वियना सुधारक: Difference between revisions
No edit summary |
|||
Line 2: | Line 2: | ||
[[Image:Vienna rectifier schematic.jpg|thumb|अंजीर। 1: वियना शुद्ध करनेवाला के योजनाबद्ध।]]वियना रेक्टिफायर [[पल्स चौड़ाई उतार - चढ़ाव|पल्स मॉडुलन रेक्टीफायर]] है, जिसका आविष्कार 1993 में जोहान डब्ल्यू कोलार ने किया था।<ref name=":0">J. W. Kolar, „Dreiphasen-Dreipunkt-Pulsgleichrichter“, filed Dec. 23, 1993, File No.: AT2612/93, European Patent Appl.: EP 94 120 245.9-1242 entitled “Vorrichtung und Verfahren zur Umformung von Drehstrom in Gleichstrom”.</ref> | [[Image:Vienna rectifier schematic.jpg|thumb|अंजीर। 1: वियना शुद्ध करनेवाला के योजनाबद्ध।]]वियना रेक्टिफायर [[पल्स चौड़ाई उतार - चढ़ाव|पल्स मॉडुलन रेक्टीफायर]] है, जिसका आविष्कार 1993 में जोहान डब्ल्यू कोलार ने किया था।<ref name=":0">J. W. Kolar, „Dreiphasen-Dreipunkt-Pulsgleichrichter“, filed Dec. 23, 1993, File No.: AT2612/93, European Patent Appl.: EP 94 120 245.9-1242 entitled “Vorrichtung und Verfahren zur Umformung von Drehstrom in Gleichstrom”.</ref> | ||
''' | '''जिसका आविष्कार 1993 में जोहान डब्ल्यू कोलार ने किया था।<ref name=":0" />''' | ||
Line 37: | Line 37: | ||
=== डीसी-साइड पर तटस्थ बिंदु का वर्तमान नियंत्रण और संतुलन === | === डीसी-साइड पर तटस्थ बिंदु का वर्तमान नियंत्रण और संतुलन === | ||
जैसा कि चित्र 3 में दिखाया गया है, नोड में द्विदिश स्विच डालकर डायोड ब्रिज की प्रत्येक शाखा में इनपुट वर्तमान आकार को अलग से नियंत्रित करना संभव है। स्विच Ta प्रारंभ करनेवाला के चुंबकीयकरण को नियंत्रित करके वर्तमान को नियंत्रित करता है। प्रारंभ करनेवाला पर स्विच किया जाता है जो द्विदिश स्विच के माध्यम से करंट को चलाता है। स्विच को निष्क्रिय करने से करंट स्विच को बायपास करने का कारण बनता है और फ़्रीव्हीलिंग डायोड Da+ और Da- के माध्यम से प्रवाहित होता है। इसका परिणाम प्रारंभ करनेवाला में नकारात्मक वोल्टेज होता है और इसे हटा देता है। यह मुख्य वोल्टेज (पावर-फैक्टर सुधार क्षमता) के साथ चरण में वर्तमान को नियंत्रित करने के लिए टोपोलॉजी की क्षमता को प्रदर्शित करता है। | जैसा कि चित्र 3 में दिखाया गया है, नोड में द्विदिश स्विच डालकर डायोड ब्रिज की प्रत्येक शाखा में इनपुट वर्तमान आकार को अलग से नियंत्रित करना संभव है। स्विच Ta प्रारंभ करनेवाला के चुंबकीयकरण को नियंत्रित करके वर्तमान को नियंत्रित करता है। प्रारंभ करनेवाला पर स्विच किया जाता है जो द्विदिश स्विच के माध्यम से करंट को चलाता है। स्विच को निष्क्रिय करने से करंट स्विच को बायपास करने का कारण बनता है और फ़्रीव्हीलिंग डायोड Da+ और Da- के माध्यम से प्रवाहित होता है। इसका परिणाम प्रारंभ करनेवाला में नकारात्मक वोल्टेज होता है और इसे हटा देता है। यह मुख्य वोल्टेज (पावर-फैक्टर सुधार क्षमता) के साथ चरण में वर्तमान को नियंत्रित करने के लिए टोपोलॉजी की क्षमता को प्रदर्शित करता है। | ||
Revision as of 10:11, 15 March 2023
वियना रेक्टिफायर पल्स मॉडुलन रेक्टीफायर है, जिसका आविष्कार 1993 में जोहान डब्ल्यू कोलार ने किया था।[1]
जिसका आविष्कार 1993 में जोहान डब्ल्यू कोलार ने किया था।[1]
विशेषताएं
वियना शुद्ध करनेवाला निम्नलिखित विशेषताएं प्रदान करता है:
- नियंत्रित आउटपुट वोल्टेज के साथ तीन-चरण तीन-स्तर तीन-स्विच पीडब्लूएम सही करनेवाला[2]
- तीन-तार इनपुट, तटस्थ से कोई संबंध नहीं।
- ओम का नियम मुख्य व्यवहार
- बूस्ट प्रणाली (निरंतर इनपुट करंट)।
- यूनिडायरेक्शनल पावर फ्लो।[3]
- उच्च शक्ति घनत्व।
- कम आयोजित आम-मोड विद्युत-चुंबकीय हस्तक्षेप (ईएमआई) उत्सर्जन।
- तटस्थ बिंदु क्षमता को स्थिर करने के लिए सरल नियंत्रण।[4]
- कम जटिलता, कम अहसास प्रयास [3] कम स्विचिंग लॉस .[5]
- विश्वसनीय व्यवहार (ओमिक मेन व्यवहार की गारंटी) भारी असंतुलित मेन वोल्टेज के तहत और मेन विफलता के स्थितियों में।[6]
टोपोलॉजी
वियना रेक्टिफायर यूनिडायरेक्शनल थ्री-फेज थ्री-स्विच थ्री-लेवल पल्स-चौड़ाई मॉड्यूलेशन (पीडब्लूएम) रेक्टिफायर है। इसे एकीकृत बूस्ट कनवर्टर के साथ तीन-चरण डायोड ब्रिज के रूप में देखा जा सकता है।
अनुप्रयोग
विएना रेक्टीफायर उपयोगी होता है जहां साइनसॉइडल मेन करंट और नियंत्रित आउटपुट वोल्टेज प्राप्त करने के लिए छह-स्विच कन्वर्टर्स का उपयोग किया जाता है, जब मेन में लोड से कोई ऊर्जा प्रतिक्रिया उपलब्ध नहीं होती है। व्यवहार में, वियना रेक्टिफायर का उपयोग तब लाभदायक होता है जब अतिरिक्त हार्डवेयर लागत को सही ठहराने के लिए जगह पर्याप्त प्रीमियम पर हो। इसमे सम्मिलित है:
- दूरसंचार बिजली की आपूर्ति।
- निर्बाध विद्युत आपूर्ति।
- एसी-ड्राइव कन्वर्टर प्रणाली के इनपुट चरण।
चित्र 2 साइनसोइडल इनपुट करंट s और नियंत्रित आउटपुट वोल्टेज के साथ एयर-कूल्ड 10 किलोवाट-वियना रेक्टिफायर (400 किलोहर्ट्ज पीडब्लूएम) के ऊपर और नीचे के दृश्य दिखाता है। आयाम 250मिलीमीटर x 120मिलीमीटर x 40मिलीमीटर हैं, जिसके परिणामस्वरूप 8.5 किलोवाट/डीएम का पावर घनत्व होता है कन्वर्टर का कुल वजन 2.1 किलोग्राम है [7]
करंट और वोल्टेज वेवफॉर्म
चित्र 3 पावर-इलेक्ट्रॉनिक्स सर्किट सिम्युलेटर का उपयोग करके गणना की गई प्रणाली के व्यवहार को दर्शाता है।[8] आउटपुट वोल्टेज मध्य बिन्दु (0) और मुख्य मध्यबिंदु
(M) के बीच सामान्य मोड वोल्टेज u0M प्रकट होता है, जैसा कि तीन-चरण कनवर्टर प्रणाली में विशेषता है।
डीसी-साइड पर तटस्थ बिंदु का वर्तमान नियंत्रण और संतुलन
जैसा कि चित्र 3 में दिखाया गया है, नोड में द्विदिश स्विच डालकर डायोड ब्रिज की प्रत्येक शाखा में इनपुट वर्तमान आकार को अलग से नियंत्रित करना संभव है। स्विच Ta प्रारंभ करनेवाला के चुंबकीयकरण को नियंत्रित करके वर्तमान को नियंत्रित करता है। प्रारंभ करनेवाला पर स्विच किया जाता है जो द्विदिश स्विच के माध्यम से करंट को चलाता है। स्विच को निष्क्रिय करने से करंट स्विच को बायपास करने का कारण बनता है और फ़्रीव्हीलिंग डायोड Da+ और Da- के माध्यम से प्रवाहित होता है। इसका परिणाम प्रारंभ करनेवाला में नकारात्मक वोल्टेज होता है और इसे हटा देता है। यह मुख्य वोल्टेज (पावर-फैक्टर सुधार क्षमता) के साथ चरण में वर्तमान को नियंत्रित करने के लिए टोपोलॉजी की क्षमता को प्रदर्शित करता है।
साइनसोइडल पावर इनपुट उत्पन्न करने के लिए जो वोल्टेज के साथ चरण में है
पल्स-पीरियड में औसत वोल्टेज स्पेस वेक्टर को संतुष्ट होना चाहिए:
उच्च स्विचिंग आवृत्ति या कम चालकता के लिए हमें आवश्यकता होती है () .
इनपुट वोल्टेज के लिए आवश्यक उपलब्ध वोल्टेज स्पेस वैक्टर को स्विचिंग स्टेट्स द्वारा परिभाषित किया गया है और चरण धाराओं की दिशा। उदाहरण के लिए, के लिए , यानी फेज-रेंज के लिए अवधि के () इनपुट करंट स्पेस वेक्टर का चरण है ). अंजीर। 4 प्रणाली के स्विचिंग स्टेट्स को दिखाता है, और इससे हमें इनपुट स्पेस वैक्टर चित्र 5 में मिलते हैं। [9]
संदर्भ
- ↑ 1.0 1.1 J. W. Kolar, „Dreiphasen-Dreipunkt-Pulsgleichrichter“, filed Dec. 23, 1993, File No.: AT2612/93, European Patent Appl.: EP 94 120 245.9-1242 entitled “Vorrichtung und Verfahren zur Umformung von Drehstrom in Gleichstrom”.
- ↑ J. W. Kolar, F. C. Zach, “A Novel Three-Phase Utility Interface Minimizing Line Current Harmonics of High-Power Telecommunications Rectifier Modules”, Record of the 16th IEEE International Telecommunications Energy Conference, Vancouver, Canada, Oct. 30 - Nov. 3, pp. 367-374 (1994) doi:10.1109/INTLEC.1994.396642.
- ↑ 3.0 3.1 J. W. Kolar, H. Ertl, F. C. Zach, “Design and Experimental Investigation of a Three-Phase High Power Density High Efficiency Unity Power Factor PWM (Vienna) Rectifier Employing a Novel Integrated Power Semiconductor Module”, Proceedings of the 11th IEEE Applied Power Electronics Conference, San Jose (CA), USA, March 3–7, Vol.2, pp.514-523 (1996) doi:10.1109/APEC.1996.500491.
- ↑ J. W. Kolar, U. Drofenik, F. C. Zach, “Space Vector Based Analysis of the Variation and Control of the Neutral Point Potential of Hysteresis Current Controlled Three-Phase/Switch/Level PWM Rectifier Systems”, Proceedings of the International Conference on Power Electronics and Drive Systems, Singapore, Feb.21-24, Vol.1, pp.22-33 (1995) doi:10.1109/PEDS.1995.404952.
- ↑ Drofenik, Dr. Uwe (22 May 2009). "How to Design a 10kW Three-Phase AC/DC Interface Step by Step". www.gecko-research.com. Gecko-Research GmbH. Retrieved 28 January 2021.
- ↑ J. W. Kolar, U. Drofenik, F. C. Zach, “Current Handling Capability of the Neutral Point of a Three-Phase/Switch/Level Boost-Type PWM (Vienna) Rectifier”, Proceedings of the 27th IEEE Power Electronics Specialists Conference, Baveno, Italy, June 24–27, Vol.II, pp.1329-1336 (1996) doi:10.1109/PESC.1996.548754.
- ↑ S. D. Round, P. Karutz, M. L. Heldwein, J. W. Kolar, “Towards a 30 kW/liter, Three-Phase Unity Power Factor Rectifier”, Proceedings of the 4th Power Conversion Conference (PCC'07), Nagoya, Japan, April 2–5, CD-ROM, ISBN 1-4244-0844-X, (2007).
- ↑ www.gecko-research.com
- ↑ iPES (Interactive Power Electronics Seminar): Java-Applet Animation of the Vienna Rectifier at www.ipes.ee.ethz.ch