अनिवार्य विलक्षणता: Difference between revisions
(Created page with "{{Short description|Location around which a function displays irregular behavior}} {{For|essential singularities of real valued functions|Classification of discontinuities}}...") |
No edit summary |
||
Line 25: | Line 25: | ||
एक आवश्यक विलक्षणता को चित्रित करने का एक और तरीका यह है कि [[लॉरेंट श्रृंखला]] <math>f</math> बिंदु पर <math>a</math> अपरिमित रूप से कई ऋणात्मक घात वाले पद हैं (अर्थात् लॉरेंट श्रेणी का मुख्य भाग एक अनंत योग है)। एक संबंधित परिभाषा यह है कि यदि कोई बिंदु है <math>a</math> जिसके लिए कोई व्युत्पन्न नहीं है <math>f(z)(z-a)^n</math> के रूप में एक सीमा में परिवर्तित हो जाता है <math>z</math> आदत है <math>a</math>, तब <math>a</math> की एक आवश्यक विलक्षणता है <math>f</math>.<ref>{{cite web |last=Weisstein |first=Eric W. |title=आवश्यक विलक्षणता|url=http://mathworld.wolfram.com/EssentialSingularity.html |website=MathWorld |publisher=Wolfram |access-date=11 February 2014}}</ref> | एक आवश्यक विलक्षणता को चित्रित करने का एक और तरीका यह है कि [[लॉरेंट श्रृंखला]] <math>f</math> बिंदु पर <math>a</math> अपरिमित रूप से कई ऋणात्मक घात वाले पद हैं (अर्थात् लॉरेंट श्रेणी का मुख्य भाग एक अनंत योग है)। एक संबंधित परिभाषा यह है कि यदि कोई बिंदु है <math>a</math> जिसके लिए कोई व्युत्पन्न नहीं है <math>f(z)(z-a)^n</math> के रूप में एक सीमा में परिवर्तित हो जाता है <math>z</math> आदत है <math>a</math>, तब <math>a</math> की एक आवश्यक विलक्षणता है <math>f</math>.<ref>{{cite web |last=Weisstein |first=Eric W. |title=आवश्यक विलक्षणता|url=http://mathworld.wolfram.com/EssentialSingularity.html |website=MathWorld |publisher=Wolfram |access-date=11 February 2014}}</ref> | ||
अनंत पर एक बिंदु के साथ [[रीमैन क्षेत्र]] पर, <math>\infty_\mathbb{C}</math>, कार्यक्रम <math>{f(z)}</math> उस बिंदु पर एक आवश्यक विलक्षणता है अगर और केवल अगर <math>{f(1/z)}</math> 0 पर एक आवश्यक विलक्षणता है: यानी न तो <math>\lim_{z \to 0}{f(1/z)}</math> और न <math>\lim_{z \to 0}\frac{1}{f(1/z)}</math> मौजूद।<ref>{{Cite web|title=एक पृथक विलक्षणता के रूप में अनंत|url=https://people.math.gatech.edu/~xchen/teach/comp_analysis/note-sing-infinity.pdf|url-status=live|access-date=2022-01-06}}</ref> रीमैन क्षेत्र पर [[रीमैन जीटा फ़ंक्शन]] में केवल एक आवश्यक विलक्षणता है, पर <math>\infty_\mathbb{C}</math>.<ref>{{Cite journal |last=Steuding |first=Jörn |last2=Suriajaya |first2=Ade Irma |date=2020-11-01 |title=रीमैन जीटा- | अनंत पर एक बिंदु के साथ [[रीमैन क्षेत्र]] पर, <math>\infty_\mathbb{C}</math>, कार्यक्रम <math>{f(z)}</math> उस बिंदु पर एक आवश्यक विलक्षणता है अगर और केवल अगर <math>{f(1/z)}</math> 0 पर एक आवश्यक विलक्षणता है: यानी न तो <math>\lim_{z \to 0}{f(1/z)}</math> और न <math>\lim_{z \to 0}\frac{1}{f(1/z)}</math> मौजूद।<ref>{{Cite web|title=एक पृथक विलक्षणता के रूप में अनंत|url=https://people.math.gatech.edu/~xchen/teach/comp_analysis/note-sing-infinity.pdf|url-status=live|access-date=2022-01-06}}</ref> रीमैन क्षेत्र पर [[रीमैन जीटा फ़ंक्शन]] में केवल एक आवश्यक विलक्षणता है, पर <math>\infty_\mathbb{C}</math>.<ref>{{Cite journal |last=Steuding |first=Jörn |last2=Suriajaya |first2=Ade Irma |date=2020-11-01 |title=रीमैन जीटा-फ़ंक्शन का मूल्य-वितरण इसके जूलिया लाइन्स के साथ|url=https://doi.org/10.1007/s40315-020-00316-x |journal=Computational Methods and Function Theory |language=en |volume=20 |issue=3 |pages=389–401 |doi=10.1007/s40315-020-00316-x |issn=2195-3724|doi-access=free }}</ref> | ||
होलोमॉर्फिक कार्यों का व्यवहार उनकी आवश्यक विलक्षणताओं के पास कैसोराती-वीयरस्ट्रैस प्रमेय और काफी मजबूत पिकार्ड के महान प्रमेय द्वारा वर्णित है। उत्तरार्द्ध का कहना है कि एक आवश्यक विलक्षणता के हर पड़ोस में <math>a</math>, कार्यक्रम <math>f</math> संभवतः एक को छोड़कर, असीमित रूप से कई बार प्रत्येक जटिल मान लेता है। (अपवाद आवश्यक है; उदाहरण के लिए, function <math>\exp(1/z)</math> कभी भी मान 0 नहीं लेता है।) | होलोमॉर्फिक कार्यों का व्यवहार उनकी आवश्यक विलक्षणताओं के पास कैसोराती-वीयरस्ट्रैस प्रमेय और काफी मजबूत पिकार्ड के महान प्रमेय द्वारा वर्णित है। उत्तरार्द्ध का कहना है कि एक आवश्यक विलक्षणता के हर पड़ोस में <math>a</math>, कार्यक्रम <math>f</math> संभवतः एक को छोड़कर, असीमित रूप से कई बार प्रत्येक जटिल मान लेता है। (अपवाद आवश्यक है; उदाहरण के लिए, function <math>\exp(1/z)</math> कभी भी मान 0 नहीं लेता है।) | ||
Revision as of 11:56, 3 March 2023
फ़ाइल: 6w के ग्राफ का मॉडल =eˆ(1-6z) -Schilling XIV, 6 - 312- (2).jpg|thumb|एक जटिल कार्य की आवश्यक विलक्षणता को दर्शाने वाला मॉडल 6w = exp(1/(6z))
जटिल विश्लेषण में, एक फ़ंक्शन (गणित) की एक आवश्यक विलक्षणता एक गंभीर विलक्षणता (गणित) है जिसके पास फ़ंक्शन विषम व्यवहार प्रदर्शित करता है।
श्रेणी अनिवार्य विलक्षणता पृथक विलक्षणता का एक बचा हुआ या डिफ़ॉल्ट समूह है जो विशेष रूप से अप्रबंधनीय है: परिभाषा के अनुसार वे विलक्षणता की अन्य दो श्रेणियों में से किसी में भी फिट नहीं होते हैं जिन्हें किसी तरह से निपटाया जा सकता है - हटाने योग्य विलक्षणता और ध्रुव (जटिल विश्लेषण) एस। व्यवहार में कुछ[who?] गैर-पृथक विलक्षणताओं को भी शामिल करें; उनके पास अवशेष (जटिल विश्लेषण) नहीं है।
औपचारिक विवरण
एक खुले सेट पर विचार करें जटिल विमान का . होने देना का एक तत्व हो , और एक होलोमॉर्फिक फ़ंक्शन। बिंदु फ़ंक्शन की एक आवश्यक विलक्षणता कहा जाता है यदि विलक्षणता न तो ध्रुव (जटिल विश्लेषण) है और न ही हटाने योग्य विलक्षणता है।
उदाहरण के लिए, समारोह में एक आवश्यक विलक्षणता है .
वैकल्पिक विवरण
होने देना एक जटिल संख्या हो, मान लीजिए पर परिभाषित नहीं है लेकिन कुछ क्षेत्र में विश्लेषणात्मक कार्य है जटिल विमान का, और वह हर ओपन सेट पड़ोस (गणित)। के साथ गैर-खाली चौराहा है .
- अगर दोनों और मौजूद हैं, तो दोनों की एक हटाने योग्य विलक्षणता है और .
- अगर लेकिन मौजूद है मौजूद नहीं है (वास्तव में ), तब का एक शून्य (जटिल विश्लेषण) है और एक पोल (जटिल विश्लेषण)। .
- इसी तरह, अगर मौजूद नहीं है (वास्तव में ) लेकिन मौजूद है, तो का ध्रुव है और एक शून्य .
- यदि नहीं और न मौजूद है, तो दोनों की एक आवश्यक विलक्षणता है और .
एक आवश्यक विलक्षणता को चित्रित करने का एक और तरीका यह है कि लॉरेंट श्रृंखला बिंदु पर अपरिमित रूप से कई ऋणात्मक घात वाले पद हैं (अर्थात् लॉरेंट श्रेणी का मुख्य भाग एक अनंत योग है)। एक संबंधित परिभाषा यह है कि यदि कोई बिंदु है जिसके लिए कोई व्युत्पन्न नहीं है के रूप में एक सीमा में परिवर्तित हो जाता है आदत है , तब की एक आवश्यक विलक्षणता है .[1] अनंत पर एक बिंदु के साथ रीमैन क्षेत्र पर, , कार्यक्रम उस बिंदु पर एक आवश्यक विलक्षणता है अगर और केवल अगर 0 पर एक आवश्यक विलक्षणता है: यानी न तो और न मौजूद।[2] रीमैन क्षेत्र पर रीमैन जीटा फ़ंक्शन में केवल एक आवश्यक विलक्षणता है, पर .[3] होलोमॉर्फिक कार्यों का व्यवहार उनकी आवश्यक विलक्षणताओं के पास कैसोराती-वीयरस्ट्रैस प्रमेय और काफी मजबूत पिकार्ड के महान प्रमेय द्वारा वर्णित है। उत्तरार्द्ध का कहना है कि एक आवश्यक विलक्षणता के हर पड़ोस में , कार्यक्रम संभवतः एक को छोड़कर, असीमित रूप से कई बार प्रत्येक जटिल मान लेता है। (अपवाद आवश्यक है; उदाहरण के लिए, function कभी भी मान 0 नहीं लेता है।)
संदर्भ
- ↑ Weisstein, Eric W. "आवश्यक विलक्षणता". MathWorld. Wolfram. Retrieved 11 February 2014.
- ↑ "एक पृथक विलक्षणता के रूप में अनंत" (PDF). Retrieved 2022-01-06.
{{cite web}}
: CS1 maint: url-status (link) - ↑ Steuding, Jörn; Suriajaya, Ade Irma (2020-11-01). "रीमैन जीटा-फ़ंक्शन का मूल्य-वितरण इसके जूलिया लाइन्स के साथ". Computational Methods and Function Theory (in English). 20 (3): 389–401. doi:10.1007/s40315-020-00316-x. ISSN 2195-3724.
- Lars V. Ahlfors; Complex Analysis, McGraw-Hill, 1979
- Rajendra Kumar Jain, S. R. K. Iyengar; Advanced Engineering Mathematics. Page 920. Alpha Science International, Limited, 2004. ISBN 1-84265-185-4