एबेलियन समाकलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 8: Line 8:


:<math>F(x,w)\equiv\varphi_n(x)w^n+\cdots+\varphi_1(x)w +\varphi_0\left(x\right),</math>
:<math>F(x,w)\equiv\varphi_n(x)w^n+\cdots+\varphi_1(x)w +\varphi_0\left(x\right),</math>
जिनके गुणांक <math>\varphi_j(x)</math>, <math>j=0,1,\ldots,n</math> के तर्कसंगत फलन हैं <math>x</math>. एबेलियन समाकलन का मूल्य न केवल समाकलन की सीमा पर निर्भर करता है, किंतु उस रास्ते पर भी निर्भर करता है जिसके साथ समाकलन लिया जाता है; यह इस प्रकार का बहुविकल्पीय फलन <math>z</math> है .
जिनके गुणांक <math>\varphi_j(x)</math>, <math>j=0,1,\ldots,n</math> के तर्कसंगत फलन <math>x</math> हैं. एबेलियन समाकलन का मान न केवल समाकलन की सीमा पर निर्भर करता है, किंतु उस रास्ते पर भी निर्भर करता है जिसके साथ समाकलन लिया जाता है; यह इस प्रकार का बहुविकल्पीय फलन <math>z</math> है .


एबेलियन समाकलन अंडाकार समाकलन के प्राकृतिक सामान्यीकरण हैं, जो तब उत्पन्न होते हैं
एबेलियन समाकलन अंडाकार समाकलन के प्राकृतिक सामान्यीकरण हैं, जो तब उत्पन्न होते हैं
Line 16: Line 16:


== इतिहास ==
== इतिहास ==
एबेलियन समाकलन्स का सिद्धांत एबेल द्वारा एक पेपर के साथ उत्पन्न हुआ<ref>{{harvnb|Abel|1841}}.</ref> 1841 में प्रकाशित। यह पत्र 1826 में उनके पेरिस प्रवास के समय लिखा गया था और उसी वर्ष अक्टूबर में [[ऑगस्टिन-लुई कॉची]] को प्रस्तुत किया गया था। यह सिद्धांत, बाद में पूरी तरह से दूसरों द्वारा विकसित,<ref>{{harvnb|Appell|Goursat|1895|page=248}}.</ref> उन्नीसवीं शताब्दी के गणित की सर्वोच्च उपलब्धियों में से एक था और आधुनिक गणित के विकास पर इसका बड़ा प्रभाव पड़ा है। अधिक अमूर्त और ज्यामितीय भाषा में, यह [[एबेलियन किस्म]] की अवधारणा में निहित है, या अधिक स्पष्ट रूप से [[बीजगणितीय वक्र]] को एबेलियन किस्मों में मैप किया जा सकता है। एबेलियन समाकलन बाद में प्रमुख गणितज्ञ [[डेविड हिल्बर्ट]] की हिल्बर्ट की सोलहवीं समस्या से जुड़े थे, और उन्हें समकालीन गणित में सबसे महत्वपूर्ण चुनौतियों में से एक माना जाता है।
एबेलियन समाकलन्स का सिद्धांत एबेल द्वारा एक पेपर के साथ उत्पन्न हुआ<ref>{{harvnb|Abel|1841}}.</ref> 1841 में प्रकाशित यह पत्र 1826 में उनके पेरिस प्रवास के समय लिखा गया था और उसी वर्ष अक्टूबर में [[ऑगस्टिन-लुई कॉची]] को प्रस्तुत किया गया था। यह सिद्धांत, बाद में पूरी तरह से दूसरों द्वारा विकसित,<ref>{{harvnb|Appell|Goursat|1895|page=248}}.</ref> उन्नीसवीं शताब्दी के गणित की सर्वोच्च उपलब्धियों में से एक था और आधुनिक गणित के विकास पर इसका बड़ा प्रभाव पड़ा है। अधिक अमूर्त और ज्यामितीय भाषा में, यह [[एबेलियन किस्म]] की अवधारणा में निहित है, या अधिक स्पष्ट रूप से [[बीजगणितीय वक्र]] को एबेलियन किस्मों में मैप किया जा सकता है। एबेलियन समाकलन बाद में प्रमुख गणितज्ञ [[डेविड हिल्बर्ट]] की हिल्बर्ट की सोलहवीं समस्या से जुड़े थे, और उन्हें समकालीन गणित में सबसे महत्वपूर्ण चुनौतियों में से एक माना जाता है।
 
'''समस्या से जुड़े थे, और उन्हें समकालीन गणित में सबसे महत्वपूर्ण चुनौतियों में से एक माना जाता है।'''


== आधुनिक दृश्य ==
== आधुनिक दृश्य ==
[[रीमैन सतहों]] के सिद्धांत में, एबेलियन समाकलन पहली तरह के अंतर के अनिश्चित समाकलन से संबंधित फलन है। मान लीजिए हमें रीमैन सतह <math>S</math> दी गई है और उस पर एक [[विभेदक रूप]]|अंतर 1-रूप <math>\omega</math> वह हर जगह [[होलोमॉर्फिक फ़ंक्शन|होलोमॉर्फिक फलन]] पर है <math>S</math>, और एक बिंदु तय करें <math>P_0</math> पर <math>S</math>, जिससे एकीकृत करना है। हम मान सकते हैं
[[रीमैन सतहों]] के सिद्धांत में, एबेलियन समाकलन पहली तरह के अंतर के अनिश्चित समाकलन से संबंधित फलन है। मान लीजिए हमें रीमैन सतह <math>S</math> दी गई है और उस पर एक अंतर 1-रूप <math>\omega</math> दिया गया है जो <math>S</math> पर हर जगह [[होलोमॉर्फिक फ़ंक्शन|होलोमॉर्फिक फलन]] पर है और <math>S</math> एक बिंदु <math>P_0</math> तय करता है जिससे एकीकृत करना है।  


:<math>\int_{P_0}^P \omega</math>
:<math>\int_{P_0}^P \omega</math>
एक बहु-मूल्यवान फलन के रूप में <math>f\left(P\right)</math>, या (उत्तम) चुने हुए रास्ते का वास्तविक फलन <math>C</math> के नाम आहरित <math>S</math> से <math>P_0</math> को <math>P</math>. चूँकि <math>S</math> सामान्य रूप से गुणा किया जाएगा, किसी को <math>C</math> निर्दिष्ट करना चाहिए लेकिन मूल्य वास्तव में केवल <math>C</math> के होमोलॉजी वर्ग पर निर्भर करेगा
एक बहु-मानवान फलन के रूप में <math>f\left(P\right)</math>, या (उत्तम) चुने हुए रास्ते का वास्तविक फलन <math>C</math> के नाम आहरित <math>S</math> से <math>P_0</math> को <math>P</math>. चूँकि <math>S</math> सामान्य रूप से गुणा किया जाएगा, किसी को <math>C</math> निर्दिष्ट करना चाहिए किंतु मान वास्तव में केवल <math>C</math> के होमोलॉजी वर्ग पर निर्भर करेगा


<math>S</math> के स्तिथि में [[जीनस (गणित)|वर्ग (गणित)]] 1 की [[कॉम्पैक्ट रीमैन सतह]], यानी [[अण्डाकार वक्र]], ऐसे फलन अण्डाकार अभिन्न हैं। तार्किक रूप से बोलते हुए, एबेलियन समाकलन एक फलन होना चाहिए जैसे <math>f</math>.
<math>S</math> के स्तिथि में [[जीनस (गणित)|वर्ग (गणित)]] 1 की [[कॉम्पैक्ट रीमैन सतह]], यानी [[अण्डाकार वक्र]], ऐसे फलन अण्डाकार अभिन्न हैं। तार्किक रूप से बोलते हुए, एबेलियन समाकलन एक फलन होना चाहिए जैसे <math>f</math>.


इस तरह के फलनों को पहली बार हाइपरेलिप्टिक समाकलन का अध्ययन करने के लिए प्रस्तुत किया गया था, यानी, जहां स्तिथि के लिए <math>S</math> [[हाइपरेलिप्टिक वक्र]] है। [[बीजगणितीय कार्य|बीजगणितीय फलनो]] को सम्मिलित करने वाले समाकलन के स्तिथि में एकीकरण के सिद्धांत में यह प्राकृतिक कदम है <math>\sqrt{A}</math>, जहाँ <math>A</math> डिग्री <math>>4</math> का [[बहुपद]] है सिद्धांत की पहली प्रमुख अंतर्दृष्टि हाबिल द्वारा दी गई थी; इसे बाद में जैकोबियन किस्म के संदर्भ में तैयार किया गया था <math>J\left(S\right)</math>. के विकल्प <math>P_0</math> मानक होलोमोर्फिक फलन को जन्म देता है
इस तरह के फलनों को पहली बार हाइपरेलिप्टिक समाकलन का अध्ययन करने के लिए प्रस्तुत किया गया था, यानी, जहां स्तिथि के लिए <math>S</math> [[हाइपरेलिप्टिक वक्र]] है। [[बीजगणितीय कार्य|बीजगणितीय फलनो]] को सम्मिलित करने वाले समाकलन के स्तिथि में एकीकरण के सिद्धांत में यह प्राकृतिक कदम है <math>\sqrt{A}</math>, जहाँ <math>A</math> डिग्री <math>>4</math> का [[बहुपद]] है सिद्धांत की पहली प्रमुख अंतर्दृष्टि हाबिल द्वारा दी गई थी; इसे बाद में जैकोबियन किस्म <math>J\left(S\right)</math> के संदर्भ में तैयार किया गया था . <math>P_0</math> के विकल्प एक मानक होलोमोर्फिक फलन को जन्म देता है


:<math>S\to J(S)</math>
:<math>S\to J(S)</math>
[[जटिल कई गुना]]। इसकी परिभाषित अधिकार है कि होलोमोर्फिक 1-रूपों पर <math>S\to J(S)</math>, जिनमें से g स्वतंत्र हैं यदि g, S का वर्ग है, S पर पहली तरह के भिन्नता के आधार पर [[ पुलबैक (अंतर ज्यामिति) |रोक]] लेता है।
[[जटिल कई गुना]]। इसकी परिभाषित अधिकार है कि होलोमोर्फिक 1-रूपों पर <math>S\to J(S)</math> पर है, जिनमें से g स्वतंत्र हैं यदि g, S का वर्ग है, S पर पहली तरह के भिन्नता के आधार पर [[ पुलबैक (अंतर ज्यामिति) |रोक]] लेता है।


== टिप्पणियाँ ==
== टिप्पणियाँ ==

Revision as of 00:23, 15 March 2023

गणित में, नॉर्वेजियन गणितज्ञ नील्स हेनरिक एबेल के नाम पर एक एबेलियन अभिन्न रूप के जटिल तल में एक समाकलन है

जहाँ दो चरों का इच्छानुसार तर्कसंगत फलन है और , जो समीकरण से संबंधित हैं

जहाँ में अलघुकरणीय बहुपद है ,

जिनके गुणांक , के तर्कसंगत फलन हैं. एबेलियन समाकलन का मान न केवल समाकलन की सीमा पर निर्भर करता है, किंतु उस रास्ते पर भी निर्भर करता है जिसके साथ समाकलन लिया जाता है; यह इस प्रकार का बहुविकल्पीय फलन है .

एबेलियन समाकलन अंडाकार समाकलन के प्राकृतिक सामान्यीकरण हैं, जो तब उत्पन्न होते हैं

जहाँ डिग्री 3 या 4 का बहुपद है। एबेलियन समाकलन का एक और विशेष स्तिथि हाइपरेलिप्टिक समाकलन है, जहां , ऊपर दिए गए सूत्र में, 4 से अधिक डिग्री का बहुपद है।

इतिहास

एबेलियन समाकलन्स का सिद्धांत एबेल द्वारा एक पेपर के साथ उत्पन्न हुआ[1] 1841 में प्रकाशित यह पत्र 1826 में उनके पेरिस प्रवास के समय लिखा गया था और उसी वर्ष अक्टूबर में ऑगस्टिन-लुई कॉची को प्रस्तुत किया गया था। यह सिद्धांत, बाद में पूरी तरह से दूसरों द्वारा विकसित,[2] उन्नीसवीं शताब्दी के गणित की सर्वोच्च उपलब्धियों में से एक था और आधुनिक गणित के विकास पर इसका बड़ा प्रभाव पड़ा है। अधिक अमूर्त और ज्यामितीय भाषा में, यह एबेलियन किस्म की अवधारणा में निहित है, या अधिक स्पष्ट रूप से बीजगणितीय वक्र को एबेलियन किस्मों में मैप किया जा सकता है। एबेलियन समाकलन बाद में प्रमुख गणितज्ञ डेविड हिल्बर्ट की हिल्बर्ट की सोलहवीं समस्या से जुड़े थे, और उन्हें समकालीन गणित में सबसे महत्वपूर्ण चुनौतियों में से एक माना जाता है।

समस्या से जुड़े थे, और उन्हें समकालीन गणित में सबसे महत्वपूर्ण चुनौतियों में से एक माना जाता है।

आधुनिक दृश्य

रीमैन सतहों के सिद्धांत में, एबेलियन समाकलन पहली तरह के अंतर के अनिश्चित समाकलन से संबंधित फलन है। मान लीजिए हमें रीमैन सतह दी गई है और उस पर एक अंतर 1-रूप दिया गया है जो पर हर जगह होलोमॉर्फिक फलन पर है और एक बिंदु तय करता है जिससे एकीकृत करना है।

एक बहु-मानवान फलन के रूप में , या (उत्तम) चुने हुए रास्ते का वास्तविक फलन के नाम आहरित से को . चूँकि सामान्य रूप से गुणा किया जाएगा, किसी को निर्दिष्ट करना चाहिए किंतु मान वास्तव में केवल के होमोलॉजी वर्ग पर निर्भर करेगा

के स्तिथि में वर्ग (गणित) 1 की कॉम्पैक्ट रीमैन सतह, यानी अण्डाकार वक्र, ऐसे फलन अण्डाकार अभिन्न हैं। तार्किक रूप से बोलते हुए, एबेलियन समाकलन एक फलन होना चाहिए जैसे .

इस तरह के फलनों को पहली बार हाइपरेलिप्टिक समाकलन का अध्ययन करने के लिए प्रस्तुत किया गया था, यानी, जहां स्तिथि के लिए हाइपरेलिप्टिक वक्र है। बीजगणितीय फलनो को सम्मिलित करने वाले समाकलन के स्तिथि में एकीकरण के सिद्धांत में यह प्राकृतिक कदम है , जहाँ डिग्री का बहुपद है सिद्धांत की पहली प्रमुख अंतर्दृष्टि हाबिल द्वारा दी गई थी; इसे बाद में जैकोबियन किस्म के संदर्भ में तैयार किया गया था . के विकल्प एक मानक होलोमोर्फिक फलन को जन्म देता है

जटिल कई गुना। इसकी परिभाषित अधिकार है कि होलोमोर्फिक 1-रूपों पर पर है, जिनमें से g स्वतंत्र हैं यदि g, S का वर्ग है, S पर पहली तरह के भिन्नता के आधार पर रोक लेता है।

टिप्पणियाँ


संदर्भ

  • Abel, Niels H. (1841). "Mémoire sur une propriété générale d'une classe très étendue de fonctions transcendantes". Mémoires présentés par divers savants à l’Académie Royale des Sciences de l’Institut de France (in French). Paris. pp. 176–264.{{cite encyclopedia}}: CS1 maint: unrecognized language (link)
  • Appell, Paul; Goursat, Édouard (1895). Théorie des fonctions algébriques et de leurs intégrales (in French). Paris: Gauthier-Villars.{{cite book}}: CS1 maint: unrecognized language (link)
  • Bliss, Gilbert A. (1933). Algebraic Functions. Providence: American Mathematical Society.
  • Forsyth, Andrew R. (1893). Theory of Functions of a Complex Variable. Providence: Cambridge University Press.
  • Griffiths, Phillip; Harris, Joseph (1978). Principles of Algebraic Geometry. New York: John Wiley & Sons.
  • Neumann, Carl (1884). Vorlesungen über Riemann's Theorie der Abel'schen Integrale (2nd ed.). Leipzig: B. G. Teubner.