा ऑपरेटरों द्वारा लक्षण वर्णन

यह दिखाया जा सकता है कि बहुपद अनुक्रम {pn(x) : n = 0, 1, 2, … } द्विपद प्रकार का है यदि और केवल यदि निम्नलिखित तीनों शर्तें लागू होती हैं:

  • एक्स में बहुपदों के स्थान पर रैखिक परिवर्तन जिसकी विशेषता है
    शिफ्ट-समतुल्य है, और
  • पी0(एक्स) = 1 सभी एक्स के लिए, और
  • पीn(0) = 0 n > 0 के लिए।

(यह कथन कि यह ऑपरेटर शिफ्ट-समतुल्य है, यह कहने के समान है कि बहुपद अनुक्रम एक शेफ़र अनुक्रम है; द्विपद प्रकार के अनुक्रमों का सेट शेफ़र अनुक्रमों के सेट के भीतर ठीक से सम्मिलित है।)

डेल्टा ऑपरेटर

वह रैखिक परिवर्तन स्पष्ट रूप से एक डेल्टा ऑपरेटर है, अर्थात, x में बहुपदों के स्थान पर एक शिफ्ट-समतुल्य रैखिक परिवर्तन जो बहुपदों की डिग्री को 1 से कम कर देता है। डेल्टा ऑपरेटरों के सबसे स्पष्ट उदाहरण अंतर ऑपरेटर और भेदभाव हैं। यह दिखाया जा सकता है कि प्रत्येक डेल्टा ऑपरेटर को प्रपत्र की शक्ति श्रृंखला के रूप में लिखा जा सकता है

जहाँ D अवकलन है (ध्यान दें कि योग की निचली सीमा 1 है)। प्रत्येक डेल्टा ऑपरेटर Q में मूल बहुपदों का एक अनूठा क्रम होता है, अर्थात, एक बहुपद अनुक्रम संतोषजनक होता है

यह 1973 में जियान-कार्लो रोटा, काहनेर और एंड्रयू ओडलिज़्को द्वारा दिखाया गया था कि एक बहुपद अनुक्रम द्विपद प्रकार का होता है और केवल यदि यह कुछ डेल्टा ऑपरेटर के मूल बहुपदों का अनुक्रम है। इसलिए, यह पैराग्राफ द्विपद प्रकार के बहुपद अनुक्रमों को उत्पन्न करने के लिए एक नुस्खा के रूप में हो सकता है, जैसा कोई भी हो सकता है।

बेल बहुपद द्वारा लक्षण वर्णन

किसी भी क्रम के लिए ए1, ए2, ए3, … स्केलर्स की, चलो

जहां बीn,k(ए1, …, एnk+1) बेल बहुपद है। तब यह बहुपद क्रम द्विपद प्रकार का होता है। ध्यान दें कि प्रत्येक n ≥ 1 के लिए,

यहाँ इस खंड का मुख्य परिणाम है:

प्रमेय: द्विपद प्रकार के सभी बहुपद क्रम इसी रूप के होते हैं।

मुलिन और रोटा में एक परिणाम, रोटा, काहनेर, और ओड्लीज़्को में दोहराया गया (नीचे संदर्भ देखें) बताता है कि द्विपद प्रकार का प्रत्येक बहुपद अनुक्रम {pn(x)}n अनुक्रम {pn′(0)}n ​​द्वारा निर्धारित किया जाता है, किन्तु उन स्रोतों में बेल बहुपदों का उल्लेख नहीं है।

अदिशों का यह क्रम डेल्टा संकारक से भी संबंधित होने देता है।

तब

इस क्रम का डेल्टा संचालिका है।

कनवल्शन आइडेंटिटी द्वारा लक्षण वर्णन

अनुक्रमों के लिए एn, बीn, n = 0, 1, 2, ..., द्वारा प्रकार का कनवल्शन परिभाषित करें

होने देना अनुक्रम का nवाँ पद हो

फिर किसी भी क्रम के लिए ai, i = 0, 1, 2, ..., a के साथ0 = 0, पी द्वारा परिभाषित अनुक्रम0(एक्स) = 1 और

n ≥ 1 के लिए, द्विपद प्रकार का है, और द्विपद प्रकार का प्रत्येक क्रम इस रूप का है।

कार्यों को उत्पन्न करके लक्षण वर्णन

द्विपद प्रकार के बहुपद क्रम ठीक वे हैं जिनके उत्पन्न करने वाले कार्य फॉर्म की औपचारिक (आवश्यक नहीं कि अभिसरण) शक्ति श्रृंखला हैं

जहाँ f(t) औपचारिक शक्ति श्रृंखला है जिसका स्थिरांक शून्य है और जिसका प्रथम-डिग्री पद शून्य नहीं है। यह Faà di Bruno के सूत्र के शक्ति-श्रृंखला संस्करण के उपयोग द्वारा दिखाया जा सकता है कि

अनुक्रम का डेल्टा ऑपरेटर f है−1(डी), जिससे कि

इन जनरेटिंग फ़ंक्शंस के बारे में सोचने का विधि

दो औपचारिक शक्ति श्रृंखला के उत्पाद में गुणांक

और

हैं

(कॉची उत्पाद भी देखें)। यदि हम x को ऐसी शक्ति श्रृंखला के परिवार को अनुक्रमणित करने वाले पैरामीटर के रूप में सोचते हैं, तो द्विपद पहचान प्रभावी रूप से कहती है कि x + y द्वारा अनुक्रमित शक्ति श्रृंखला x और y द्वारा अनुक्रमित का उत्पाद है। इस प्रकार x फ़ंक्शन का तर्क है जो उत्पादों के योग को मैप करता है: घातीय फ़ंक्शन

जहाँ f(t) का रूप ऊपर दिया गया है।

बहुपद अनुक्रमों की उभयचर रचना

द्विपद प्रकार के सभी बहुपद अनुक्रमों का समुच्चय समूह (गणित) है जिसमें समूह संक्रिया बहुपद अनुक्रमों की अम्ब्रल रचना है। उस ऑपरेशन को इस प्रकार परिभाषित किया गया है। मान लीजिए { पृn(एक्स): एन = 0, 1, 2, 3, ...} और {क्यूn(x): n = 0, 1, 2, 3, ...} बहुपद अनुक्रम हैं, और

तब उम्ब्रल रचना poq बहुपद अनुक्रम है जिसका nवाँ पद है

(सबस्क्रिप्ट n p में प्रकट होता हैn, चूंकि यह उस क्रम का n पद है, किन्तु q में नहीं, क्योंकि यह अनुक्रम को इसके किसी पद के बजाय संपूर्ण रूप में संदर्भित करता है)।

उपरोक्त के रूप में डी में शक्ति श्रृंखला द्वारा परिभाषित डेल्टा ऑपरेटर के साथ, डेल्टा ऑपरेटरों और द्विपद प्रकार के बहुपद अनुक्रमों के बीच प्राकृतिक आपत्ति, जिसे ऊपर भी परिभाषित किया गया है, समूह समरूपता है, जिसमें शक्ति श्रृंखला पर समूह संचालन औपचारिक शक्ति की औपचारिक संरचना है शृंखला।

संचयी और क्षण

अनुक्रम κn द्विपद प्रकार के बहुपद अनुक्रम में प्रथम-डिग्री पदों के गुणांकों की संख्या को बहुपद अनुक्रम के संचयी कहा जा सकता है। यह दिखाया जा सकता है कि द्विपद प्रकार का संपूर्ण बहुपद अनुक्रम इसके संचयकों द्वारा निर्धारित किया जाता है, तरह से संचयी शीर्षक वाले लेख में चर्चा की गई है। इस प्रकार

nवां संचयी

और

वां क्षण।

ये औपचारिक संचयी और औपचारिक क्षण (गणित) हैं, जैसा कि संभाव्यता वितरण के संचयकों और संभाव्यता वितरण के क्षणों के विपरीत है।

होने देना

(औपचारिक) संचयी-उत्पन्न करने वाला कार्य हो। तब

बहुपद अनुक्रम से जुड़ा डेल्टा ऑपरेटर है, अर्थात हमारे पास है

अनुप्रयोग

द्विपद प्रकार की अवधारणा में संयोजी, संभाव्यता, सांख्यिकी और कई अन्य क्षेत्रों में अनुप्रयोग हैं।

यह भी देखें

संदर्भ

  • G.-C. Rota, D. Kahaner, and A. Odlyzko, "Finite Operator Calculus," Journal of Mathematical Analysis and its Applications, vol. 42, no. 3, June 1973. Reprinted in the book with the same title, Academic Press, New York, 1975.
  • R. Mullin and G.-C. Rota, "On the Foundations of Combinatorial Theory III: Theory of Binomial Enumeration," in Graph Theory and Its Applications, edited by Bernard Harris, Academic Press, New York, 1970.

As the title suggests, the second of the above is explicitly about applications to combinatorial enumeration.

  • di Bucchianico, Alessandro. Probabilistic and Analytical Aspects of the Umbral Calculus, Amsterdam, CWI, 1997.
  • Weisstein, Eric W. "Binomial-Type Sequence". MathWorld.