निवेश प्रतिबाधा: Difference between revisions
Line 59: | Line 59: | ||
आरएफ प्रणाली में, लाइन और समाप्ति प्रतिबाधा के लिए विशिष्ट मान 50 Ω और 75 Ω हैं। | आरएफ प्रणाली में, लाइन और समाप्ति प्रतिबाधा के लिए विशिष्ट मान 50 Ω और 75 Ω हैं। | ||
शक्ति संचरण को अधिकतम करने के लिए{{what|reason=What is the relation between (non-conjugate) impedance matching at termination of a line, and conjugate-matching of source and load impedance (output and input) across a port? These appear to have two different effects, yet they are intermixed without any transition.|date=January 2017}} रेडियो संचरण शक्ति प्रणाली के लिए सर्किट को [[ट्रांसमीटर]] आउटपुट से, ट्रांसमिशन लाइन (संतुलित जोड़ी, समाक्षीय केबल, या एक वेवगाइड) के माध्यम से, [[एंटीना (रेडियो)|एंटीना]] प्रणाली के माध्यम से, पूरे [[शक्ति श्रृंखला]] में जटिल संयुग्मित होना चाहिए, जो एक प्रतिबाधा मिलान उपकरण और विकिरण तत्व (ओं) से मिलकर बनता है। | |||
== यह भी देखें == | == यह भी देखें == |
Revision as of 20:06, 19 March 2023
विद्युत नेटवर्क का इनपुट प्रतिबाधा विद्युत स्रोत नेटवर्क के बाहरी भार में वर्तमान (प्रतिबाधा), स्थिर ( प्रतिरोध) और गतिशील ( प्रतिक्रिया) दोनों, के विरोध का माप है। इनपुट प्रवेश (प्रतिबाधा का गुणक व्युत्क्रम) भार नेटवर्क की धारा खींचने की प्रवृत्ति का माप है। स्रोत नेटवर्क उस नेटवर्क का हिस्सा है जो शक्ति संचारित करता है, और लोड नेटवर्क उस नेटवर्क का हिस्सा है जो बिजली की खपत करता है।
इनपुट प्रतिबाधा
यदि भार नेटवर्क को भार नेटवर्क (समतुल्य सर्किट) के इनपुट प्रतिबाधा के बराबर आउटपुट प्रतिबाधा वाले डिवाइस द्वारा प्रतिस्थापित किया गया था, तो स्रोत-भार नेटवर्क की विशेषताएं कनेक्शन बिंदु के परिप्रेक्ष्य से समान होंगी। इसलिए, इनपुट टर्मिनलों के माध्यम से वोल्टेज और करंट चुने गए भार नेटवर्क के समान होगा।
इसलिए, लोड का इनपुट प्रतिबाधा और स्रोत का आउटपुट प्रतिबाधा यह निर्धारित करता है कि स्रोत वर्तमान और वोल्टेज कैसे बदलता है।
विद्युत नेटवर्क के थेवेनिन के समकक्ष सर्किट समकक्ष सर्किट के प्रतिबाधा को निर्धारित करने के लिए इनपुट प्रतिबाधा की अवधारणा का उपयोग करता है।
गणना
यदि किसी को सर्किट के भार पर इनपुट प्रतिबाधा और सिग्नल स्रोत के साथ श्रृंखला में आउटपुट प्रतिबाधा रखकर इनपुट टर्मिनलों के समतुल्य गुणों के साथ सर्किट बनाना होता है, तो ओम के नियम का उपयोग ट्रांसफर फ़ंक्शन की गणना के लिए किया जा सकता है।
विद्युत दक्षता
इनपुट और आउटपुट प्रतिबाधा के मूल्यों का उपयोग अक्सर नेटवर्क की विद्युत दक्षता का मूल्यांकन करने के लिए उन्हें कई चरणों में तोड़कर और स्वतंत्र रूप से प्रत्येक चरण के बीच बातचीत की दक्षता का मूल्यांकन करने के लिए किया जाता है। बिजली के नुकसान को कम करने के लिए, नेटवर्क के इनपुट प्रतिबाधा की तुलना में सिग्नल का आउटपुट प्रतिबाधा नगण्य होना चाहिए, क्योंकि लाभ कुल प्रतिबाधा (इनपुट प्रतिबाधा + आउटपुट प्रतिबाधा) के इनपुट प्रतिबाधा के अनुपात के बराबर है। इस मामले में,
- (या )
- संचालित चरण (भार) का इनपुट प्रतिबाधा ड्राइव चरण (स्रोत) के आउटपुट प्रतिबाधा से बहुत बड़ा है।
पावर फैक्टर
बिजली ले जाने वाले एसी सर्किट नेटवर्क में, प्रतिबाधा के प्रतिक्रियाशील घटक के कारण कंडक्टरों में ऊर्जा का नुकसान महत्वपूर्ण हो सकता है। ये नुकसान चरण असंतुलन नामक घटना में खुद को प्रकट करते हैं, जहां वर्तमान वोल्टेज के साथ चरण से बाहर (पीछे या आगे) होता है। इसलिए, वर्तमान और वोल्टेज का उत्पाद उससे कम है जो वर्तमान और वोल्टेज चरण में थे। डीसी स्रोतों के साथ, प्रतिक्रियाशील सर्किट का कोई प्रभाव नहीं पड़ता है, इसलिए पावर फैक्टर सुधार आवश्यक नहीं है।
सर्किट के लिए आदर्श स्रोत, आउटपुट प्रतिबाधा और इनपुट प्रतिबाधा के साथ मॉडलिंग करने के लिए, स्रोत पर आउटपुट रिएक्शन के नकारात्मक होने के लिए सर्किट के इनपुट रिएक्शन को आकार दिया जा सकता है। इस परिदृश्य में, इनपुट प्रतिबाधा का प्रतिक्रियाशील घटक स्रोत पर आउटपुट प्रतिबाधा के प्रतिक्रियाशील घटक को रद्द कर देता है। परिणामी समतुल्य सर्किट पूरी तरह से प्रतिरोधी प्रकृति का है, और स्रोत या लोड में चरण असंतुलन के कारण कोई नुकसान नहीं होता है।
पावर ट्रांसफर
अधिकतम शक्ति हस्तांतरण की स्थिति बताती है कि किसी दिए गए स्रोत के लिए अधिकतम शक्ति तब स्थानांतरित की जाएगी जब स्रोत का प्रतिरोध भार के प्रतिरोध के बराबर हो और प्रतिक्रिया को रद्द करके शक्ति कारक को ठीक किया जाए। जब ऐसा होता है तो सर्किट को सिग्नल प्रतिबाधा से मेल खाते जटिल संयुग्मी कहा जाता है। ध्यान दें कि यह केवल पावर ट्रांसफर को अधिकतम करता है, सर्किट की दक्षता को नहीं। जब पावर ट्रांसफर को अनुकूलित किया जाता है तो सर्किट केवल 50% दक्षता पर चलता है।
जटिल संयुग्म मिलान का सूत्र है
जब कोई प्रतिक्रियाशील घटक नहीं होता है तो यह समीकरण सरल हो जाता है के काल्पनिक भाग के रूप में शून्य है।
प्रतिबाधा मिलान
जब संचरण लाइन की विशेषता प्रतिबाधा, , भार नेटवर्क की प्रतिबाधा से मिलता जुलता नहीं है, , भार नेटवर्क कुछ स्रोत सिग्नल को वापस प्रतिबिंबित करेगा। यह ट्रांसमिशन लाइन पर स्थायी तरंगें बना सकता है। प्रतिबिंबों को कम करने के लिए, ट्रांसमिशन लाइन की विशिष्ट प्रतिबाधा और भार सर्किट की प्रतिबाधा को बराबर (या "मिलान") होना चाहिए। यदि प्रतिबाधा मिलता जुलता है, तो कनेक्शन को मिलान किए गए कनेक्शन के रूप में जाना जाता है, और प्रतिबाधा असंगत को ठीक करने की प्रक्रिया को प्रतिबाधा मिलान कहा जाता है। चूंकि सजातीय संचरण लाइन के लिए विशेषता प्रतिबाधा अकेले ज्यामिति पर आधारित है और इसलिए स्थिर है, और भार प्रतिबाधा को स्वतंत्र रूप से मापा जा सकता है, मिलान की स्थिति भार की नियुक्ति (ट्रांसमिशन लाइन से पहले या बाद में) की परवाह किए बिना रहती है।
अनुप्रयोग
संकेत प्रसंस्करण
आधुनिक सिग्नल प्रोसेसिंग में, उपकरणों, जैसे प्रवर्धक, को उस इनपुट से जुड़े स्रोत डिवाइस के आउटपुट प्रतिबाधा की तुलना में परिमाण के कई क्रमों के इनपुट प्रतिबाधा के लिए डिज़ाइन किया गया है। इसे प्रतिबाधा ब्रिजिंग कहा जाता है। इन सर्किट में इनपुट प्रतिबाधा (हानि) के कारण होने वाले नुकसान को कम किया जाएगा, और प्रवर्धक के इनपुट पर वोल्टेज वोल्टेज के करीब होगा जैसे कि प्रवर्धक सर्किट जुड़ा नहीं था। जब एक उपकरण जिसका इनपुट प्रतिबाधा सिग्नल के महत्वपूर्ण क्षरण का उपयोग किया जाता है, अक्सर उच्च इनपुट प्रतिबाधा और कम आउटपुट प्रतिबाधा वाले उपकरण का उपयोग इसके प्रभावों को कम करने के लिए किया जाता है। इन प्रभावों के लिए अक्सर वोल्टेज अनुयायी या प्रतिबाधा-मिलान ट्रांसफार्मर का उपयोग किया जाता है।
उच्च-प्रतिबाधा प्रवर्धक (जैसे निर्वात पम्प ट्यूब, फील्ड इफ़ेक्ट ट्रांजिस्टर प्रवर्धक और ऑप-एम्प्स) के लिए इनपुट प्रतिबाधा को अक्सर समाई के साथ समानांतर प्रतिरोध के रूप में निर्दिष्ट किया जाता है (उदाहरण के लिए, 2.2 MΩ ∥ 1picofarad)। उच्च इनपुट प्रतिबाधा के लिए डिज़ाइन किए गए पूर्व-प्रवर्धक में इनपुट पर थोड़ा अधिक प्रभावी शोर वोल्टेज हो सकता है (कम प्रभावी शोर वर्तमान प्रदान करते समय), और विशिष्ट कम-प्रतिबाधा स्रोत के लिए डिज़ाइन किए गए प्रवर्धक की तुलना में थोड़ा अधिक शोर होता है, लेकिन सामान्य तौर पर ए अपेक्षाकृत कम-प्रतिबाधा स्रोत विन्यास शोर के प्रति अधिक प्रतिरोधी होगा (विशेष रूप से मेन ह्यूम)।
रेडियो आवृत्ति पावर प्रणाली
संचरण लाइन के अंत में प्रतिबाधा असंगत के कारण सिग्नल प्रतिबिंब विरूपण और ड्राइविंग सर्किट को संभावित नुकसान पहुंचा सकता है।
एनालॉग वीडियो सर्किट में, प्रतिबाधा असंगत "घोस्टिंग" का कारण बन सकता है, जहां मुख्य छवि की समय-विलंबित प्रतिध्वनि कमजोर और विस्थापित छवि (प्रायः मुख्य छवि के दाईं ओर) के रूप में दिखाई देती है। हाई-स्पीड डिजिटल प्रणाली में, जैसे एचडी वीडियो, प्रतिबिंब के परिणामस्वरूप हस्तक्षेप और संभावित रूप से दूषित सिग्नल होता है।
असंगत द्वारा बनाई गई स्थायी तरंगें सामान्य वोल्टेज से अधिक के आवधिक क्षेत्र हैं। यदि यह वोल्टेज लाइन की इन्सुलेट सामग्री की बिजली के धाराप्रवाह को रोकनेवाला टूटने की ताकत से अधिक हो जाता है तो इलेक्ट्रिक चाप उत्पन्न होगा। यह बदले में उच्च वोल्टेज की प्रतिक्रियाशील पल्स का कारण बन सकता है जो ट्रांसमीटर के अंतिम आउटपुट चरण को नष्ट कर सकता है।
आरएफ प्रणाली में, लाइन और समाप्ति प्रतिबाधा के लिए विशिष्ट मान 50 Ω और 75 Ω हैं।
शक्ति संचरण को अधिकतम करने के लिए[clarification needed] रेडियो संचरण शक्ति प्रणाली के लिए सर्किट को ट्रांसमीटर आउटपुट से, ट्रांसमिशन लाइन (संतुलित जोड़ी, समाक्षीय केबल, या एक वेवगाइड) के माध्यम से, एंटीना प्रणाली के माध्यम से, पूरे शक्ति श्रृंखला में जटिल संयुग्मित होना चाहिए, जो एक प्रतिबाधा मिलान उपकरण और विकिरण तत्व (ओं) से मिलकर बनता है।
यह भी देखें
- आउटपुट प्रतिबाधा
- अवमन्दन कारक
- वोल्टेज विभक्त
- डमी भार
संदर्भ
- The Art of Electronics, Winfield Hill, Paul Horowitz, Cambridge University Press, ISBN 0-521-37095-7
- "Aortic input impedance in normal man: relationship to pressure wave forms", JP Murgo, N Westerhof, JP Giolma, SA Altobelli pdf
- An excellent introduction to the importance of impedance and impedance matching can be found in A practical introduction to electronic circuits, M H Jones, Cambridge University Press, ISBN 0-521-31312-0