सम्मिश्र-आधार प्रणाली: Difference between revisions

From Vigyanwiki
No edit summary
Line 67: Line 67:


{| class="wikitable" style="text-align: right;"
{| class="wikitable" style="text-align: right;"
|+ Some bases and some representations<ref name="Gilbert">[http://www.math.uwaterloo.ca/~wgilbert/Research/ArithCxBases.pdf William J. Gilbert, "Arithmetic in Complex Bases" Mathematics Magazine Vol. 57, No. 2, March 1984]</ref>
|+ कुछ आधार और कुछ अभ्यावेदन<ref name="Gilbert">[http://www.math.uwaterloo.ca/~wgilbert/Research/ArithCxBases.pdf William J. Gilbert, "Arithmetic in Complex Bases" Mathematics Magazine Vol. 57, No. 2, March 1984]</ref>
|-
|-
! style="text-align: right;" | Radix
! style="text-align: right;" | Radix

Revision as of 15:46, 19 March 2023

अंकगणित में, एक जटिल-आधार प्रणाली एक स्थितीय अंक प्रणाली है जिसका मूलांक एक काल्पनिक संख्या है (1955 में डोनाल्ड नुथ द्वारा प्रस्तावित)[1][2]) या जटिल संख्या (1964 में एस खमेलनिक द्वारा प्रस्तावित[3] और 1965 में वाल्टर एफ पेनी[4][5][6]).

सामान्य तौर पर

होने देना एक अभिन्न डोमेन हो , और निरपेक्ष मूल्य (बीजगणित) # निरपेक्ष मूल्य के प्रकार | (आर्किमिडीयन) उस पर निरपेक्ष मूल्य।

एक संख्या स्थितीय संख्या प्रणाली में एक विस्तार के रूप में प्रतिनिधित्व किया जाता है

कहाँ

is the radix (or base) with ,
प्रतिपादक (स्थिति या स्थान) है,
are digits from the finite set of digits , usually with

प्रमुखता अपघटन का स्तर कहा जाता है।

एक पोजिशनल नंबर सिस्टम या 'कोडिंग सिस्टम' एक जोड़ी है

मूलांक के साथ और अंकों का सेट , और हम अंकों के मानक सेट को लिखते हैं अंकों के रूप में

वांछनीय सुविधाओं के साथ कोडिंग सिस्टम हैं:

  • प्रत्येक संख्या में , इ। जी। पूर्णांक , गाऊसी पूर्णांक या पूर्णांक , विशिष्ट रूप से एक परिमित कोड के रूप में प्रतिनिधित्व करने योग्य है, संभवतः एक साइन (गणित) ± के साथ।
  • अंशों के क्षेत्र में प्रत्येक संख्या , जो संभवतः द्वारा दिए गए मीट्रिक (गणित) के लिए पूर्ण मीट्रिक स्थान है उपज या , एक अनंत श्रृंखला के रूप में प्रतिनिधित्व करने योग्य है जिसके अंतर्गत अभिसरण होता है के लिए , और एक से अधिक प्रतिनिधित्व वाले संख्याओं के सेट का माप (गणित) 0 है। बाद वाले के लिए आवश्यक है कि सेट न्यूनतम हो, अर्थात् वास्तविक संख्या के लिए और जटिल संख्या के लिए।

वास्तविक संख्या में

इस अंकन में हमारी मानक दशमलव कोडिंग योजना द्वारा निरूपित किया जाता है

मानक बाइनरी सिस्टम है

नकारात्मक आधार प्रणाली है

और संतुलित त्रिगुट प्रणाली[2]है

इन सभी कोडिंग प्रणालियों के लिए उल्लिखित विशेषताएँ हैं और , और अंतिम दो को चिह्न की आवश्यकता नहीं है।

जटिल संख्या में

सम्मिश्र संख्याओं के लिए प्रसिद्ध स्थितीय संख्या प्रणालियों में निम्नलिखित शामिल हैं ( काल्पनिक इकाई होने के नाते):

  • , उदा. [1]और
,[2]क्वाटर-काल्पनिक आधार, 1955 में डोनाल्ड नुथ द्वारा प्रस्तावित।
  • और
[3][5](अनुभाग #Base_.E2.88.921_.C2.B1_i|आधार −1 ± i नीचे भी देखें)।
  • , कहाँ , और एक धनात्मक पूर्णांक है जो एक दिए हुए पर अनेक मान ले सकता है .[7] के लिए और यह प्रणाली है
  • .[8]
  • , जहां सेट जटिल संख्याओं से मिलकर बनता है , और संख्याएँ , उदा.
[8]
  • , कहाँ  [9]


बाइनरी सिस्टम

जटिल संख्याओं की बाइनरी कोडिंग प्रणाली, यानी अंकों वाली प्रणालियाँ , व्यावहारिक रुचि के हैं।[9] नीचे सूचीबद्ध कुछ कोडिंग सिस्टम हैं (सभी उपरोक्त सिस्टम के विशेष मामले हैं) और सम्मान। (दशमलव) संख्याओं के लिए कोड −1, 2, −2, i. तुलना के लिए मानक बाइनरी (जिसके लिए एक चिन्ह, पहली पंक्ति की आवश्यकता होती है) और नेगबिनरी सिस्टम (दूसरी पंक्ति) भी सूचीबद्ध हैं। उनके पास वास्तविक विस्तार नहीं है i.

कुछ आधार और कुछ अभ्यावेदन[10]
Radix –1 ← 2 ← –2 ← i Twins and triplets
2 –1 10 –10 i 1 ← 0.1 = 1.0
–2 11 110 10 i 1/3 0.01 = 1.10
101 10100 100 10.101010100...[11] 0.0011 = 11.1100
111 1010 110 11.110001100...[11] 1.011 = 11.101 = 11100.110
101 10100 100 10 1/3 + 1/3i 0.0011 = 11.1100
–1+i 11101 1100 11100 11 1/5 + 3/5i 0.010 = 11.001 = 1110.100
2i 103 2 102 10.2 1/5 + 2/5i 0.0033 = 1.3003 = 10.0330 = 11.3300

निरपेक्ष मूल्य (बीजगणित) के साथ सभी स्थितीय संख्या प्रणालियों में # निरपेक्ष मूल्य के प्रकार, नकारात्मक आधार # गैर-अद्वितीय प्रतिनिधित्व के साथ कुछ संख्याएँ हैं। ऐसी संख्याओं के उदाहरण तालिका के दाहिने कॉलम में दिखाए गए हैं। उनमें से सभी भिन्नों को दोहरा रहे हैं और इसके ऊपर एक क्षैतिज रेखा द्वारा चिह्नित दोहराव हैं।

यदि अंकों का समुच्चय न्यूनतम है, तो ऐसी संख्याओं के समुच्चय का माप (गणित) 0 होता है। यह सभी उल्लिखित कोडिंग प्रणालियों के मामले में है।

तुलनात्मक उद्देश्यों के लिए लगभग बाइनरी क्वाटर-काल्पनिक प्रणाली नीचे की रेखा में सूचीबद्ध है। वहां, वास्तविक और काल्पनिक भाग एक दूसरे को परस्पर जोड़ते हैं।

आधार −1 ± i

आधार में सभी शून्यों वाले पूर्णांक भाग वाली सम्मिश्र संख्याएँ i – 1 प्रणाली

विशेष रुचि के क्वाटर-काल्पनिक आधार हैं (base 2i) और आधार −1 ± i नीचे चर्चा की गई प्रणालियाँ, जिनमें से दोनों का उपयोग बिना चिन्ह के गॉसियन पूर्णांकों को अंतिम रूप से दर्शाने के लिए किया जा सकता है।

आधार −1 ± i, अंकों का उपयोग करना 0 और 1, 1964 में एस खमेलनिक द्वारा प्रस्तावित किया गया था[3]और 1965 में वाल्टर एफ पेनी।[4][6]


=== ट्विंड्रैगन === से कनेक्शन एक पूर्णांक का गोलाई क्षेत्र - यानी, एक सेट जटिल (गैर-पूर्णांक) संख्याएं जो इस प्रणाली में उनके प्रतिनिधित्व के पूर्णांक भाग को साझा करती हैं - जटिल विमान में एक फ्रैक्टल आकार होता है: ड्रैगन वक्र#Twindragon (चित्र देखें)। यह सेट परिभाषा के अनुसार, वे सभी बिंदु हैं जिन्हें इस रूप में लिखा जा सकता है साथ . के सर्वांगसम 16 टुकड़ों में तोड़ा जा सकता है . ध्यान दें कि अगर 135 डिग्री वामावर्त घुमाया जाता है, हम दो आसन्न सेट प्राप्त करते हैं , क्योंकि . आयत केंद्र में निर्देशांक अक्षों को वामावर्त निम्नलिखित बिंदुओं पर काटता है: , , और , और . इस प्रकार, निरपेक्ष मान ≤ के साथ सभी जटिल संख्याएँ शामिल हैं1/15.[12] परिणामस्वरूप, जटिल आयत का एक विशेषण कार्य होता है

अंतराल में (गणित) मानचित्रण द्वारा वास्तविक संख्याओं का

साथ .[13] इसके अलावा, दो मैपिंग हैं

और

दोनों विशेषण, जो एक विशेषण (इस प्रकार स्थान भरने) मानचित्रण को जन्म देते हैं

जो, हालांकि, निरंतर कार्य नहीं है और इस प्रकार एक स्थान-भरने वाला वक्र नहीं है|स्थान-भरने वाला वक्र। लेकिन एक बहुत ही करीबी रिश्तेदार, ड्रैगन कर्व#Twindragon|डेविस-नुथ ड्रैगन, निरंतर और एक स्पेस-फिलिंग कर्व है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Knuth, D.E. (1960). "एक काल्पनिक संख्या प्रणाली". Communications of the ACM. 3 (4): 245–247. doi:10.1145/367177.367233. S2CID 16513137.
  2. 2.0 2.1 2.2 Knuth, Donald (1998). "Positional Number Systems". कंप्यूटर प्रोग्रामिंग की कला. Vol. 2 (3rd ed.). Boston: Addison-Wesley. p. 205. ISBN 0-201-89684-2. OCLC 48246681.
  3. 3.0 3.1 3.2 Khmelnik, S.I. (1964). "Specialized digital computer for operations with complex numbers". Questions of Radio Electronics (In Russian). XII (2).
  4. 4.0 4.1 W. Penney, A "binary" system for complex numbers, JACM 12 (1965) 247-248.
  5. 5.0 5.1 Jamil, T. (2002). "जटिल बाइनरी संख्या प्रणाली". IEEE Potentials. 20 (5): 39–41. doi:10.1109/45.983342.
  6. 6.0 6.1 Duda, Jarek (2008-02-24). "जटिल आधार अंक प्रणाली". arXiv:0712.1309 [math.DS].
  7. Khmelnik, S.I. (1966). "Positional coding of complex numbers". Questions of Radio Electronics (In Russian). XII (9).
  8. 8.0 8.1 Khmelnik, S.I. (2004). जटिल संख्याओं और वैक्टरों की कोडिंग (रूसी में) (PDF). Israel: Mathematics in Computer. ISBN 978-0-557-74692-7.
  9. 9.0 9.1 Khmelnik, S.I. (2001). जटिल संख्याओं को संसाधित करने की विधि और प्रणाली. Patent USA, US2003154226 (A1).
  10. William J. Gilbert, "Arithmetic in Complex Bases" Mathematics Magazine Vol. 57, No. 2, March 1984
  11. 11.0 11.1 infinite non-repeating sequence
  12. Knuth 1998 p.206
  13. Base cannot be taken because both, and . However,   is unequal to   .


बाहरी संबंध