स्यूडोइलास्टिकिटी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:


== सिंहावलोकन ==
== सिंहावलोकन ==
छद्म प्रत्यास्थता चरण परिवर्तन के दौरान डोमेन सीमाओं की उत्क्रमणीय गति से होती है, न कि केवल बंधन खींचने या क्रिस्टल जाली में दोषों की शुरूआत के कारण (इस प्रकार यह सच <nowiki>सुपर</nowiki>लोच (भौतिकी) नहीं है बल्कि विक्षनरी है: स्यूडो<nowiki>लचीलापन</nowiki>). यहां तक ​​कि अगर डोमेन की सीमाएं पिन हो जाती हैं, तो उन्हें हीटिंग के माध्यम से उलटा किया जा सकता है। इस प्रकार, अपेक्षाकृत उच्च लागू उपभेदों को हटाने के बाद छद्म लोचदार सामग्री अपने पिछले आकार (इसलिए, आकार स्मृति) पर वापस आ सकती है। स्यूडोइलास्टिक के विशेष मामले को बैन कॉरेस्पोंडेंस कहा जाता है। इसमें [[ घन क्रिस्टल प्रणाली ]] | फेस-सेंटर्ड क्रिस्टल लैटिस (FCC) और क्यूबिक क्रिस्टल सिस्टम | बॉडी-सेंटर्ड टेट्रागोनल क्रिस्टल स्ट्रक्चर (BCT) के बीच ऑस्टेनाइट / मार्टेंसाइट चरण परिवर्तन शामिल है।<ref name="Bhadeshia">{{cite web | author = Bhadeshia, H. K. D. H. | author-link = Harry Bhadeshia | title = द बैन पत्राचार| work = Materials Science and Metallurgy | publisher = University of Cambridge | url = http://www.msm.cam.ac.uk/phase-trans/2000/C9/lectures45.pdf }}</ref>
छद्म प्रत्यास्थता चरण परिवर्तन के समय डोमेन सीमाओं की उत्क्रमणीय गति से होती है, न कि केवल बंधन खींचने या क्रिस्टल जाली में दोषों की प्रारंभ के कारण (इस प्रकार यह सच <nowiki>सुपर</nowiki>लोच (भौतिकी) नहीं है किंतु विक्षनरी है: स्यूडो<nowiki>लचीलापन</nowiki>). यहां तक ​​कि यदि डोमेन की सीमाएं पिन हो जाती हैं, तो उन्हें ताप के माध्यम से उलटा किया जा सकता है। इस प्रकार, अपेक्षाकृत उच्च प्रयुक्त उपभेदों को हटाने के बाद छद्म लोचदार सामग्री अपने पिछले आकार (इसलिए, आकार स्मृति) पर वापस आ सकती है। स्यूडोइलास्टिक के विशेष स्थितियों को बैन पत्र-व्यवहार कहा जाता है। इसमें [[ घन क्रिस्टल प्रणाली | '''घन क्रिस्टल प्रणाली''']] | फेस-केंद्रित क्रिस्टल लैटिस (एफसीसी) और क्यूबिक क्रिस्टल सिस्टम | बॉडी-सेंटर्ड टेट्रागोनल क्रिस्टल स्ट्रक्चर (बीसीटी) के बीच ऑस्टेनाइट / मार्टेंसाइट चरण परिवर्तन सम्मिलित है।<ref name="Bhadeshia">{{cite web | author = Bhadeshia, H. K. D. H. | author-link = Harry Bhadeshia | title = द बैन पत्राचार| work = Materials Science and Metallurgy | publisher = University of Cambridge | url = http://www.msm.cam.ac.uk/phase-trans/2000/C9/lectures45.pdf }}</ref>
 
 
सुपररेलास्टिक [[मिश्र]] आकार-स्मृति मिश्र धातुओं के बड़े परिवार से संबंधित हैं। जब यांत्रिक रूप से लोड किया जाता है, तो [[तनाव-प्रेरित चरण]] के निर्माण से सुपरलेस्टिक मिश्र धातु बहुत उच्च [[तनाव (सामग्री विज्ञान)]] (10% तक) के विपरीत रूप से विकृत हो जाती है। जब भार हटा दिया जाता है, तो नया चरण अस्थिर हो जाता है और सामग्री अपने मूल आकार को पुनः प्राप्त कर लेती है। आकार-स्मृति मिश्र धातुओं के विपरीत, मिश्र धातु को अपने प्रारंभिक आकार को ठीक करने के लिए तापमान में कोई बदलाव की आवश्यकता नहीं होती है।
सुपररेलास्टिक [[मिश्र]] आकार-स्मृति मिश्र धातुओं के बड़े परिवार से संबंधित हैं। जब यांत्रिक रूप से लोड किया जाता है, तो [[तनाव-प्रेरित चरण]] के निर्माण से सुपरलेस्टिक मिश्र धातु बहुत उच्च [[तनाव (सामग्री विज्ञान)]] (10% तक) के विपरीत रूप से विकृत हो जाती है। जब भार हटा दिया जाता है, तो नया चरण अस्थिर हो जाता है और सामग्री अपने मूल आकार को पुनः प्राप्त कर लेती है। आकार-स्मृति मिश्र धातुओं के विपरीत, मिश्र धातु को अपने प्रारंभिक आकार को ठीक करने के लिए तापमान में कोई बदलाव की आवश्यकता नहीं होती है।


सुपररेलास्टिक डिवाइस अपने बड़े, प्रतिवर्ती विरूपण का लाभ उठाते हैं और इसमें [[एंटीना (रेडियो)]], चश्मा फ्रेम और बायोमेडिकल [[स्टेंट]] शामिल होते हैं।
सुपररेलास्टिक डिवाइस अपने बड़े, प्रतिवर्ती विरूपण का लाभ उठाते हैं और इसमें [[एंटीना (रेडियो)]], चश्मा फ्रेम और बायोमेडिकल [[स्टेंट]] सम्मिलित होते हैं।


[[ निकल टाइटेनियम ]] (नितिनोल) अतिरेचकता प्रदर्शित करने वाले मिश्रधातु का उदाहरण है।
[[ निकल टाइटेनियम ]] (नितिनोल) अतिरेचकता प्रदर्शित करने वाले मिश्रधातु का उदाहरण है।
[[ निकल टाइटेनियम | '''निकल टाइटेनियम''']] '''(नितिनोल) अतिरेचकता प्रदर्शित करने वाले मिश्रधातु का उदाहरण है।'''


== आकार प्रभाव ==
== आकार प्रभाव ==

Revision as of 21:24, 1 April 2023

स्यूडोइलास्टिकिटी जिसे कभी-कभी सुपररेलास्टिसिटी कहा जाता है, क्रिस्टल के ऑस्टेनिटिक और मार्टेंसिटिक चरणों के बीच चरण परिवर्तन के कारण प्रयुक्त तनाव के लिए लोचदार (प्रतिवर्ती) प्रतिक्रिया है। इसे आकार-स्मृति मिश्रधातुओं में प्रदर्शित किया जाता है।

सिंहावलोकन

छद्म प्रत्यास्थता चरण परिवर्तन के समय डोमेन सीमाओं की उत्क्रमणीय गति से होती है, न कि केवल बंधन खींचने या क्रिस्टल जाली में दोषों की प्रारंभ के कारण (इस प्रकार यह सच सुपरलोच (भौतिकी) नहीं है किंतु विक्षनरी है: स्यूडोलचीलापन). यहां तक ​​कि यदि डोमेन की सीमाएं पिन हो जाती हैं, तो उन्हें ताप के माध्यम से उलटा किया जा सकता है। इस प्रकार, अपेक्षाकृत उच्च प्रयुक्त उपभेदों को हटाने के बाद छद्म लोचदार सामग्री अपने पिछले आकार (इसलिए, आकार स्मृति) पर वापस आ सकती है। स्यूडोइलास्टिक के विशेष स्थितियों को बैन पत्र-व्यवहार कहा जाता है। इसमें घन क्रिस्टल प्रणाली | फेस-केंद्रित क्रिस्टल लैटिस (एफसीसी) और क्यूबिक क्रिस्टल सिस्टम | बॉडी-सेंटर्ड टेट्रागोनल क्रिस्टल स्ट्रक्चर (बीसीटी) के बीच ऑस्टेनाइट / मार्टेंसाइट चरण परिवर्तन सम्मिलित है।[1]


सुपररेलास्टिक मिश्र आकार-स्मृति मिश्र धातुओं के बड़े परिवार से संबंधित हैं। जब यांत्रिक रूप से लोड किया जाता है, तो तनाव-प्रेरित चरण के निर्माण से सुपरलेस्टिक मिश्र धातु बहुत उच्च तनाव (सामग्री विज्ञान) (10% तक) के विपरीत रूप से विकृत हो जाती है। जब भार हटा दिया जाता है, तो नया चरण अस्थिर हो जाता है और सामग्री अपने मूल आकार को पुनः प्राप्त कर लेती है। आकार-स्मृति मिश्र धातुओं के विपरीत, मिश्र धातु को अपने प्रारंभिक आकार को ठीक करने के लिए तापमान में कोई बदलाव की आवश्यकता नहीं होती है।

सुपररेलास्टिक डिवाइस अपने बड़े, प्रतिवर्ती विरूपण का लाभ उठाते हैं और इसमें एंटीना (रेडियो), चश्मा फ्रेम और बायोमेडिकल स्टेंट सम्मिलित होते हैं।

निकल टाइटेनियम (नितिनोल) अतिरेचकता प्रदर्शित करने वाले मिश्रधातु का उदाहरण है।

निकल टाइटेनियम (नितिनोल) अतिरेचकता प्रदर्शित करने वाले मिश्रधातु का उदाहरण है।

आकार प्रभाव

हाल ही में, एमईएमएस (माइक्रोइलेक्ट्रोमैकेनिकल सिस्टम्स) अनुप्रयोग के लिए नैनोस्केल में सुपररेलास्टिसिटी प्रदर्शित करने वाली सामग्रियों की खोज में रूचि रही है। मार्टेंसाइट चरण परिवर्तन को नियंत्रित करने की क्षमता पहले ही बताई जा चुकी है।[2] लेकिन सुपररेलास्टिकिटी के व्यवहार को नैनोस्केल में आकार के प्रभाव के रूप में देखा गया है।

गुणात्मक रूप से बोलना, सुपरलेस्टिकिटी चरण परिवर्तन द्वारा प्रतिवर्ती विकृति है। इसलिए, यह अव्यवस्था गति द्वारा अपरिवर्तनीय प्लास्टिक विरूपण के साथ प्रतिस्पर्धा करता है। नैनोस्केल पर, अव्यवस्था घनत्व और संभव फ्रैंक-रीड स्रोत साइटें बहुत कम हो जाती हैं, इसलिए कम आकार के साथ उपज तनाव बढ़ जाता है। इसलिए, नैनोस्केल में अतिरेचकता व्यवहार प्रदर्शित करने वाली सामग्रियों के लिए, यह पाया गया है कि वे थोड़े हानिकारक विकास के साथ लंबी अवधि के साइकिल चालन में काम कर सकते हैं।[3] दूसरी ओर, केंद्रक के शुरू होने के लिए कम संभावित साइटों के कारण मार्टेंसाइट चरण परिवर्तन होने के लिए महत्वपूर्ण तनाव भी बढ़ गया है। न्यूक्लियेशन आमतौर पर अव्यवस्था या सतह के दोषों के पास शुरू होता है। लेकिन नैनोस्केल सामग्री के लिए, अव्यवस्था घनत्व बहुत कम हो जाता है, और सतह आमतौर पर परमाणु रूप से चिकनी होती है। इसलिए, अतिरेचकता प्रदर्शित करने वाले नैनोस्केल सामग्रियों का चरण परिवर्तन आमतौर पर सजातीय पाया जाता है, जिसके परिणामस्वरूप बहुत अधिक महत्वपूर्ण तनाव होता है।[4] विशेष रूप से, जिरकोनिया के लिए, जहां इसके तीन चरण हैं, चरण परिवर्तन और प्लास्टिक विरूपण के बीच प्रतिस्पर्धा उन्मुखीकरण पर निर्भर पाई गई है,[5] अव्यवस्था और न्यूक्लियेशन की सक्रियता ऊर्जा की अभिविन्यास निर्भरता का संकेत। इसलिए, सुपररेलास्टिसिटी के लिए उपयुक्त नैनोस्केल सामग्री के लिए, किसी को सबसे अधिक सुपरलेस्टिक प्रभाव के लिए अनुकूलित क्रिस्टल ओरिएंटेशन और सतह खुरदरापन पर शोध करना चाहिए।

यह भी देखें

  • शेप-मेमोरी अलॉय
  • लोच (भौतिकी)

संदर्भ

  1. Bhadeshia, H. K. D. H. "द बैन पत्राचार" (PDF). Materials Science and Metallurgy. University of Cambridge.
  2. Thorsten Krenke; et al. (2007). "नी-एमएन-इन में चुंबकीय अतिरेचकता और व्युत्क्रम मैग्नेटोकलोरिक प्रभाव". Physical Review B. 75 (10): 104414. arXiv:0704.1243. Bibcode:2007PhRvB..75j4414K. doi:10.1103/PhysRevB.75.104414. S2CID 29563170.
  3. J. San Juan; et al. (2014). "Cu-Al-Ni शेप मेमोरी एलॉय माइक्रोपिलर्स में नैनो-स्केल पर लंबे समय तक सुपररेलास्टिक साइकिलिंग". Applied Physics Letters. AIP. 104 (1): 011901. Bibcode:2014ApPhL.104a1901S. doi:10.1063/1.4860951.
  4. J. San Juan; et al. (2013). "superelasticity and shape memory at nano-scale: size effects on the martensitic transformation". Journal of Alloys and Compounds. Elsevier. 577: S25–S29. doi:10.1016/j.jallcom.2011.10.110.
  5. Ning Zhang; et al. (2016). "एकल क्रिस्टलीय yttria- स्थिर टेट्रागोनल ज़िरकोनिया नैनोपिलर के प्लास्टिक विरूपण में अव्यवस्था और चरण परिवर्तन के बीच प्रतिस्पर्धा तंत्र". Acta Materialia. 120: 337–347. arXiv:1607.03141. Bibcode:2016AcMat.120..337Z. doi:10.1016/j.actamat.2016.08.075. S2CID 118512427.


बाहरी संबंध