बुराली-फोर्टी विरोधाभास: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
[[समुच्चय सिद्धान्त]] में, गणित का एक क्षेत्र, '''बुराली-फोर्टी विरोधाभास''' दर्शाता है कि सभी क्रमिक संख्याओं के सेट का निर्माण एक विरोधाभास की ओर जाता है और इसलिए एक प्रणाली में एक [[अधिकार-विरोध]] दिखाता है जो इसके निर्माण की अनुमति देता है। इसका नाम [[Cesare Burali-Forti|सीज़ारे बरली-फोर्टि]] के नाम पर रखा गया है, जिन्होंने 1897 में एक प्रमेय को साबित करते हुए एक पत्र प्रकाशित किया था, जो उनके लिए अज्ञात था, कैंटर द्वारा पहले प्रमाणित परिणाम का खंडन करता था। [[बर्ट्रेंड रसेल]] ने बाद में विरोधाभास पर ध्यान दिया, और जब उन्होंने इसे अपनी 1903 की पुस्तक 'प्रिंसिपल्स ऑफ[[ अंक शास्त्र ]]' में प्रकाशित किया, तो उन्होंने कहा कि यह उन्हें कुरली-फोर्टि के पत्र द्वारा सुझाया गया था, जिसके परिणामस्वरूप यह कुरली-फोर्ट के नाम से जाना गया था।
[[समुच्चय सिद्धान्त]] में, गणित का एक क्षेत्र, '''बुराली-फोर्टी विरोधाभास''' दर्शाता है कि सभी क्रमिक संख्याओं के सेट का निर्माण एक विरोधाभास की ओर जाता है और इसलिए एक प्रणाली में एक [[अधिकार-विरोध]] दिखाता है जो इसके निर्माण की अनुमति देता है। इसका नाम [[Cesare Burali-Forti|सीज़ारे बरली-फोर्टि]] के नाम पर रखा गया है, जिन्होंने 1897 में एक प्रमेय को साबित करते हुए एक पत्र प्रकाशित किया था, जो उनके लिए अज्ञात था, कैंटर द्वारा पहले प्रमाणित परिणाम का खंडन करता था। [[बर्ट्रेंड रसेल]] ने बाद में विरोधाभास पर ध्यान दिया, और जब उन्होंने इसे अपनी 1903 की पुस्तक 'प्रिंसिपल्स ऑफ[[ अंक शास्त्र ]]' में प्रकाशित किया, तो उन्होंने कहा कि यह उन्हें कुरली-फोर्टि के पत्र द्वारा सुझाया गया था, जिसके परिणामस्वरूप यह कुरली-फोर्ट के नाम से जाना गया था।


=== '''== वॉन न्यूमैन ऑर्डिनल्स == के संदर्भ में कहा गया है''' ===
== वॉन न्यूमैन ऑर्डिनल्स के संदर्भ में कहा गया है ==
हम इसे रिडक्टियो एड एब्सर्डम द्वारा सिद्ध करेंगे।
हम इसे रिडक्टियो एड एब्सर्डम द्वारा सिद्ध करेंगे।


Line 14: Line 14:
हमने दो विरोधाभासी प्रस्ताव निकाले हैं ({{math|{{var|Ω}} < {{var|Ω}}}} और {{math|{{var|Ω}} ≮ {{var|Ω}}}}) के सेटहुड से {{mvar|Ω}} और, इसलिए, इसका खंडन किया {{mvar|Ω}} एक समुच्चय है।
हमने दो विरोधाभासी प्रस्ताव निकाले हैं ({{math|{{var|Ω}} < {{var|Ω}}}} और {{math|{{var|Ω}} ≮ {{var|Ω}}}}) के सेटहुड से {{mvar|Ω}} और, इसलिए, इसका खंडन किया {{mvar|Ω}} एक समुच्चय है।


== अधिक आम तौर पर कहा गया ==
== सामान्यतः कहा जाता है ==


उपरोक्त विरोधाभास का संस्करण कालानुक्रमिक है, क्योंकि यह [[जॉन वॉन न्यूमैन]] के कारण अध्यादेशों की परिभाषा की पुष्टि करता है, जिसके तहत प्रत्येक क्रमवाचक सभी पूर्ववर्ती अध्यादेशों का समूह है, जो उस समय ज्ञात नहीं था जब विरोधाभास को ब्यूरली-फोर्टि द्वारा बनाया गया था। .
उपरोक्त विरोधाभास का संस्करण कालानुक्रमिक है, क्योंकि यह [[जॉन वॉन न्यूमैन]] के कारण अध्यादेशों की परिभाषा की पुष्टि करता है, जिसके तहत प्रत्येक क्रमवाचक सभी पूर्ववर्ती अध्यादेशों का समूह है, जो उस समय ज्ञात नहीं था जब विरोधाभास को ब्यूरली-फोर्टि द्वारा बनाया गया था। यहाँ कम पूर्वधारणाओं वाला एक खाता है: मान लीजिए कि हम प्रत्येक अच्छी तरह से अनुक्रम देने के साथ संबद्ध हैं यहाँ एक खाता है कम प्रेक्षणों के साथ: मान लीजिए कि हम प्रत्येक अच्छी तरह से अनुक्रम प्रकार नामक एक वस्तु के साथ एक अनिर्दिष्ट तरीके से संबद्ध करते हैं (क्रम प्रकार क्रमिक संख्याएं हैं)। [[आदेश प्रकार|अनुक्रम प्रकार]] (क्रमिक संख्या) स्वयं प्राकृतिक तरीके से [[सुव्यवस्थित]] होते हैं, और इस अच्छी तरह से अनुक्रम करने के लिए एक अनुक्रम प्रकार होना चाहिए <math>\Omega</math>. में आसानी से दर्शाया जाता है भोली सेटसिद्धांत भोली सेटसिद्धांत (और [[ZFC]] में सही रहती है लेकिन [[नई नींव]] में नहीं) कि अनुक्रमनिश्चित से कम सभी क्रमिक संख्याओं का प्रकार <math>\alpha</math> है <math>\alpha</math> अपने आप तो अनुक्रम से कम सभी क्रमवाचक संख्याओं का प्रकार  <math>\Omega</math> है <math>\Omega</math> अपने आप लेकिन इस का मतलब है कि <math>\Omega</math>,  यदि हम फॉन न्यूमैन परिभाषा का उपयोग करते हैं, जिसके तहत प्रत्येक क्रमवाचक की पहचान सभी पूर्ववर्ती अध्यादेशों के सेट के रूप में की जाती है, तो विरोधाभास अपरिहार्य है: ऑफ़ेंडिंग प्रस्ताव कि सभी क्रमिक संख्याओं का क्रम प्रकार एक निश्चित से कम है। <math>\alpha</math> है <math>\alpha</math> स्वयं सत्य होना चाहिए।वॉन न्यूमैन ऑर्डिनल्स का संग्रह [[रसेल विरोधाभास]] में संग्रह की तरह , शास्त्रीय तर्क के साथ किसी भी सेट सिद्धांत में सेट नहीं किया जा सकता है। लेकिन नई नींव में क्रम प्रकार का संग्रह (समानता के तहत सुक्रमो के तुल्यता वर्गों के रूप में परिभाषित) वास्तव में एक सेट है, और विरोधाभास से बचा है क्योंकि क्रम प्रकार से कम से कम समन्वय। <math>\Omega</math> नहीं निकला <math>\Omega</math>.       
यहाँ कम पूर्वधारणाओं वाला एक खाता है: मान लीजिए कि हम प्रत्येक अच्छी तरह से अनुक्रम देने के साथ संबद्ध हैं
यहाँ एक खाता है कम प्रेक्षणों के साथ: मान लीजिए कि हम प्रत्येक अच्छी तरह से अनुक्रम प्रकार नामक एक वस्तु के साथ एक अनिर्दिष्ट तरीके से संबद्ध करते हैं (क्रम प्रकार क्रमिक संख्याएं हैं)। [[आदेश प्रकार|अनुक्रम प्रकार]] (क्रमिक संख्या) स्वयं प्राकृतिक तरीके से [[सुव्यवस्थित]] होते हैं,
और इस अच्छी तरह से अनुक्रम करने के लिए एक अनुक्रम प्रकार होना चाहिए <math>\Omega</math>. में आसानी से दर्शाया जाता है
भोली सेटसिद्धांत | भोली सेटसिद्धांत (और [[ZFC]] में सही रहती है लेकिन [[नई नींव]] में नहीं) कि अनुक्रम
निश्चित से कम सभी क्रमिक संख्याओं का प्रकार <math>\alpha</math> है <math>\alpha</math> अपने आप।
तो अनुक्रम
से कम सभी क्रमवाचक संख्याओं का प्रकार  <math>\Omega</math> है <math>\Omega</math> अपने आप। लेकिन
इस का मतलब है कि <math>\Omega</math>,  यदि हम फॉन न्यूमैन परिभाषा का उपयोग करते हैं, जिसके तहत प्रत्येक क्रमवाचक की पहचान सभी पूर्ववर्ती अध्यादेशों के सेट के रूप में की जाती है, तो विरोधाभास अपरिहार्य है: ऑफ़ेंडिंग प्रस्ताव कि सभी क्रमिक संख्याओं का क्रम प्रकार एक निश्चित से कम है। <math>\alpha</math> है <math>\alpha</math> स्वयं सत्य होना चाहिए।वॉन न्यूमैन ऑर्डिनल्स का संग्रह [[रसेल विरोधाभास]] में संग्रह की तरह , शास्त्रीय तर्क के साथ किसी भी सेट सिद्धांत में सेट नहीं किया जा सकता है। लेकिन नई नींव में क्रम प्रकार का संग्रह (समानता के तहत सुक्रमो के तुल्यता वर्गों के रूप में परिभाषित) वास्तव में एक सेट है, और विरोधाभास से बचा है क्योंकि क्रम प्रकार से कम से कम समन्वय। <math>\Omega</math>
नहीं निकला <math>\Omega</math>.       


== विरोधाभास के संकल्प ==
== विरोधाभास के संकल्प ==
Line 41: Line 32:
|doi=10.1016/0315-0860(81)90070-7|doi-access= free}}
|doi=10.1016/0315-0860(81)90070-7|doi-access= free}}
* {{citation|mr=0006327 |last=Rosser|first= Barkley|title=The Burali-Forti paradox|journal=[[Journal of Symbolic Logic]]|volume= 7|issue=1|year=1942|pages= 1–17|doi=10.2307/2267550|jstor=2267550|s2cid=13389728 }}
* {{citation|mr=0006327 |last=Rosser|first= Barkley|title=The Burali-Forti paradox|journal=[[Journal of Symbolic Logic]]|volume= 7|issue=1|year=1942|pages= 1–17|doi=10.2307/2267550|jstor=2267550|s2cid=13389728 }}
==बाहरी संबंध==
==बाहरी संबंध==
*[[Stanford Encyclopedia of Philosophy]]: "[http://plato.stanford.edu/entries/paradoxes-contemporary-logic/ Paradoxes and Contemporary Logic]"—by Andrea Cantini.
*[[Stanford Encyclopedia of Philosophy]]: "[http://plato.stanford.edu/entries/paradoxes-contemporary-logic/ Paradoxes and Contemporary Logic]"—by Andrea Cantini.
{{Paradoxes|state=autocollapse}}
{{Set theory}}
{{Set theory}}
[[Category: क्रमसूचक संख्या]] [[Category: भोली सेट सिद्धांत के विरोधाभास]]  
[[Category: क्रमसूचक संख्या]] [[Category: भोली सेट सिद्धांत के विरोधाभास]]  

Revision as of 11:22, 24 March 2023

समुच्चय सिद्धान्त में, गणित का एक क्षेत्र, बुराली-फोर्टी विरोधाभास दर्शाता है कि सभी क्रमिक संख्याओं के सेट का निर्माण एक विरोधाभास की ओर जाता है और इसलिए एक प्रणाली में एक अधिकार-विरोध दिखाता है जो इसके निर्माण की अनुमति देता है। इसका नाम सीज़ारे बरली-फोर्टि के नाम पर रखा गया है, जिन्होंने 1897 में एक प्रमेय को साबित करते हुए एक पत्र प्रकाशित किया था, जो उनके लिए अज्ञात था, कैंटर द्वारा पहले प्रमाणित परिणाम का खंडन करता था। बर्ट्रेंड रसेल ने बाद में विरोधाभास पर ध्यान दिया, और जब उन्होंने इसे अपनी 1903 की पुस्तक 'प्रिंसिपल्स ऑफअंक शास्त्र ' में प्रकाशित किया, तो उन्होंने कहा कि यह उन्हें कुरली-फोर्टि के पत्र द्वारा सुझाया गया था, जिसके परिणामस्वरूप यह कुरली-फोर्ट के नाम से जाना गया था।

वॉन न्यूमैन ऑर्डिनल्स के संदर्भ में कहा गया है

हम इसे रिडक्टियो एड एब्सर्डम द्वारा सिद्ध करेंगे।

  1. Ω सभी क्रमिक संख्याओं वाला एक सेट होने देना।
  2. Ω सकर्मक समुच्चय है क्योंकि प्रत्येक तत्व के लिए x का Ω (जो एक क्रमिक संख्या है और कोई भी क्रमिक संख्या हो सकती है) और प्रत्येक तत्व y का x (यानी वॉन न्यूमैन ऑर्डिनल्स की परिभाषा के तहत, प्रत्येक क्रमिक संख्या के लिए y < x), हमारे पास वह है y का एक तत्व है Ω क्योंकि इस क्रमिक निर्माण की परिभाषा के अनुसार किसी भी क्रमिक संख्या में केवल क्रमिक संख्याएँ होती हैं।
  3. Ω सदस्यता संबंध द्वारा सुव्यवस्थित है क्योंकि इसके सभी तत्व भी इस संबंध द्वारा सुव्यवस्थित हैं।
  4. तो, चरण 2 और 3 के द्वारा, हमारे पास वह है Ω एक क्रमसूचक वर्ग है और चरण 1 के द्वारा भी, एक क्रमसूचक संख्या है, क्योंकि सभी क्रमवाचक वर्ग जो समुच्चय हैं वे भी क्रमवाचक संख्याएँ हैं।
  5. इसका अर्थ यह है कि Ω का एक तत्व है Ω.
  6. वॉन न्यूमैन ऑर्डिनल्स की परिभाषा के तहत, Ω < Ω वैसा ही है जैसा कि Ω का एक तत्व है Ω. यह बाद वाला कथन चरण 5 से सिद्ध होता है।
  7. लेकिन कोई भी क्रमवाचक वर्ग अपने आप से कम नहीं है, सहित Ω चरण 4 के कारण (Ω एक क्रमसूचक वर्ग है), अर्थात ΩΩ.

हमने दो विरोधाभासी प्रस्ताव निकाले हैं (Ω < Ω और ΩΩ) के सेटहुड से Ω और, इसलिए, इसका खंडन किया Ω एक समुच्चय है।

सामान्यतः कहा जाता है

उपरोक्त विरोधाभास का संस्करण कालानुक्रमिक है, क्योंकि यह जॉन वॉन न्यूमैन के कारण अध्यादेशों की परिभाषा की पुष्टि करता है, जिसके तहत प्रत्येक क्रमवाचक सभी पूर्ववर्ती अध्यादेशों का समूह है, जो उस समय ज्ञात नहीं था जब विरोधाभास को ब्यूरली-फोर्टि द्वारा बनाया गया था। यहाँ कम पूर्वधारणाओं वाला एक खाता है: मान लीजिए कि हम प्रत्येक अच्छी तरह से अनुक्रम देने के साथ संबद्ध हैं यहाँ एक खाता है कम प्रेक्षणों के साथ: मान लीजिए कि हम प्रत्येक अच्छी तरह से अनुक्रम प्रकार नामक एक वस्तु के साथ एक अनिर्दिष्ट तरीके से संबद्ध करते हैं (क्रम प्रकार क्रमिक संख्याएं हैं)। अनुक्रम प्रकार (क्रमिक संख्या) स्वयं प्राकृतिक तरीके से सुव्यवस्थित होते हैं, और इस अच्छी तरह से अनुक्रम करने के लिए एक अनुक्रम प्रकार होना चाहिए . में आसानी से दर्शाया जाता है भोली सेटसिद्धांत भोली सेटसिद्धांत (और ZFC में सही रहती है लेकिन नई नींव में नहीं) कि अनुक्रमनिश्चित से कम सभी क्रमिक संख्याओं का प्रकार है अपने आप तो अनुक्रम से कम सभी क्रमवाचक संख्याओं का प्रकार है अपने आप लेकिन इस का मतलब है कि , यदि हम फॉन न्यूमैन परिभाषा का उपयोग करते हैं, जिसके तहत प्रत्येक क्रमवाचक की पहचान सभी पूर्ववर्ती अध्यादेशों के सेट के रूप में की जाती है, तो विरोधाभास अपरिहार्य है: ऑफ़ेंडिंग प्रस्ताव कि सभी क्रमिक संख्याओं का क्रम प्रकार एक निश्चित से कम है। है स्वयं सत्य होना चाहिए।वॉन न्यूमैन ऑर्डिनल्स का संग्रह रसेल विरोधाभास में संग्रह की तरह , शास्त्रीय तर्क के साथ किसी भी सेट सिद्धांत में सेट नहीं किया जा सकता है। लेकिन नई नींव में क्रम प्रकार का संग्रह (समानता के तहत सुक्रमो के तुल्यता वर्गों के रूप में परिभाषित) वास्तव में एक सेट है, और विरोधाभास से बचा है क्योंकि क्रम प्रकार से कम से कम समन्वय। नहीं निकला .

विरोधाभास के संकल्प

ZF और ZFC जैसे आधुनिक स्वयंसिद्ध सेट सिद्धांत अप्रतिबंधित समझ का उपयोग करके सेट के निर्माण की अनुमति नहीं देकर इस एंटीनॉमी को दरकिनार करते हैं। संपत्ति के साथ सभी सेट जैसे शब्द , जैसा कि भोली सेट सिद्धांत में संभव है और जैसा कि भगवान फ्रीज का शुक्र है के स्वयंसिद्धों के साथ संभव है – विशेष रूप से बुनियादी कानून वी – अंकगणित के मौलिक नियमों में। कुइन की प्रणाली न्यू फ़ाउंडेशन (NF) एक न्यू फ़ाउंडेशन बुराली-फ़ोर्टी विरोधाभास का उपयोग करती है। रोसेर (1942) ने दिखाया कि क्विन की प्रणाली गणितीय तर्क (एमएल) के मूल संस्करण में, नई नींव का एक विस्तार, बुराली-फोर्टी विरोधाभास को प्राप्त करना संभव है, यह दर्शाता है कि यह प्रणाली विरोधाभासी थी। रोसेर की खोज के बाद क्विन का एमएल का संशोधन इस दोष से ग्रस्त नहीं है, और वास्तव में बाद में हाओ वांग (अकादमिक) द्वारा एनएफ के साथ समतुल्य प्रमाणित किया गया था।

यह भी देखें

  • पूर्ण अनंत

संदर्भ

  • Burali-Forti, Cesare (1897), "Una questione sui numeri transfiniti", Rendiconti del Circolo Matematico di Palermo, 11: 154–164, doi:10.1007/BF03015911, S2CID 121527917
  • Irving Copi (1958) "The Burali-Forti Paradox", Philosophy of Science 25(4): 281–286, doi:10.1086/287617
  • Moore, Gregory H; Garciadiego, Alejandro (1981), "Burali-Forti's paradox: A reappraisal of its origins", Historia Mathematica, 8 (3): 319–350, doi:10.1016/0315-0860(81)90070-7
  • Rosser, Barkley (1942), "The Burali-Forti paradox", Journal of Symbolic Logic, 7 (1): 1–17, doi:10.2307/2267550, JSTOR 2267550, MR 0006327, S2CID 13389728

बाहरी संबंध