ऑर्थोगोनल बहुपद: Difference between revisions
(Text) |
(Text) |
||
Line 6: | Line 6: | ||
सबसे व्यापक रूप से प्रयोग किए जाने वाले ऑर्थोगोनल बहुपद [[शास्त्रीय ऑर्थोगोनल बहुपद|चिरसम्मत ऑर्थोगोनल बहुपद]] हैं, जिनमें [[हर्मिट बहुपद]], [[लैगुएरे बहुपद]] और [[जैकोबी बहुपद]] सम्मिलित हैं। गेंगेंबोइर बहुपद जैकोबी बहुपदों का सबसे महत्वपूर्ण वर्ग बनाते हैं; वे विशेष स्थिति के रूप में चेबीशेव बहुपद, और [[लीजेंड्रे बहुपद]] को सम्मिलित करते हैं। | सबसे व्यापक रूप से प्रयोग किए जाने वाले ऑर्थोगोनल बहुपद [[शास्त्रीय ऑर्थोगोनल बहुपद|चिरसम्मत ऑर्थोगोनल बहुपद]] हैं, जिनमें [[हर्मिट बहुपद]], [[लैगुएरे बहुपद]] और [[जैकोबी बहुपद]] सम्मिलित हैं। गेंगेंबोइर बहुपद जैकोबी बहुपदों का सबसे महत्वपूर्ण वर्ग बनाते हैं; वे विशेष स्थिति के रूप में चेबीशेव बहुपद, और [[लीजेंड्रे बहुपद]] को सम्मिलित करते हैं। | ||
ऑर्थोगोनल बहुपदों का क्षेत्र 19वीं सदी के अंत में पी. एल. चेबिशेव द्वारा निरंतर अंशों के अध्ययन से विकसित हुआ और ए. ए. मार्कोव और टी. जे. स्टिल्टजेस द्वारा इसका अनुसरण किया गया। वे विभिन्न प्रकार के क्षेत्रों में दिखाई देते हैं: [[संख्यात्मक विश्लेषण]] ([[गाऊसी चतुर्भुज]]), संभाव्यता सिद्धांत, [[प्रतिनिधित्व सिद्धांत]] (झूठे समूह, [[क्वांटम समूह]] और संबंधित ऑब्जेक्ट्स का), गणनात्मक संयोजक, बीजगणितीय संयोजक, [[गणितीय भौतिकी]] ([[यादृच्छिक मैट्रिक्स]] का सिद्धांत, समाकलनीय प्रणाली, आदि), और [[संख्या सिद्धांत]]। ऑर्थोगोनल बहुपदों पर काम करने वाले कुछ गणितज्ञों में गेबोर स्जेगो, [[सर्गेई नटनोविच बर्नस्टीन]], [[नौम अखीजर]], आर्थर एर्डेली, [[याकूब गेरोनिमस]], [[वोल्फगैंग हैन]], [[थिओडोर सियो चिहारा]], [[मोर्ड इस्माइल]], [[वलीद अल-सलाम]], [[रिचर्ड | ऑर्थोगोनल बहुपदों का क्षेत्र 19वीं सदी के अंत में पी. एल. चेबिशेव द्वारा निरंतर अंशों के अध्ययन से विकसित हुआ और ए. ए. मार्कोव और टी. जे. स्टिल्टजेस द्वारा इसका अनुसरण किया गया। वे विभिन्न प्रकार के क्षेत्रों में दिखाई देते हैं: [[संख्यात्मक विश्लेषण]] ([[गाऊसी चतुर्भुज]]), संभाव्यता सिद्धांत, [[प्रतिनिधित्व सिद्धांत]] (झूठे समूह, [[क्वांटम समूह]] और संबंधित ऑब्जेक्ट्स का), गणनात्मक संयोजक, बीजगणितीय संयोजक, [[गणितीय भौतिकी]] ([[यादृच्छिक मैट्रिक्स]] का सिद्धांत, समाकलनीय प्रणाली, आदि), और [[संख्या सिद्धांत]]। ऑर्थोगोनल बहुपदों पर काम करने वाले कुछ गणितज्ञों में गेबोर स्जेगो, [[सर्गेई नटनोविच बर्नस्टीन]], [[नौम अखीजर]], आर्थर एर्डेली, [[याकूब गेरोनिमस]], [[वोल्फगैंग हैन]], [[थिओडोर सियो चिहारा]], [[मोर्ड इस्माइल]], [[वलीद अल-सलाम]], [[रिचर्ड आस्की]] और [[रेहुएल लोबेटो]] सम्मिलित हैं। | ||
== वास्तविक माप के लिए 1- | == वास्तविक माप के लिए 1-चर स्थिति की परिभाषा == | ||
किसी भी गैर-घटते कार्य को देखते हुए {{math|''α''}} वास्तविक संख्याओं पर, हम लेबसग़ई-स्टिलट्जेस समाकल को परिभाषित कर सकते हैं | किसी भी गैर-घटते कार्य को देखते हुए {{math|''α''}} वास्तविक संख्याओं पर, हम लेबसग़ई-स्टिलट्जेस समाकल को परिभाषित कर सकते हैं | ||
Line 32: | Line 32: | ||
वास्तविक रेखा में कुछ अंतराल{{math|[''x''<sub>1</sub>, ''x''<sub>2</sub>]}} पर समर्थन के साथ एक गैर-नकारात्मक फलन है (जहाँ {{math|1=''x''<sub>1</sub> = −∞}} और {{math|1=''x''<sub>2</sub> = ∞}} अनुमति दी जाती है)। इस तरह का एक {{math|''W''}} को वेट फलन कहा जाता है।<ref>[https://demonstrations.wolfram.com/OrthonormalPolynomialsUnderDifferentInnerProductMeasures/ Demo of orthonormal polynomials obtained for different weight functions]</ref> फिर आंतरिक गुणन द्वारा दिया जाता है | वास्तविक रेखा में कुछ अंतराल{{math|[''x''<sub>1</sub>, ''x''<sub>2</sub>]}} पर समर्थन के साथ एक गैर-नकारात्मक फलन है (जहाँ {{math|1=''x''<sub>1</sub> = −∞}} और {{math|1=''x''<sub>2</sub> = ∞}} अनुमति दी जाती है)। इस तरह का एक {{math|''W''}} को वेट फलन कहा जाता है।<ref>[https://demonstrations.wolfram.com/OrthonormalPolynomialsUnderDifferentInnerProductMeasures/ Demo of orthonormal polynomials obtained for different weight functions]</ref> फिर आंतरिक गुणन द्वारा दिया जाता है | ||
<math display="block">\langle f, g \rangle = \int_{x_1}^{x_2} f(x) g(x) W(x) \, dx.</math> | <math display="block">\langle f, g \rangle = \int_{x_1}^{x_2} f(x) g(x) W(x) \, dx.</math> | ||
हालांकि, ऑर्थोगोनल बहुपदों के कई उदाहरण हैं जहां माप {{math|''dα''(''x'')}} में गैर-शून्य माप वाले बिंदु होते हैं जहां फलन {{math|''α''}} विच्छिन्न है, इसलिए | हालांकि, ऑर्थोगोनल बहुपदों के कई उदाहरण हैं जहां माप {{math|''dα''(''x'')}} में गैर-शून्य माप वाले बिंदु होते हैं जहां फलन {{math|''α''}} विच्छिन्न है, इसलिए ऊपरोक्त वेट फलन {{math|''W''}} द्वारा नहीं दिया जा सकता है। | ||
== ऑर्थोगोनल बहुपदों के उदाहरण == | == ऑर्थोगोनल बहुपदों के उदाहरण == | ||
एक वास्तविक अंतराल में समर्थन के साथ माप के लिए सबसे अधिक प्रयोग किया जाने वाला ऑर्थोगोनल बहुपद ऑर्थोगोनल है। यह भी सम्मिलित है: | एक वास्तविक अंतराल में समर्थन के साथ माप के लिए सबसे अधिक प्रयोग किया जाने वाला ऑर्थोगोनल बहुपद ऑर्थोगोनल है। यह भी सम्मिलित है: | ||
* | *चिरसम्मत ऑर्थोगोनल बहुपद (जैकोबी बहुपद, लैगुएरे बहुपद, हर्मिट बहुपद, और उनकी विशेष स्थिति गेगेनबॉयर बहुपद, चेबीशेव बहुपद और लीजेंड्रे बहुपद)। | ||
*[[विल्सन बहुपद]], जो जैकोबी बहुपदों का सामान्यीकरण करता है। वे कई ऑर्थोगोनल बहुपदों को विशेष स्थिति के रूप में सम्मिलित करते हैं, जैसे कि मेक्सनर-पोलकज़ेक बहुपद, [[निरंतर [[हैन बहुपद]]]], निरंतर दोहरी हान बहुपद, और क्लासिकल बहुपद, जो आस्की योजना द्वारा वर्णित हैं। | *[[विल्सन बहुपद]], जो जैकोबी बहुपदों का सामान्यीकरण करता है। वे कई ऑर्थोगोनल बहुपदों को विशेष स्थिति के रूप में सम्मिलित करते हैं, जैसे कि मेक्सनर-पोलकज़ेक बहुपद, [[निरंतर [[हैन बहुपद]]]], निरंतर दोहरी हान बहुपद, और क्लासिकल बहुपद, जो आस्की योजना द्वारा वर्णित हैं। | ||
*एस्की-विल्सन बहुपद विल्सन बहुपदों में एक अतिरिक्त | *एस्की-विल्सन बहुपद विल्सन बहुपदों में एक अतिरिक्त मापदण्ड ''क्यू'' पेश करते हैं। | ||
[[असतत ऑर्थोगोनल बहुपद]] कुछ असतत माप के संबंध में ऑर्थोगोनल हैं। कभी-कभी माप का परिमित समर्थन होता है, इस | [[असतत ऑर्थोगोनल बहुपद]] कुछ असतत माप के संबंध में ऑर्थोगोनल हैं। कभी-कभी माप का परिमित समर्थन होता है, इस स्थिति में ऑर्थोगोनल बहुपदों का परिवार एक अनंत अनुक्रम के बजाय परिमित होता है। [[राका बहुपद]] असतत ऑर्थोगोनल बहुपदों के उदाहरण हैं, और विशेष स्थिति के रूप में हन बहुपद और दोहरे हन बहुपद सम्मिलित हैं, जो बदले में विशेष स्थिति के रूप में मीक्सनर बहुपद, क्रावचौक बहुपद और चार्लीर बहुपद सम्मिलित हैं। | ||
मीक्सनर ने सभी ऑर्थोगोनल शेफ़र अनुक्रम को वर्गीकृत किया है: केवल हेर्माइट, लैगुएरे, चार्लीयर, मीक्सनर और मीक्सनर-पोलाकज़ेक हैं। कुछ अर्थों में क्रावचौक भी इस सूची में होना चाहिए, लेकिन वे एक परिमित अनुक्रम हैं। ये छह परिवार | मीक्सनर ने सभी ऑर्थोगोनल शेफ़र अनुक्रम को वर्गीकृत किया है: केवल हेर्माइट, लैगुएरे, चार्लीयर, मीक्सनर और मीक्सनर-पोलाकज़ेक हैं। कुछ अर्थों में क्रावचौक भी इस सूची में होना चाहिए, लेकिन वे एक परिमित अनुक्रम हैं। ये छह परिवार एनईएफ-क्यूवीएफ के अनुरूप हैं और कुछ लेवी प्रक्रियाओं के लिए मार्टिंगेल_(संभाव्यता_सिद्धांत) बहुपद हैं। | ||
छलनी ऑर्थोगोनल बहुपद, जैसे छना हुआ अल्ट्रास्फेरिकल बहुपद, छना हुआ जैकोबी बहुपद, और छलनी पोलाज़ेक बहुपद, ने पुनरावृत्ति संबंधों को संशोधित किया है। | छलनी ऑर्थोगोनल बहुपद, जैसे छना हुआ अल्ट्रास्फेरिकल बहुपद, छना हुआ जैकोबी बहुपद, और छलनी पोलाज़ेक बहुपद, ने पुनरावृत्ति संबंधों को संशोधित किया है। | ||
कोई जटिल | कोई जटिल समतल में कुछ वक्र के लिए ऑर्थोगोनल बहुपदों पर भी विचार कर सकता है। सबसे महत्वपूर्ण स्थिति(वास्तविक अंतराल के अलावा) तब होता है जब वक्र ईकाई वृत्ताकार होती है, जो [[यूनिट सर्कल पर ऑर्थोगोनल बहुपद|ईकाई वृत्त पर ऑर्थोगोनल बहुपद]] देता है, जैसे रोजर्स-सेगो बहुपद। | ||
ऑर्थोगोनल बहुपदों के कुछ परिवार हैं जो त्रिकोण या डिस्क जैसे समतल क्षेत्रों पर ऑर्थोगोनल हैं। उन्हें कभी-कभी जैकोबी बहुपदों के संदर्भ में लिखा जा सकता है। उदाहरण के लिए, | ऑर्थोगोनल बहुपदों के कुछ परिवार हैं जो त्रिकोण या डिस्क जैसे समतल क्षेत्रों पर ऑर्थोगोनल हैं। उन्हें कभी-कभी जैकोबी बहुपदों के संदर्भ में लिखा जा सकता है। उदाहरण के लिए, जेरनायक बहुपद ईकाई डिस्क पर ओर्थोगोनल हैं। | ||
हर्मिट बहुपदों के विभिन्न आदेशों के बीच | हर्मिट बहुपदों के विभिन्न आदेशों के बीच लंबकोणीयता का लाभ सामान्यीकृत आवृत्ति विभाजन बहुसंकेतन (जीएफडीएम) संरचना पर लागू होता है। समय-आवृत्ति जाली के प्रत्येक जाल में एक से अधिक प्रतीक ले जा सकते हैं।<ref>{{cite journal |last1=Catak |first1=E. |last2=Durak-Ata |first2=L. |title=ऑर्थोगोनल बहुपदों के साथ आरोपित तरंगों के लिए एक कुशल ट्रांसीवर डिजाइन|journal=IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom) |date=2017 |pages=1–5 |doi=10.1109/BlackSeaCom.2017.8277657 |isbn=978-1-5090-5049-9 |s2cid=22592277 }}</ref> | ||
== गुण == | == गुण == | ||
वास्तविक रेखा पर एक गैर-ऋणात्मक माप द्वारा परिभाषित एक | वास्तविक रेखा पर एक गैर-ऋणात्मक माप द्वारा परिभाषित एक चर के ऑर्थोगोनल बहुपदों में निम्नलिखित गुण होते हैं। | ||
=== | === मोमेंट्स से संबंध === | ||
ऑर्थोगोनल बहुपद | ऑर्थोगोनल बहुपद ''P<sub>n</sub>'' मोमेंट्स के संदर्भ में व्यक्त किया जा सकता है | ||
:<math> m_n = \int x^n \, d\alpha(x) </math> | :<math> m_n = \int x^n \, d\alpha(x) </math> | ||
निम्नलिखितनुसार: | |||
:<math> P_n(x) = c_n \, \det \begin{bmatrix} | :<math> P_n(x) = c_n \, \det \begin{bmatrix} | ||
Line 72: | Line 72: | ||
1 & x & x^2 & \cdots & x^n | 1 & x & x^2 & \cdots & x^n | ||
\end{bmatrix}~,</math> | \end{bmatrix}~,</math> | ||
जहां स्थिरांक | जहां स्थिरांक C<sub>''n''</sub> यादृच्छिक हैं (''P<sub>n</sub>'' के सामान्यीकरण पर निर्भर करते हैं). | ||
यह सीधे ग्राम-श्मिट प्रक्रिया को | यह सीधे ग्राम-श्मिट प्रक्रिया को एकपदी पर लागू करने से आता है, प्रत्येक बहुपद को पिछले वाले के संबंध में ऑर्थोगोनल होने के लिए लागू करता है। उदाहरण के लिए, के साथ लंबकोणीयता <math>P_0</math> यह निर्धारित करता है <math>P_1</math> रूप होना चाहिए<math display="block">P_1(x) = c_1 \left(x- \frac{\langle P_0, x\rangle P_0}{\langle P_0,P_0\rangle} \right) | ||
= c_1 ( x - m_1),</math>जिसे निर्धारक के साथ पहले दी गई अभिव्यक्ति के अनुरूप देखा जा सकता है। | = c_1 ( x - m_1),</math>जिसे निर्धारक के साथ पहले दी गई अभिव्यक्ति के अनुरूप देखा जा सकता है। | ||
===पुनरावृत्ति संबंध=== | ===पुनरावृत्ति संबंध=== | ||
बहुपद | बहुपद ''P<sub>n</sub>'' प्रपत्र के पुनरावृत्ति संबंध को संतुष्ट करें | ||
:<math> P_n(x) = (A_n x + B_n) P_{n-1}(x) + C_n P_{n-2}(x)</math> | :<math> P_n(x) = (A_n x + B_n) P_{n-1}(x) + C_n P_{n-2}(x)</math> | ||
जहाँ | जहाँ ''A''<sub>n</sub> 0 नहीं है। विलोम भी सत्य है; फावर्ड की प्रमेय देखें। | ||
=== क्रिस्टोफेल-डार्बौक्स फॉर्मूला === | === क्रिस्टोफेल-डार्बौक्स फॉर्मूला === | ||
{{main| | {{main|क्रिस्टोफेल-डार्बौक्स फॉर्मूला}} | ||
=== शून्य === | === शून्य === | ||
यदि माप dα एक अंतराल [a, b] पर समर्थित है, तो P | यदि माप dα एक अंतराल [''a, b''] पर समर्थित है, तो ''P<sub>n</sub>'' के सभी शून्य ''[a, b''] में हैं। इसके अलावा, शून्य में निम्नलिखित इंटरलेसिंग गुण होते हैं: यदि ''m < n'', ''P<sub>m</sub>'' के किन्हीं दो शून्यों के बीच ''P<sub>n</sub>'' का एक शून्य होता है . शून्य की [[इलेक्ट्रोस्टैटिक]] व्याख्या दी जा सकती है।{{Citation needed|date=December 2021}} | ||
=== मिश्रित व्याख्या === | === मिश्रित व्याख्या === | ||
1980 के दशक से, | 1980 के दशक से, एक्स. जी. विएनोट, जे. लबेले , वाई.-एन. येह, डी. फोटा, और अन्य, सभी चिरसम्मत ऑर्थोगोनल बहुपदों के लिए संयोजी व्याख्याएं पाई गईं। <ref>{{cite web |last1=Viennot |first1=Xavier |url=https://viennot.org/abjc4-ch5.html |title=बायजेक्टिव कॉम्बिनेटरिक्स की कला, भाग IV, ऑर्थोगोनल बहुपदों का संयोजन सिद्धांत और निरंतर अंश।|date=2017 |publisher=IMSc |location=Chennai }}</ref> | ||
Line 99: | Line 99: | ||
=== बहुभिन्नरूपी ऑर्थोगोनल बहुपद === | === बहुभिन्नरूपी ऑर्थोगोनल बहुपद === | ||
[[मैकडोनाल्ड बहुपद]] कई | [[मैकडोनाल्ड बहुपद]] कई चरों में ऑर्थोगोनल बहुपद हैं, जो एक सजातीय रूट प्रणाली की पसंद पर निर्भर करता है। वे विशेष स्थिति के रूप में बहुभिन्नरूपी ऑर्थोगोनल बहुपदों के कई अन्य परिवारों को सम्मिलित करते हैं, जिनमें [[जैक बहुपद]], हॉल-लिटिलवुड बहुपद, हेकमैन-ओपडम बहुपद, और [[कोर्नविंदर बहुपद]] सम्मिलित हैं। एस्की-विल्सन बहुपद रैंक 1 की एक निश्चित गैर-रीडयूस्ड रूट प्रणाली के लिए मैकडोनाल्ड बहुपदों की विशेष स्थिति है। | ||
=== एकाधिक ऑर्थोगोनल बहुपद === | === एकाधिक ऑर्थोगोनल बहुपद === | ||
{{main| | {{main|एकाधिक ऑर्थोगोनल बहुपद}} | ||
एकाधिक ऑर्थोगोनल बहुपद एक | |||
एकाधिक ऑर्थोगोनल बहुपद एक चर में बहुपद होते हैं जो मापक के परिमित परिवार के संबंध में ऑर्थोगोनल होते हैं। | |||
=== सोबोलेव ऑर्थोगोनल बहुपद === | === सोबोलेव ऑर्थोगोनल बहुपद === | ||
{{main| | {{main|सोबोलेव ऑर्थोगोनल बहुपद}} | ||
ये [[सोबोलेव स्पेस]] | ये [[सोबोलेव स्पेस]] [[आंतरिक उत्पाद स्थान|आंतरिक गुणन]] के संबंध में ऑर्थोगोनल बहुपद हैं, यानी डेरिवेटिव के साथ एक आंतरिक गुणन। डेरिवेटिव सहित बहुपदों के लिए बड़े परिणाम हैं, सामान्यतः वे चिरसम्मत ऑर्थोगोनल बहुपदों की कुछ अच्छी विशेषताओं को साझा नहीं करते हैं। | ||
=== मैट्रिसेस के साथ ऑर्थोगोनल बहुपद === | === मैट्रिसेस के साथ ऑर्थोगोनल बहुपद === | ||
मेट्रिसेस वाले ऑर्थोगोनल | मेट्रिसेस वाले ऑर्थोगोनल बहुपद में या तो गुणांक होते हैं जो मैट्रिसेस होते हैं या अनिश्चित एक मैट्रिक्स होता है। | ||
== यह भी देखें == | == यह भी देखें == |
Revision as of 16:16, 16 March 2023
गणित में, एक ऑर्थोगोनल बहुपद अनुक्रम बहुपदों का एक परिवार है जैसे कि अनुक्रम में कोई भी दो अलग-अलग बहुपद किसी आंतरिक गुणन के तहत एक दूसरे के लिए ऑर्थोगोनल हैं।
सबसे व्यापक रूप से प्रयोग किए जाने वाले ऑर्थोगोनल बहुपद चिरसम्मत ऑर्थोगोनल बहुपद हैं, जिनमें हर्मिट बहुपद, लैगुएरे बहुपद और जैकोबी बहुपद सम्मिलित हैं। गेंगेंबोइर बहुपद जैकोबी बहुपदों का सबसे महत्वपूर्ण वर्ग बनाते हैं; वे विशेष स्थिति के रूप में चेबीशेव बहुपद, और लीजेंड्रे बहुपद को सम्मिलित करते हैं।
ऑर्थोगोनल बहुपदों का क्षेत्र 19वीं सदी के अंत में पी. एल. चेबिशेव द्वारा निरंतर अंशों के अध्ययन से विकसित हुआ और ए. ए. मार्कोव और टी. जे. स्टिल्टजेस द्वारा इसका अनुसरण किया गया। वे विभिन्न प्रकार के क्षेत्रों में दिखाई देते हैं: संख्यात्मक विश्लेषण (गाऊसी चतुर्भुज), संभाव्यता सिद्धांत, प्रतिनिधित्व सिद्धांत (झूठे समूह, क्वांटम समूह और संबंधित ऑब्जेक्ट्स का), गणनात्मक संयोजक, बीजगणितीय संयोजक, गणितीय भौतिकी (यादृच्छिक मैट्रिक्स का सिद्धांत, समाकलनीय प्रणाली, आदि), और संख्या सिद्धांत। ऑर्थोगोनल बहुपदों पर काम करने वाले कुछ गणितज्ञों में गेबोर स्जेगो, सर्गेई नटनोविच बर्नस्टीन, नौम अखीजर, आर्थर एर्डेली, याकूब गेरोनिमस, वोल्फगैंग हैन, थिओडोर सियो चिहारा, मोर्ड इस्माइल, वलीद अल-सलाम, रिचर्ड आस्की और रेहुएल लोबेटो सम्मिलित हैं।
वास्तविक माप के लिए 1-चर स्थिति की परिभाषा
किसी भी गैर-घटते कार्य को देखते हुए α वास्तविक संख्याओं पर, हम लेबसग़ई-स्टिलट्जेस समाकल को परिभाषित कर सकते हैं
फिर क्रम (Pn)∞
n=0 ऑर्थोगोनल बहुपद संबंधों द्वारा परिभाषित किया गया है
प्रायः अनुक्रम को ऑर्थोनॉर्मल होना आवश्यक है, अर्थात्,
बिल्कुल निरंतर स्थिति
कभी-कभी हमारे पास होता है
जहाँ
ऑर्थोगोनल बहुपदों के उदाहरण
एक वास्तविक अंतराल में समर्थन के साथ माप के लिए सबसे अधिक प्रयोग किया जाने वाला ऑर्थोगोनल बहुपद ऑर्थोगोनल है। यह भी सम्मिलित है:
- चिरसम्मत ऑर्थोगोनल बहुपद (जैकोबी बहुपद, लैगुएरे बहुपद, हर्मिट बहुपद, और उनकी विशेष स्थिति गेगेनबॉयर बहुपद, चेबीशेव बहुपद और लीजेंड्रे बहुपद)।
- विल्सन बहुपद, जो जैकोबी बहुपदों का सामान्यीकरण करता है। वे कई ऑर्थोगोनल बहुपदों को विशेष स्थिति के रूप में सम्मिलित करते हैं, जैसे कि मेक्सनर-पोलकज़ेक बहुपद, [[निरंतर हैन बहुपद]], निरंतर दोहरी हान बहुपद, और क्लासिकल बहुपद, जो आस्की योजना द्वारा वर्णित हैं।
- एस्की-विल्सन बहुपद विल्सन बहुपदों में एक अतिरिक्त मापदण्ड क्यू पेश करते हैं।
असतत ऑर्थोगोनल बहुपद कुछ असतत माप के संबंध में ऑर्थोगोनल हैं। कभी-कभी माप का परिमित समर्थन होता है, इस स्थिति में ऑर्थोगोनल बहुपदों का परिवार एक अनंत अनुक्रम के बजाय परिमित होता है। राका बहुपद असतत ऑर्थोगोनल बहुपदों के उदाहरण हैं, और विशेष स्थिति के रूप में हन बहुपद और दोहरे हन बहुपद सम्मिलित हैं, जो बदले में विशेष स्थिति के रूप में मीक्सनर बहुपद, क्रावचौक बहुपद और चार्लीर बहुपद सम्मिलित हैं।
मीक्सनर ने सभी ऑर्थोगोनल शेफ़र अनुक्रम को वर्गीकृत किया है: केवल हेर्माइट, लैगुएरे, चार्लीयर, मीक्सनर और मीक्सनर-पोलाकज़ेक हैं। कुछ अर्थों में क्रावचौक भी इस सूची में होना चाहिए, लेकिन वे एक परिमित अनुक्रम हैं। ये छह परिवार एनईएफ-क्यूवीएफ के अनुरूप हैं और कुछ लेवी प्रक्रियाओं के लिए मार्टिंगेल_(संभाव्यता_सिद्धांत) बहुपद हैं।
छलनी ऑर्थोगोनल बहुपद, जैसे छना हुआ अल्ट्रास्फेरिकल बहुपद, छना हुआ जैकोबी बहुपद, और छलनी पोलाज़ेक बहुपद, ने पुनरावृत्ति संबंधों को संशोधित किया है।
कोई जटिल समतल में कुछ वक्र के लिए ऑर्थोगोनल बहुपदों पर भी विचार कर सकता है। सबसे महत्वपूर्ण स्थिति(वास्तविक अंतराल के अलावा) तब होता है जब वक्र ईकाई वृत्ताकार होती है, जो ईकाई वृत्त पर ऑर्थोगोनल बहुपद देता है, जैसे रोजर्स-सेगो बहुपद।
ऑर्थोगोनल बहुपदों के कुछ परिवार हैं जो त्रिकोण या डिस्क जैसे समतल क्षेत्रों पर ऑर्थोगोनल हैं। उन्हें कभी-कभी जैकोबी बहुपदों के संदर्भ में लिखा जा सकता है। उदाहरण के लिए, जेरनायक बहुपद ईकाई डिस्क पर ओर्थोगोनल हैं।
हर्मिट बहुपदों के विभिन्न आदेशों के बीच लंबकोणीयता का लाभ सामान्यीकृत आवृत्ति विभाजन बहुसंकेतन (जीएफडीएम) संरचना पर लागू होता है। समय-आवृत्ति जाली के प्रत्येक जाल में एक से अधिक प्रतीक ले जा सकते हैं।[2]
गुण
वास्तविक रेखा पर एक गैर-ऋणात्मक माप द्वारा परिभाषित एक चर के ऑर्थोगोनल बहुपदों में निम्नलिखित गुण होते हैं।
मोमेंट्स से संबंध
ऑर्थोगोनल बहुपद Pn मोमेंट्स के संदर्भ में व्यक्त किया जा सकता है
निम्नलिखितनुसार:
जहां स्थिरांक Cn यादृच्छिक हैं (Pn के सामान्यीकरण पर निर्भर करते हैं).
यह सीधे ग्राम-श्मिट प्रक्रिया को एकपदी पर लागू करने से आता है, प्रत्येक बहुपद को पिछले वाले के संबंध में ऑर्थोगोनल होने के लिए लागू करता है। उदाहरण के लिए, के साथ लंबकोणीयता यह निर्धारित करता है रूप होना चाहिए
पुनरावृत्ति संबंध
बहुपद Pn प्रपत्र के पुनरावृत्ति संबंध को संतुष्ट करें
जहाँ An 0 नहीं है। विलोम भी सत्य है; फावर्ड की प्रमेय देखें।
क्रिस्टोफेल-डार्बौक्स फॉर्मूला
शून्य
यदि माप dα एक अंतराल [a, b] पर समर्थित है, तो Pn के सभी शून्य [a, b] में हैं। इसके अलावा, शून्य में निम्नलिखित इंटरलेसिंग गुण होते हैं: यदि m < n, Pm के किन्हीं दो शून्यों के बीच Pn का एक शून्य होता है . शून्य की इलेक्ट्रोस्टैटिक व्याख्या दी जा सकती है।[citation needed]
मिश्रित व्याख्या
1980 के दशक से, एक्स. जी. विएनोट, जे. लबेले , वाई.-एन. येह, डी. फोटा, और अन्य, सभी चिरसम्मत ऑर्थोगोनल बहुपदों के लिए संयोजी व्याख्याएं पाई गईं। [3]
अन्य प्रकार के ऑर्थोगोनल बहुपद
बहुभिन्नरूपी ऑर्थोगोनल बहुपद
मैकडोनाल्ड बहुपद कई चरों में ऑर्थोगोनल बहुपद हैं, जो एक सजातीय रूट प्रणाली की पसंद पर निर्भर करता है। वे विशेष स्थिति के रूप में बहुभिन्नरूपी ऑर्थोगोनल बहुपदों के कई अन्य परिवारों को सम्मिलित करते हैं, जिनमें जैक बहुपद, हॉल-लिटिलवुड बहुपद, हेकमैन-ओपडम बहुपद, और कोर्नविंदर बहुपद सम्मिलित हैं। एस्की-विल्सन बहुपद रैंक 1 की एक निश्चित गैर-रीडयूस्ड रूट प्रणाली के लिए मैकडोनाल्ड बहुपदों की विशेष स्थिति है।
एकाधिक ऑर्थोगोनल बहुपद
एकाधिक ऑर्थोगोनल बहुपद एक चर में बहुपद होते हैं जो मापक के परिमित परिवार के संबंध में ऑर्थोगोनल होते हैं।
सोबोलेव ऑर्थोगोनल बहुपद
ये सोबोलेव स्पेस आंतरिक गुणन के संबंध में ऑर्थोगोनल बहुपद हैं, यानी डेरिवेटिव के साथ एक आंतरिक गुणन। डेरिवेटिव सहित बहुपदों के लिए बड़े परिणाम हैं, सामान्यतः वे चिरसम्मत ऑर्थोगोनल बहुपदों की कुछ अच्छी विशेषताओं को साझा नहीं करते हैं।
मैट्रिसेस के साथ ऑर्थोगोनल बहुपद
मेट्रिसेस वाले ऑर्थोगोनल बहुपद में या तो गुणांक होते हैं जो मैट्रिसेस होते हैं या अनिश्चित एक मैट्रिक्स होता है।
यह भी देखें
- अपील अनुक्रम
- हाइपरज्यामितीय ऑर्थोगोनल बहुपदों की आस्की योजना
- Favard की प्रमेय
- द्विपद प्रकार
- बायोर्थोगोनल बहुपद
- सामान्यीकृत फूरियर श्रृंखला
- माध्यमिक उपाय
- शेफर अनुक्रम
- स्टर्म-लिउविल सिद्धांत
- उम्ब्रल कैलकुलस
संदर्भ
- ↑ Demo of orthonormal polynomials obtained for different weight functions
- ↑ Catak, E.; Durak-Ata, L. (2017). "ऑर्थोगोनल बहुपदों के साथ आरोपित तरंगों के लिए एक कुशल ट्रांसीवर डिजाइन". IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom): 1–5. doi:10.1109/BlackSeaCom.2017.8277657. ISBN 978-1-5090-5049-9. S2CID 22592277.
- ↑ Viennot, Xavier (2017). "बायजेक्टिव कॉम्बिनेटरिक्स की कला, भाग IV, ऑर्थोगोनल बहुपदों का संयोजन सिद्धांत और निरंतर अंश।". Chennai: IMSc.
- Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. "Chapter 22". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 773. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.
- Chihara, Theodore Seio (1978). An Introduction to Orthogonal Polynomials. Gordon and Breach, New York. ISBN 0-677-04150-0.
- Chihara, Theodore Seio (2001). "45 years of orthogonal polynomials: a view from the wings". Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999). Journal of Computational and Applied Mathematics. 133 (1): 13–21. Bibcode:2001JCoAM.133...13C. doi:10.1016/S0377-0427(00)00632-4. ISSN 0377-0427. MR 1858267.
- Foncannon, J. J.; Foncannon, J. J.; Pekonen, Osmo (2008). "Review of Classical and quantum orthogonal polynomials in one variable by Mourad Ismail". The Mathematical Intelligencer. Springer New York. 30: 54–60. doi:10.1007/BF02985757. ISSN 0343-6993. S2CID 118133026.
- Ismail, Mourad E. H. (2005). Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge: Cambridge Univ. Press. ISBN 0-521-78201-5.
- Jackson, Dunham (2004) [1941]. Fourier Series and Orthogonal Polynomials. New York: Dover. ISBN 0-486-43808-2.
- Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Orthogonal Polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
- "Orthogonal polynomials", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Szegő, Gábor (1939). Orthogonal Polynomials. Colloquium Publications. Vol. XXIII. American Mathematical Society. ISBN 978-0-8218-1023-1. MR 0372517.
- Totik, Vilmos (2005). "Orthogonal Polynomials". Surveys in Approximation Theory. 1: 70–125. arXiv:math.CA/0512424.
- C. Chan, A. Mironov, A. Morozov, A. Sleptsov, arXiv:1712.03155.