वर्सोर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 7: Line 7:
जहां r<sup>2</sup> = -1 स्थिति का अर्थ है कि r एक इकाई-लम्बाई सदिश चतुर्भुज है (अथवा r का पहला घटक शून्य है और r के अंतिम तीन घटक 3 आयामों में एक इकाई सदिश हैं)। संबंधित [[त्रि-आयामी स्थान]] 3-आयामी घुमाव में अक्ष-कोण प्रतिनिधित्व में अक्ष r के बारे में कोण 2''a'' है। यदि {{nowrap|''a'' {{=}} π/2}} (एक [[समकोण]]), फिर <math>q = \mathbf{r}</math> और परिणामी इकाई वेक्टर को सही वर्सोर कहा जाता है।
जहां r<sup>2</sup> = -1 स्थिति का अर्थ है कि r एक इकाई-लम्बाई सदिश चतुर्भुज है (अथवा r का पहला घटक शून्य है और r के अंतिम तीन घटक 3 आयामों में एक इकाई सदिश हैं)। संबंधित [[त्रि-आयामी स्थान]] 3-आयामी घुमाव में अक्ष-कोण प्रतिनिधित्व में अक्ष r के बारे में कोण 2''a'' है। यदि {{nowrap|''a'' {{=}} π/2}} (एक [[समकोण]]), फिर <math>q = \mathbf{r}</math> और परिणामी इकाई वेक्टर को सही वर्सोर कहा जाता है।


चतुष्कोण गुणन के साथ वर्सोर का संग्रह [[समूह (गणित)]] बनाता है और वर्सोर का समूह 4-आयामी चतुष्कोणीय (बीजगणित में) [[3-क्षेत्र|त्रिआयामी-क्षेत्र]] है।
चतुष्कोण गुणन के साथ वर्सोर का संग्रह [[समूह (गणित)]] बनाता है और वर्सोर का समूह 4-आयामी चतुष्कोणीय (बीजगणित में) [[3-क्षेत्र|त्रिआयामी-क्षेत्र]] है।


'''<big><u>3 और 2-गोले पर प्रस्तुति</u></big>'''
'''<big><u>3 और 2-गोले पर प्रस्तुति</u></big>'''
[[Image:Spherical triangle.svg|thumb|right|चाप AB + चाप BC = चाप AC]]हैमिल्टन ने प्रतीक U''q'' द्वारा चतुष्कोण ''q'' के वर्सोर को निरूपित किया। जिससे वह ध्रुवीय अपघटन [[चतुर्धातुक समूह]] अपघटन में सामान्य चतुष्कोण प्रदर्शित करने में सक्षम था।
[[Image:Spherical triangle.svg|thumb|right|चाप AB + चाप BC = चाप AC]]हैमिल्टन ने प्रतीक U''q'' द्वारा चतुष्कोण ''q'' के वर्सोर को निरूपित किया। जिससे वह ध्रुवीय अपघटन [[चतुर्धातुक समूह]] अपघटन में सामान्य चतुष्कोण प्रदर्शित करने में सक्षम था।
: ''q'' = '''T'''''q'' '''U'''''q'',
: ''q'' = '''T'''''q'' '''U'''''q'',
जहां पर T''q,'' q'' का मानदंड है। वर्सोर का मानदंड सदैव एक के बराबर होता है। इसलिए वे '''H''' में इकाई 3-क्षेत्र पर अपना अधिकार कर लेते हैं। वर्सोर के उदाहरणों में चतुष्कोणीय समूह के आठ तत्व सम्मिलित हैं। विशेष रूप से मौलिक हैमिल्टनियन चतुष्कोण समकोण वर्सोर है। जिनका समकोण π/2 है। इन वर्सोर में शून्य स्केलर भाग होता है और इसी प्रकार लंबाई (यूनिट वैक्टर) के [[यूक्लिडियन वेक्टर]] होते हैं। चतुष्कोणीय बीजगणित में दायाँ वर्सोर -1 के वर्गमूल का एक गोला बनाता है। जनरेटर ''i'', ''j ''और ''k'' राइट वर्सोर्स के उदाहरण हैं। इसके साथ ही साथ उनके योगात्मक व्युत्क्रम भी अन्य वर्सोर में चौबीस हर्विट्ज़ चतुष्कोण सम्मिलित हैं। जिनका मानक 1 है और 24-सेल पॉलीकोरोन के शीर्ष बनाते हैं।''
जहां पर T''q,'' q'' का मानदंड है। वर्सोर का मानदंड सदैव एक के बराबर होता है। इसलिए वे '''H''' में इकाई 3-क्षेत्र पर अपना अधिकार कर लेते हैं। वर्सोर के उदाहरणों में चतुष्कोणीय समूह के आठ तत्व सम्मिलित हैं। विशेष रूप से मौलिक हैमिल्टनियन चतुष्कोण समकोण वर्सोर है। जिनका समकोण π/2 है। इन वर्सोर में शून्य स्केलर भाग होता है और इसी प्रकार लंबाई (यूनिट वैक्टर) के [[यूक्लिडियन वेक्टर]] होते हैं। चतुष्कोणीय बीजगणित में दायाँ वर्सोर -1 के वर्गमूल का एक गोला बनाता है। जनरेटर ''i'', ''j ''और ''k'' राइट वर्सोर्स के उदाहरण हैं। इसके साथ ही साथ उनके योगात्मक व्युत्क्रम भी अन्य वर्सोर में चौबीस हर्विट्ज़ चतुष्कोण सम्मिलित हैं। जिनका मानक 1 है और 24-सेल पॉलीकोरोन के शीर्ष बनाते हैं।''


हैमिल्टन ने चतुष्[[कोण]] को दो सदिशों के भागफल के रूप में परिभाषित किया। एक वर्सोर को दो इकाई सदिशों के भागफल के रूप में परिभाषित किया जा सकता है। किसी भी स्थिर समतल (ज्यामिति) के लिए Π में स्थित दो इकाई सदिशों का भागफल केवल उन दोनों के बीच के कोण (निर्देशित) पर पूर्णतयः निर्भर करता है। वही a जैसा कि इकाई सदिश-कोण प्रतिनिधित्व में उपरोक्त समझाया गया है। इसलिए संबंधित वर्सोर को निर्देशित [[चाप (ज्यामिति)]] के रूप में समझना स्वाभाविक और सरल हो सकता है। जो इकाई सदिशों के युग्मों को जोड़ते हैं और इकाई गोले के साथ Π के प्रतिच्छेदन बिन्दु द्वारा गठित एक बड़े वृत्त पर स्थित होते हैं। जिस स्थान पर समतल Π मूल बिंदु से होकर निकलता है। समान दिशा और लंबाई के चाप [[ कांति |रेडियंस]] में (एक वृत्त के चाप की लंबाई) [[तुल्यता संबंध]] हैं, अर्थात एक ही वर्सोर को परिभाषित करते हैं।
हैमिल्टन ने चतुष्[[कोण]] को दो सदिशों के भागफल के रूप में परिभाषित किया। एक वर्सोर को दो इकाई सदिशों के भागफल के रूप में परिभाषित किया जा सकता है। किसी भी स्थिर समतल (ज्यामिति) के लिए Π में स्थित दो इकाई सदिशों का भागफल केवल उन दोनों के बीच के कोण (निर्देशित) पर पूर्णतयः निर्भर करता है। वही a जैसा कि इकाई सदिश-कोण प्रतिनिधित्व में उपरोक्त समझाया गया है। इसलिए संबंधित वर्सोर को निर्देशित [[चाप (ज्यामिति)]] के रूप में समझना स्वाभाविक और सरल हो सकता है। जो इकाई सदिशों के युग्मों को जोड़ते हैं और इकाई गोले के साथ Π के प्रतिच्छेदन बिन्दु द्वारा गठित एक बड़े वृत्त पर स्थित होते हैं। जिस स्थान पर समतल Π मूल बिंदु से होकर निकलता है। समान दिशा और लंबाई के चाप [[ कांति |रेडियंस]] में (एक वृत्त के चाप की लंबाई) [[तुल्यता संबंध]] हैं, अर्थात एक ही वर्सोर को परिभाषित करते हैं।
Line 48: Line 48:
गणना द्वारा।<ref>[https://en.wikibooks.org/wiki/Associative_Composition_Algebra/Quaternions Rotation representation]</ref> सतह <math>\{x + y r: (x, y) \in \mathbb{R}^2 \} \sub H</math> के लिए आइसोमॉर्फिक <math>\mathbb{C}</math> है और आंतरिक ऑटोमोर्फिज्म, कम्यूटेटिविटी द्वारा वहां पहचान मानचित्रण को कम कर देता है। चूंकि चतुष्कोणों को दो जटिल आयामों के बीजगणित के रूप में व्याख्या किया जा सकता है। रोटेशन ग्रुप एक्शन (गणित) को [[विशेष एकात्मक समूह]] SU(2) के माध्यम से भी देखा जा सकता है।
गणना द्वारा।<ref>[https://en.wikibooks.org/wiki/Associative_Composition_Algebra/Quaternions Rotation representation]</ref> सतह <math>\{x + y r: (x, y) \in \mathbb{R}^2 \} \sub H</math> के लिए आइसोमॉर्फिक <math>\mathbb{C}</math> है और आंतरिक ऑटोमोर्फिज्म, कम्यूटेटिविटी द्वारा वहां पहचान मानचित्रण को कम कर देता है। चूंकि चतुष्कोणों को दो जटिल आयामों के बीजगणित के रूप में व्याख्या किया जा सकता है। रोटेशन ग्रुप एक्शन (गणित) को [[विशेष एकात्मक समूह]] SU(2) के माध्यम से भी देखा जा सकता है।


एक निश्चित r''' के लिए फॉर्म के संस्करण exp(''ar) जहां पर ''a'' ∈{{open-closed|−π, π}}, सर्कल समूह के लिए [[उपसमूह]] आइसोमोर्फिक बनाएं। इस उपसमूह की बायीं गुणन क्रिया की कक्षाएँ 2-गोले के ऊपर [[फाइबर बंडल]] के तंतु हैं। जिन्हें r =''i'' में हॉफ फ़िब्रेशन के रूप में जाना जाता है। अन्य वैक्टर आइसोमॉर्फिक देते हैं। किन्तु समान फ़िब्रेशन नहीं प्रदर्शित करते हैं। 2003 में डेविड डब्ल्यू ल्योंस<ref>{{citation | doi=10.2307/3219300 | last=Lyons | first=David W. | title=An Elementary Introduction to the Hopf Fibration | journal=[[Mathematics Magazine]] | volume=76 | issue=2 | pages=87–98 |date=April 2003 | url=http://csunix1.lvc.edu/~lyons/pubs/hopf_paper_preprint.pdf | issn=0025-570X | jstor=3219300| citeseerx=10.1.1.583.3499 }}</ref> ने लिखा है कि हॉफ मानचित्र के तंतु S<sup>3</sup>" में वृत्त हैं। यूनिट क्वाटरनियंस पर मैपिंग के रूप में हॉफ फिब्रेशन को स्पष्ट करने के लिए ल्योंस क्वाटरनियंस का एक प्रारंभिक परिचय देता है।
एक निश्चित r''' के लिए फॉर्म के संस्करण exp(''ar) जहां पर ''a'' ∈{{open-closed|−π, π}}, सर्कल समूह के लिए [[उपसमूह]] आइसोमोर्फिक बनाएं। इस उपसमूह की बायीं गुणन क्रिया की कक्षाएँ 2-गोले के ऊपर [[फाइबर बंडल]] के तंतु हैं। जिन्हें r =''i'' में हॉफ फ़िब्रेशन के रूप में जाना जाता है। अन्य वैक्टर आइसोमॉर्फिक देते हैं। किन्तु समान फ़िब्रेशन नहीं प्रदर्शित करते हैं। 2003 में डेविड डब्ल्यू ल्योंस<ref>{{citation | doi=10.2307/3219300 | last=Lyons | first=David W. | title=An Elementary Introduction to the Hopf Fibration | journal=[[Mathematics Magazine]] | volume=76 | issue=2 | pages=87–98 |date=April 2003 | url=http://csunix1.lvc.edu/~lyons/pubs/hopf_paper_preprint.pdf | issn=0025-570X | jstor=3219300| citeseerx=10.1.1.583.3499 }}</ref> ने लिखा है कि हॉफ मानचित्र के तंतु S<sup>3</sup>" में वृत्त हैं। यूनिट क्वाटरनियंस पर मैपिंग के रूप में हॉफ फिब्रेशन को स्पष्ट करने के लिए ल्योंस क्वाटरनियंस का एक प्रारंभिक परिचय देता है।


चतुष्कोण गुणन के साथ [[बलोच क्षेत्र]] के घुमावों का प्रतिनिधित्व करने के लिए वर्सोर का उपयोग किया गया है।<ref>K. B. Wharton, D. Koch (2015) "Unit quaternions and the Bloch Sphere", [[Journal of Physics A]] 48(23) {{doi|10.1088/1751-8113/48/23/235302}} {{mr|id=3355237}}</ref>
चतुष्कोण गुणन के साथ [[बलोच क्षेत्र]] के घुमावों का प्रतिनिधित्व करने के लिए वर्सोर का उपयोग किया गया है।<ref>K. B. Wharton, D. Koch (2015) "Unit quaternions and the Bloch Sphere", [[Journal of Physics A]] 48(23) {{doi|10.1088/1751-8113/48/23/235302}} {{mr|id=3355237}}</ref>
Line 62: Line 62:
:<math>\exp(ar) = \cosh a + \mathbf{r} \sinh a</math>  
:<math>\exp(ar) = \cosh a + \mathbf{r} \sinh a</math>  
:जहाँ <math> \mathbf{r}^2  = +1.</math>
:जहाँ <math> \mathbf{r}^2  = +1.</math>
ऐसे तत्व [[मीट्रिक हस्ताक्षर]] के बीजगणित में उत्पन्न होते हैं। उदाहरण के लिए [[विभाजित-जटिल संख्या]]एं या विभाजन-चतुर्भुज। यह 1848 में [[जेम्स कॉकल (वकील)]] द्वारा खोजे गए टेसरीन का बीजगणित था। जिसने सबसे पहले हाइपरबोलिक वर्सोर प्रदान किए। वास्तव में जेम्स कॉकल ने उपरोक्त समीकरण के साथ {{math|j}} के स्थान पर {{math|r}} जब उन्होंने पाया कि टेसरीन में नए प्रकार के काल्पनिक तत्व सम्मिलित हैं।
ऐसे तत्व [[मीट्रिक हस्ताक्षर]] के बीजगणित में उत्पन्न होते हैं। उदाहरण के लिए [[विभाजित-जटिल संख्या]]एं या विभाजन-चतुर्भुज। यह 1848 में [[जेम्स कॉकल (वकील)]] द्वारा खोजे गए टेसरीन का बीजगणित था। जिसने सबसे पहले हाइपरबोलिक वर्सोर प्रदान किए। वास्तव में जेम्स कॉकल ने उपरोक्त समीकरण के साथ {{math|j}} के स्थान पर {{math|r}} जब उन्होंने पाया कि टेसरीन में नए प्रकार के काल्पनिक तत्व सम्मिलित हैं।


इस वर्सोर का उपयोग होमर्शम कॉक्स (गणितज्ञ) (1882/83) द्वारा चतुष्कोण गुणन के संबंध में किया गया था।<ref>{{Cite journal|author=Cox, H.|year=1883|orig-year=1882|title=विभिन्न प्रकार के यूनिफ़ॉर्म स्पेस के लिए क्वाटरनियंस और ग्रासमैन के ऑस्देहनुंगस्लेह्रे के अनुप्रयोग पर|journal=[[Transactions of the Cambridge Philosophical Society]]|volume=13|pages=69–143|url=https://archive.org/details/transactions13camb/page/68}}</ref><ref>{{Cite journal|author=Cox, H.|year=1883|orig-year=1882|title=विभिन्न प्रकार के यूनिफ़ॉर्म स्पेस के लिए क्वाटरनियंस और ग्रासमैन के ऑस्देहनुंगस्लेह्रे के अनुप्रयोग पर|journal=Proc. Camb. Phil. Soc.|volume=4|pages=194–196|url=https://archive.org/details/proceedingsofcam4188083camb}}</ref> हाइपरबोलिक वर्सोर के प्राथमिक प्रतिपादक [[अलेक्जेंडर मैकफर्लेन]] थे क्योंकि उन्होंने भौतिक विज्ञान की सेवा के लिए चतुष्कोणीय सिद्धांत को आकार देने के लिए काम किया था।<ref>[[Alexander Macfarlane]] (1894) [https://archive.org/details/principlesalgeb01macfgoog Papers on Space Analysis], especially papers #2, 3, & 5, B. Westerman, New York, weblink from [[archive.org]]</ref> उन्होंने स्प्लिट-कॉम्प्लेक्स नंबर प्लेन पर काम करने वाले हाइपरबोलिक वर्सर्स की मॉडलिंग शक्ति को देखा और 1891 में उन्होंने अवधारणा को 4-स्पेस तक विस्तारित करने के लिए हाइपरबोलिक [[biquaternion|द्वि चतुष्कोण]] को प्रारम्भ किया। उस बीजगणित में समस्याओं के कारण 1900 के बाद बाईक्वाटरनियंस का उपयोग हुआ। 1899 की एक व्यापक परिचालित समीक्षा में मैकफर्लेन ने कहा:
इस वर्सोर का उपयोग होमर्शम कॉक्स (गणितज्ञ) (1882/83) द्वारा चतुष्कोण गुणन के संबंध में किया गया था।<ref>{{Cite journal|author=Cox, H.|year=1883|orig-year=1882|title=विभिन्न प्रकार के यूनिफ़ॉर्म स्पेस के लिए क्वाटरनियंस और ग्रासमैन के ऑस्देहनुंगस्लेह्रे के अनुप्रयोग पर|journal=[[Transactions of the Cambridge Philosophical Society]]|volume=13|pages=69–143|url=https://archive.org/details/transactions13camb/page/68}}</ref><ref>{{Cite journal|author=Cox, H.|year=1883|orig-year=1882|title=विभिन्न प्रकार के यूनिफ़ॉर्म स्पेस के लिए क्वाटरनियंस और ग्रासमैन के ऑस्देहनुंगस्लेह्रे के अनुप्रयोग पर|journal=Proc. Camb. Phil. Soc.|volume=4|pages=194–196|url=https://archive.org/details/proceedingsofcam4188083camb}}</ref> हाइपरबोलिक वर्सोर के प्राथमिक प्रतिपादक [[अलेक्जेंडर मैकफर्लेन]] थे क्योंकि उन्होंने भौतिक विज्ञान की सेवा के लिए चतुष्कोणीय सिद्धांत को आकार देने के लिए काम किया था।<ref>[[Alexander Macfarlane]] (1894) [https://archive.org/details/principlesalgeb01macfgoog Papers on Space Analysis], especially papers #2, 3, & 5, B. Westerman, New York, weblink from [[archive.org]]</ref> उन्होंने स्प्लिट-कॉम्प्लेक्स नंबर प्लेन पर काम करने वाले हाइपरबोलिक वर्सर्स की मॉडलिंग शक्ति को देखा और 1891 में उन्होंने अवधारणा को 4-स्पेस तक विस्तारित करने के लिए हाइपरबोलिक [[biquaternion|द्वि चतुष्कोण]] को प्रारम्भ किया। उस बीजगणित में समस्याओं के कारण 1900 के बाद बाईक्वाटरनियंस का उपयोग हुआ। 1899 की एक व्यापक परिचालित समीक्षा में मैकफर्लेन ने कहा:
:...किसी द्विघात समीकरण का मूल वर्सर प्रकृति का या अदिश प्रकृति का हो सकता है। यदि यह प्रकृति में वर्सर है। तो रेडिकल से प्रभावित भाग में संदर्भ के विमान के लंबवत धुरी सम्मिलित है और यह ऐसा है कि रेडिकल में माइनस एक का वर्गमूल सम्मिलित हो या नहीं। पूर्व स्थितियां में वर्सोर परिपत्र है और बाद के [[अतिशयोक्तिपूर्ण चतुष्कोण|हाइपरबोलिक चतुष्कोण]] भी इस स्थिति में सम्मिलित हैं।<ref>[[Science (journal)|Science]], 9:326 (1899)</ref>
:...किसी द्विघात समीकरण का मूल वर्सर प्रकृति का या अदिश प्रकृति का हो सकता है। यदि यह प्रकृति में वर्सर है। तो रेडिकल से प्रभावित भाग में संदर्भ के विमान के लंबवत धुरी सम्मिलित है और यह ऐसा है कि रेडिकल में माइनस एक का वर्गमूल सम्मिलित हो या नहीं। पूर्व स्थितियां में वर्सोर परिपत्र है और बाद के [[अतिशयोक्तिपूर्ण चतुष्कोण|हाइपरबोलिक चतुष्कोण]] भी इस स्थिति में सम्मिलित हैं।<ref>[[Science (journal)|Science]], 9:326 (1899)</ref>
आज [[एक-पैरामीटर समूह]] की अवधारणा वर्सोर और हाइपरबोलिक वर्सोर की अवधारणाओं को ग्रहण करती है क्योंकि [[सोफस झूठ|सोफस लाई]] की शब्दावली ने हैमिल्टन और मैकफर्लेन की शब्दावली को बदल दिया है। विशेष रूप से प्रत्येक के लिए {{math|r}} ऐसा है कि {{nowrap|'''{{math|r r}}''' {{=}} +1}} या {{nowrap|'''{{math|r r}}''' {{=}} &minus;1}}, मैपिंग <math>a \mapsto \exp(a\,\mathbf{r})</math> वास्तविक रेखा बीजगणित में हाइपरबोलिक या साधारण वर्सोर के समूह में ले जाता है। सामान्य स्थितियां में, जब {{math|r}} और -{{math|r}} एक गोले पर [[एंटीपोडल बिंदु]] हैं, एक-पैरामीटर समूहों के समान बिंदु हैं। किन्तु ये विपरीत दिशा में निर्देशित हैं। भौतिकी में घूर्णी सममिति के इस तथ्य को द्विक (भौतिकी) कहा जाता है।
आज [[एक-पैरामीटर समूह]] की अवधारणा वर्सोर और हाइपरबोलिक वर्सोर की अवधारणाओं को ग्रहण करती है क्योंकि [[सोफस झूठ|सोफस लाई]] की शब्दावली ने हैमिल्टन और मैकफर्लेन की शब्दावली को बदल दिया है। विशेष रूप से प्रत्येक के लिए {{math|r}} ऐसा है कि {{nowrap|'''{{math|r r}}''' {{=}} +1}} या {{nowrap|'''{{math|r r}}''' {{=}} &minus;1}}, मैपिंग <math>a \mapsto \exp(a\,\mathbf{r})</math> वास्तविक रेखा बीजगणित में हाइपरबोलिक या साधारण वर्सोर के समूह में ले जाता है। सामान्य स्थितियां में, जब {{math|r}} और -{{math|r}} एक गोले पर [[एंटीपोडल बिंदु]] हैं, एक-पैरामीटर समूहों के समान बिंदु हैं। किन्तु ये विपरीत दिशा में निर्देशित हैं। भौतिकी में घूर्णी सममिति के इस तथ्य को द्विक (भौतिकी) कहा जाता है।

Revision as of 17:02, 15 March 2023

गणित में एक वर्सोर आदर्श एक यूनिट (रिंग थ्योरी) का चतुर्भुज है। यह शब्द लैटिन वर्सारे = प्रत्यय -या के साथ क्रिया से संज्ञा बनाने के लिए लिया गया है (अर्थात् वर्सर = टर्नर)। इसे विलियम रोवन हैमिल्टन ने अपने चतुष्कोणीय सिद्धांत के संदर्भ में प्रस्तुत किया था।

प्रत्येक वर्सोर का रूप है:

जहां r2 = -1 स्थिति का अर्थ है कि r एक इकाई-लम्बाई सदिश चतुर्भुज है (अथवा r का पहला घटक शून्य है और r के अंतिम तीन घटक 3 आयामों में एक इकाई सदिश हैं)। संबंधित त्रि-आयामी स्थान 3-आयामी घुमाव में अक्ष-कोण प्रतिनिधित्व में अक्ष r के बारे में कोण 2a है। यदि a = π/2 (एक समकोण), फिर और परिणामी इकाई वेक्टर को सही वर्सोर कहा जाता है।

चतुष्कोण गुणन के साथ वर्सोर का संग्रह समूह (गणित) बनाता है और वर्सोर का समूह 4-आयामी चतुष्कोणीय (बीजगणित में) त्रिआयामी-क्षेत्र है।

3 और 2-गोले पर प्रस्तुति

चाप AB + चाप BC = चाप AC

हैमिल्टन ने प्रतीक Uq द्वारा चतुष्कोण q के वर्सोर को निरूपित किया। जिससे वह ध्रुवीय अपघटन चतुर्धातुक समूह अपघटन में सामान्य चतुष्कोण प्रदर्शित करने में सक्षम था।

q = Tq Uq,

जहां पर Tq, q का मानदंड है। वर्सोर का मानदंड सदैव एक के बराबर होता है। इसलिए वे H में इकाई 3-क्षेत्र पर अपना अधिकार कर लेते हैं। वर्सोर के उदाहरणों में चतुष्कोणीय समूह के आठ तत्व सम्मिलित हैं। विशेष रूप से मौलिक हैमिल्टनियन चतुष्कोण समकोण वर्सोर है। जिनका समकोण π/2 है। इन वर्सोर में शून्य स्केलर भाग होता है और इसी प्रकार लंबाई (यूनिट वैक्टर) के यूक्लिडियन वेक्टर होते हैं। चतुष्कोणीय बीजगणित में दायाँ वर्सोर -1 के वर्गमूल का एक गोला बनाता है। जनरेटर i, j और k राइट वर्सोर्स के उदाहरण हैं। इसके साथ ही साथ उनके योगात्मक व्युत्क्रम भी अन्य वर्सोर में चौबीस हर्विट्ज़ चतुष्कोण सम्मिलित हैं। जिनका मानक 1 है और 24-सेल पॉलीकोरोन के शीर्ष बनाते हैं।

हैमिल्टन ने चतुष्कोण को दो सदिशों के भागफल के रूप में परिभाषित किया। एक वर्सोर को दो इकाई सदिशों के भागफल के रूप में परिभाषित किया जा सकता है। किसी भी स्थिर समतल (ज्यामिति) के लिए Π में स्थित दो इकाई सदिशों का भागफल केवल उन दोनों के बीच के कोण (निर्देशित) पर पूर्णतयः निर्भर करता है। वही a जैसा कि इकाई सदिश-कोण प्रतिनिधित्व में उपरोक्त समझाया गया है। इसलिए संबंधित वर्सोर को निर्देशित चाप (ज्यामिति) के रूप में समझना स्वाभाविक और सरल हो सकता है। जो इकाई सदिशों के युग्मों को जोड़ते हैं और इकाई गोले के साथ Π के प्रतिच्छेदन बिन्दु द्वारा गठित एक बड़े वृत्त पर स्थित होते हैं। जिस स्थान पर समतल Π मूल बिंदु से होकर निकलता है। समान दिशा और लंबाई के चाप रेडियंस में (एक वृत्त के चाप की लंबाई) तुल्यता संबंध हैं, अर्थात एक ही वर्सोर को परिभाषित करते हैं।

इस प्रकार का चाप, चूंकि त्रि-आयामी अंतरिक्ष में स्थापित है, एक बिंदु के घूर्णन के पथ का प्रतिनिधित्व नहीं करता है। जैसा कि सैंडविच वाले उत्पाद के साथ वर्सोर वर्णित है। प्रत्यक्ष रूप में यह चतुष्कोणों पर वर्सोर की बायीं गुणन क्रिया का प्रतिनिधित्व करता है। जो सतह Π और 3-वैक्टरों के संबंधित बडें गोले को संरक्षित करता है। वर्सोर द्वारा परिभाषित 3-आयामी घुमाव में चाप के अंतरित कोण का दो गुना कोण होता है और उसी विमान को संरक्षित करता है। यह संगत सदिश r के परितः घूर्णन है। जो कि Π के लंबवत है।

हैमिल्टन तीन इकाई सदिशों पर वर्णन करता है[1]

और

अर्थात्

मानदंड के चतुष्कोणों का गुणन इकाई क्षेत्र पर बड़े वृत्त चापों के (गैर-विनिमेय) जोड़ से मिलता जुलता है। बड़े वृत्तों का कोई भी युग्म या तो एक ही वृत्त होता है या उसके दो प्रतिच्छेदन बिंदु होते हैं। इसलिए कोई सदैव बिंदु B और संबंधित वेक्टर को इनमें से किसी एक बिंदु पर स्थानांतरित कर सकता है। जैसे कि दूसरी चाप की प्रारम्भिक पहली चाप के अंत के समान होगी।

एक समीकरण

निहित रूप से दो संस्करणों के उत्पाद के लिए इकाई वेक्टर-कोण प्रतिनिधित्व को निर्दिष्ट करता है। इसका समाधान लाइ समूह सिद्धांत में सामान्य कैंपबेल-बेकर-हॉसडॉर्फ सूत्र का एक उदाहरण है। जैसा कि {H} में वर्सर्स द्वारा दर्शाया गया 3-क्षेत्र एक 3-पैरामीटर लाई समूह है। वर्सोर रचनाओं के साथ अभ्यास लाई सिद्धांत में एक महत्वपूर्ण भाग है। स्पष्ट रूप से वर्सोर सदिशों के चतुष्कोणीय उपस्थान में त्रिज्या π की एक गेंद पर निर्धारित घातीय मानचित्र (लाई सिद्धांत) की छवि हैं।

वर्सर्स पूर्वोक्त वेक्टर आर्क्स के रूप में रचना करते हैं और हैमिल्टन ने इस समूह (गणित) को आर्क्स के योग के रूप में संदर्भित किया है। किन्तु चतुष्कोणों के रूप में गुणा करते हैं।

अण्डाकार अंतरिक्ष की ज्यामिति को वर्सोर के स्थान के रूप में वर्णित किया गया है।[2]


SO(3) का प्रतिनिधित्व

तीन आयामों में ओर्थोगोनल समूह, घूर्णन समूह SO(3) प्रायः आंतरिक ऑटोमोर्फिज्म के माध्यम से वर्सोर के साथ व्याख्या की जाती है जहां u एक वर्सोर है।

यदि

और सदिश s, r के लंबवत है।

जिससे

गणना द्वारा।[3] सतह के लिए आइसोमॉर्फिक है और आंतरिक ऑटोमोर्फिज्म, कम्यूटेटिविटी द्वारा वहां पहचान मानचित्रण को कम कर देता है। चूंकि चतुष्कोणों को दो जटिल आयामों के बीजगणित के रूप में व्याख्या किया जा सकता है। रोटेशन ग्रुप एक्शन (गणित) को विशेष एकात्मक समूह SU(2) के माध्यम से भी देखा जा सकता है।

एक निश्चित r' के लिए फॉर्म के संस्करण exp(ar) जहां पर a ∈(−π, π], सर्कल समूह के लिए उपसमूह आइसोमोर्फिक बनाएं। इस उपसमूह की बायीं गुणन क्रिया की कक्षाएँ 2-गोले के ऊपर फाइबर बंडल के तंतु हैं। जिन्हें r =i में हॉफ फ़िब्रेशन के रूप में जाना जाता है। अन्य वैक्टर आइसोमॉर्फिक देते हैं। किन्तु समान फ़िब्रेशन नहीं प्रदर्शित करते हैं। 2003 में डेविड डब्ल्यू ल्योंस[4] ने लिखा है कि हॉफ मानचित्र के तंतु S3" में वृत्त हैं। यूनिट क्वाटरनियंस पर मैपिंग के रूप में हॉफ फिब्रेशन को स्पष्ट करने के लिए ल्योंस क्वाटरनियंस का एक प्रारंभिक परिचय देता है।

चतुष्कोण गुणन के साथ बलोच क्षेत्र के घुमावों का प्रतिनिधित्व करने के लिए वर्सोर का उपयोग किया गया है।[5]


अण्डाकार स्थान

वर्सोर की सुविधा अण्डाकार ज्यामिति को चित्रित करती है। विशेष रूप से अण्डाकार ज्यामिति अण्डाकार अंतरिक्ष में घुमावों का एक त्रि-आयामी क्षेत्र प्रदर्शित करता है। वर्सोर इस अण्डाकार स्थान के बिंदु हैं। चूंकि वे 4-आयामी यूक्लिडियन अंतरिक्ष में घुमावों को संदर्भित करते हैं। मानचित्रण दो निश्चित वर्सोर u और v को देखते हुए अण्डाकार गति है। यदि निश्चित वर्सोर में से 1 है। तो गति अण्डाकार स्थान का क्लिफर्ड अनुवाद है। जिसका नाम विलियम किंग्डन क्लिफोर्ड के नाम पर रखा गया है। जो अंतरिक्ष के प्रस्तावक थे। वर्सोर u के माध्यम से अण्डाकार रेखा है अंतरिक्ष में समांतरता क्लिफर्ड समांतरता द्वारा व्यक्त की जाती है। अण्डाकार अंतरिक्ष को देखने के प्रकारों में सेकेली रूपांतरण का उपयोग करता है। जिससे वर्सोर को मैप किया जा सके।


हाइपरबोलिक वर्सोर

हाइपरबोलिक वर्सोर क्वाटरनियोनिक वर्सोर का अनिश्चितकालीन ऑर्थोगोनल समूहों का सामान्यीकरण है। जैसे लोरेंत्ज़ समूह। इसे रूप की मात्रा के रूप में परिभाषित किया गया है।

जहाँ

ऐसे तत्व मीट्रिक हस्ताक्षर के बीजगणित में उत्पन्न होते हैं। उदाहरण के लिए विभाजित-जटिल संख्याएं या विभाजन-चतुर्भुज। यह 1848 में जेम्स कॉकल (वकील) द्वारा खोजे गए टेसरीन का बीजगणित था। जिसने सबसे पहले हाइपरबोलिक वर्सोर प्रदान किए। वास्तव में जेम्स कॉकल ने उपरोक्त समीकरण के साथ j के स्थान पर r जब उन्होंने पाया कि टेसरीन में नए प्रकार के काल्पनिक तत्व सम्मिलित हैं।

इस वर्सोर का उपयोग होमर्शम कॉक्स (गणितज्ञ) (1882/83) द्वारा चतुष्कोण गुणन के संबंध में किया गया था।[6][7] हाइपरबोलिक वर्सोर के प्राथमिक प्रतिपादक अलेक्जेंडर मैकफर्लेन थे क्योंकि उन्होंने भौतिक विज्ञान की सेवा के लिए चतुष्कोणीय सिद्धांत को आकार देने के लिए काम किया था।[8] उन्होंने स्प्लिट-कॉम्प्लेक्स नंबर प्लेन पर काम करने वाले हाइपरबोलिक वर्सर्स की मॉडलिंग शक्ति को देखा और 1891 में उन्होंने अवधारणा को 4-स्पेस तक विस्तारित करने के लिए हाइपरबोलिक द्वि चतुष्कोण को प्रारम्भ किया। उस बीजगणित में समस्याओं के कारण 1900 के बाद बाईक्वाटरनियंस का उपयोग हुआ। 1899 की एक व्यापक परिचालित समीक्षा में मैकफर्लेन ने कहा:

...किसी द्विघात समीकरण का मूल वर्सर प्रकृति का या अदिश प्रकृति का हो सकता है। यदि यह प्रकृति में वर्सर है। तो रेडिकल से प्रभावित भाग में संदर्भ के विमान के लंबवत धुरी सम्मिलित है और यह ऐसा है कि रेडिकल में माइनस एक का वर्गमूल सम्मिलित हो या नहीं। पूर्व स्थितियां में वर्सोर परिपत्र है और बाद के हाइपरबोलिक चतुष्कोण भी इस स्थिति में सम्मिलित हैं।[9]

आज एक-पैरामीटर समूह की अवधारणा वर्सोर और हाइपरबोलिक वर्सोर की अवधारणाओं को ग्रहण करती है क्योंकि सोफस लाई की शब्दावली ने हैमिल्टन और मैकफर्लेन की शब्दावली को बदल दिया है। विशेष रूप से प्रत्येक के लिए r ऐसा है कि r r = +1 या r r = −1, मैपिंग वास्तविक रेखा बीजगणित में हाइपरबोलिक या साधारण वर्सोर के समूह में ले जाता है। सामान्य स्थितियां में, जब r और -r एक गोले पर एंटीपोडल बिंदु हैं, एक-पैरामीटर समूहों के समान बिंदु हैं। किन्तु ये विपरीत दिशा में निर्देशित हैं। भौतिकी में घूर्णी सममिति के इस तथ्य को द्विक (भौतिकी) कहा जाता है।

1911 में अल्फ्रेड रॉब ने अपनी 'ऑप्टिकल ज्योमेट्री ऑफ मोशन' प्रकाशित की। जिसमें उन्होंने पैरामीटर तेज़ी की पहचान की। जो संदर्भ के फ्रेम में बदलाव को निर्दिष्ट करता है। यह रैपिडिटी पैरामीटर हाइपरबोलिक वर्सोर के एक-पैरामीटर समूह में वास्तविक चर से मिलता है। विशेष आपेक्षिकता के और विकास के साथ एक हाइपरबोलिक वर्सोर की क्रिया को लोरेंत्ज़ बूस्ट कहा जाने लगा था।

लाई सिद्धांत

सोफस ली एक वर्ष से भी कम उम्र के थे। जब हैमिल्टन ने पहली बार चतुष्कोणों का वर्णन किया था। किन्तु ली का नाम घातांक द्वारा उत्पन्न सभी समूहों के साथ जुड़ गया है। उनके गुणन के साथ वर्सोर के समूब को रॉबर्ट गिलमोर द्वारा लाई थ्योरी पर अपने पाठ में Sl(1,q) के रूप में निरूपित किया गया है।[10] Sl(1,q) चतुष्कोणों पर आयाम का विशेष रैखिक समूह है। यह विशेष निर्देशित करता है कि सभी तत्व मानक एक हैं। समूह SU(2,c) के लिए आइसोमोर्फिक है। एक विशेष एकात्मक समूह प्रायः प्रयोग किया जाने वाला पदनाम है क्योंकि चतुष्कोणों और वर्सोर को कभी-कभी समूह सिद्धांत के लिए कालानुक्रमिक माना जाता है। घूर्णन समूह SO(3)|तीन आयामों में घूर्णन का विशेष लांबिक समूह SO(3,r) निकटता से संबंधित है। यह SU(2,c) की 2:1 समरूपी छवि है।

उपस्थान वर्सोर के समूह का लाई बीजगणित कहा जाता है। कम्यूटेटर उत्पाद बस दो सदिशों के क्रॉस उत्पाद को दोगुना करें, लाई बीजगणित में गुणन बनाता है। SU(1,c) और SO(3,r) के बीच घनिष्ठ संबंध उनके लाई बीजगणित के समरूपता में स्पष्ट है।[10]

हाइपरबोलिक वर्सोर वाले लाई समूहों में इकाई हाइपरबोलिक पर समूह और विशेष एकात्मक समूह SU(1,1) सम्मिलित हैं।

यह भी देखें

  • सीआईएस (गणित) (cis(x) = cos(x) + i sin(x))
  • चतुष्कोण और स्थानिक घुमाव
  • 4-आयामी यूक्लिडियन अंतरिक्ष में घूर्णन
  • घुमाव (ज्यामिति)

टिप्पणियाँ

  1. Elements of Quaternions, 2nd edition, v. 1, p. 146
  2. Harold Scott MacDonald Coxeter (1950) Review of "Quaternions and Elliptic Space"[permanent dead link] (by Georges Lemaître) from Mathematical Reviews
  3. Rotation representation
  4. Lyons, David W. (April 2003), "An Elementary Introduction to the Hopf Fibration" (PDF), Mathematics Magazine, 76 (2): 87–98, CiteSeerX 10.1.1.583.3499, doi:10.2307/3219300, ISSN 0025-570X, JSTOR 3219300
  5. K. B. Wharton, D. Koch (2015) "Unit quaternions and the Bloch Sphere", Journal of Physics A 48(23) doi:10.1088/1751-8113/48/23/235302 MR3355237
  6. Cox, H. (1883) [1882]. "विभिन्न प्रकार के यूनिफ़ॉर्म स्पेस के लिए क्वाटरनियंस और ग्रासमैन के ऑस्देहनुंगस्लेह्रे के अनुप्रयोग पर". Transactions of the Cambridge Philosophical Society. 13: 69–143.
  7. Cox, H. (1883) [1882]. "विभिन्न प्रकार के यूनिफ़ॉर्म स्पेस के लिए क्वाटरनियंस और ग्रासमैन के ऑस्देहनुंगस्लेह्रे के अनुप्रयोग पर". Proc. Camb. Phil. Soc. 4: 194–196.
  8. Alexander Macfarlane (1894) Papers on Space Analysis, especially papers #2, 3, & 5, B. Westerman, New York, weblink from archive.org
  9. Science, 9:326 (1899)
  10. 10.0 10.1 Robert Gilmore (1974) Lie Groups, Lie Algebras and some of their Applications, chapter 5: Some simple examples, pages 120–35, Wiley ISBN 0-471-30179-5 Gilmore denotes the real, complex, and quaternion division algebras by r, c, and q, rather than the more common R, C, and H.


संदर्भ


बाहरी संबंध