होलोनोमिक फलन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 43: Line 43:
* <math>h(x) = f(a(x))</math>, जहाँ <math>a(x)</math> कोई [[बीजगणितीय कार्य|बीजगणितीय फलन]] है। चूँकि, <math>a(f(x))</math> सामान्यतः होलोनोमिक नहीं है।
* <math>h(x) = f(a(x))</math>, जहाँ <math>a(x)</math> कोई [[बीजगणितीय कार्य|बीजगणितीय फलन]] है। चूँकि, <math>a(f(x))</math> सामान्यतः होलोनोमिक नहीं है।


होलोनोमिक फलनों की महत्वपूर्ण संपत्ति यह है कि बंद करने वाले गुण प्रभावी होते हैं: <math>f</math> और <math>g</math> के लिए विनाशकारी ऑपरेटरों को दिया जाता है, के लिए विनाशक ऑपरेटर <math>h</math> उपरोक्त किसी भी ऑपरेशन का उपयोग करके परिभाषित के रूप में स्पष्ट रूप से गणना की जा सकती है।
होलोनोमिक फलनों की महत्वपूर्ण संपत्ति यह है कि बंद करने वाले गुण प्रभावी होते हैं: <math>f</math> और <math>g</math> के लिए विनाशकारी ऑपरेटरों को दिया जाता है, के लिए विनाशक ऑपरेटर <math>h</math> उपरोक्त किसी भी ऑपरेशन का उपयोग करके परिभाषित के रूप में स्पष्ट रूप से गणना की जा सकती है। '''रके परिभाषित के रूप में स्पष्ट रूप से गणना की जा सकती है।'''


=== होलोनोमिक फलनों और अनुक्रमों के उदाहरण ===
=== होलोनोमिक फलनों और अनुक्रमों के उदाहरण ===

Revision as of 15:57, 22 March 2023

गणित में, और विशेष रूप से गणितीय विश्लेषण में, होलोनोमिक फलन कई चरों का सहज फलन है जो बहुपद गुणांक वाले रैखिक सजातीय अंतर समीकरणों की प्रणाली का समाधान है और डी-मॉड्यूल सिद्धांत के संदर्भ में उपयुक्त आयाम स्थिति को संतुष्ट करता है। अधिक त्रुटिहीन रूप से, होलोनोमिक फलन चिकनी फलनों के होलोनोमिक मॉड्यूल का तत्व है। होलोनोमिक फलनों को अलग-अलग परिमित फलनों के रूप में भी वर्णित किया जा सकता है, जिन्हें डी-परिमित फलनों के रूप में भी जाना जाता है। जब चरों में शक्ति श्रृंखला होलोनोमिक फलन का टेलर विस्तार होता है, तो या कई सूचकांकों में इसके गुणांकों के अनुक्रम को 'होलोनोमिक' भी कहा जाता है। होलोनोमिक अनुक्रमों को पी-पुनरावर्ती अनुक्रम भी कहा जाता है: वे पुनरावर्ती रूप से बहुभिन्नरूपी पुनरावर्तन द्वारा परिभाषित होते हैं जो पूरे अनुक्रम से संतुष्ट होते हैं और इसके उपयुक्त विशेषज्ञताओं द्वारा एक होलोनोमिक फलन का टेलर विस्तार होता है, इसके गुणांक का क्रम , एक या कई सूचकांकों में, को होलोनोमिक भी कहा जाता है। अविभाज्य स्थिति में स्थिति सरल हो जाती है: कोई भी अविभाज्य अनुक्रम जो बहुपद गुणांकों के साथ रेखीय सजातीय पुनरावृत्ति संबंध को संतुष्ट करता है, या समकक्ष रूप से बहुपद गुणांकों के साथ रेखीय सजातीय अंतर समीकरण, होलोनोमिक है।[1]

चर में होलोनोमिक फलन और अनुक्रम

परिभाषाएं

मान ले विशेषता (बीजगणित) 0 का क्षेत्र (गणित) (उदाहरण के लिए, या ) होना चाहिये।

फलन बहुपद उपस्थित होने पर डी-परिमित (या होलोनोमिक) कहा जाता है जैसे कि

सभी एक्स के लिए रखती है। इसे इस रूप में भी लिखा जा सकता है जहाँ

और अंतर ऑपरेटर है जो को का माप करता है। f का विलोपन करने वाला संकारक कहलाता है (का विलोपन करने वाला संकारक वलय में आदर्श (वलय सिद्धांत) बनाएं का संहारक कहा जाता है ). मात्रा r को विलोपन संकारक का क्रम कहा जाता है। विस्तार से, होलोनोमिक फलन f को क्रम r का कहा जाता है, जब इस तरह के क्रम का विलोपन करने वाला ऑपरेटर उपस्थित होता है।

क्रम बहुपद उपस्थित होने पर पी-रिकर्सिव (या होलोनोमिक) कहा जाता है जैसे कि

सभी n के लिए रखती है। इसे इस रूप में भी लिखा जा सकता है जहाँ

और शिफ्ट ऑपरेटर जो मैप करता है को . c का विलोपन करने वाला संचालक (का विलोपन करने वाला संचालक वलय में आदर्श बनाएं का संहारक कहा जाता है) कहा जाता है। मात्रा r को विलोपन संकारक का क्रम कहा जाता है। विस्तार से, होलोनोमिक अनुक्रम सी को क्रम आर के रूप में कहा जाता है जब इस तरह के क्रम का विलोपन करने वाला ऑपरेटर उपस्थित होता है।

होलोनोमिक फलन ठीक होलोनोमिक अनुक्रमों के उत्पन्न करने वाले फलन हैं: यदि होलोनोमिक है, फिर गुणांक शक्ति श्रृंखला विस्तार में

होलोनोमिक अनुक्रम बनाएं। इसके विपरीत, किसी दिए गए होलोनोमिक अनुक्रम के लिए , उपरोक्त योग द्वारा परिभाषित फलन होलोनोमिक है (यह औपचारिक शक्ति श्रृंखला के अर्थ में सत्य है, चाहे योग में अभिसरण का शून्य त्रिज्या हो) है।

क्लोजर गुण

होलोनोमिक फलन (या अनुक्रम) कई बंद करने की संपत्ति को संतुष्ट करते हैं। विशेष रूप से, होलोनोमिक फलन (या अनुक्रम) वलय (गणित) बनाते हैं। चूंकि, वे विभाजन के अनुसार बंद नहीं हैं, और इसलिए क्षेत्र (गणित) नहीं बनाते हैं।

अगर और होलोनोमिक फलन हैं, तो निम्नलिखित फलन भी होलोनोमिक हैं:

  • , जहाँ और स्थिरांक हैं
  • (अनुक्रमों का कॉची उत्पाद)
  • (अनुक्रमों का हैडमार्ड उत्पाद)
  • , जहाँ कोई बीजगणितीय फलन है। चूँकि, सामान्यतः होलोनोमिक नहीं है।

होलोनोमिक फलनों की महत्वपूर्ण संपत्ति यह है कि बंद करने वाले गुण प्रभावी होते हैं: और के लिए विनाशकारी ऑपरेटरों को दिया जाता है, के लिए विनाशक ऑपरेटर उपरोक्त किसी भी ऑपरेशन का उपयोग करके परिभाषित के रूप में स्पष्ट रूप से गणना की जा सकती है। रके परिभाषित के रूप में स्पष्ट रूप से गणना की जा सकती है।

होलोनोमिक फलनों और अनुक्रमों के उदाहरण

होलोनोमिक फलनों के उदाहरणों में सम्मिलित हैं:

  • बहुपद और परिमेय फलन सहित सभी बीजगणितीय फलन
  • त्रिकोणमितीय फलन फलन करता है (लेकिन स्पर्शरेखा, कोटिस्पर्श, छेदक, या व्युत्क्रमज्या नहीं)
  • अतिशयोक्तिपूर्ण फलन फलन (लेकिन हाइपरबोलिक स्पर्शरेखा, कोटैंजेंट, सिकेंट, या कोसेकेंट नहीं)
  • घातीय फलन और लघुगणक (किसी भी आधार पर)
  • सामान्यीकृत हाइपरज्यामितीय फलन , को सभी मापदंडों , के साथ के स्थिर फलन के रूप में माना जाता है
  • त्रुटि फलन करता है
  • बेसेल फलन , , , करता है
  • एयरी फलन , करता है

होलोनोमिक फलनों का वर्ग हाइपरज्यामितीय फलनों के वर्ग का सख्त सुपरसेट है। विशेष फलनों के उदाहरण जो होलोनोमिक हैं लेकिन हाइपरजियोमेट्रिक नहीं हैं उनमें अरे फलन सम्मिलित हैं।

होलोनोमिक अनुक्रमों के उदाहरणों में सम्मिलित हैं:

हाइपरज्यामितीय फलन, बेसेल फलन, और शास्त्रीय ऑर्थोगोनल बहुपद, उनके चर के होलोनोमिक फलन होने के अतिरिक्त, उनके मापदंडों के संबंध में होलोनोमिक अनुक्रम भी हैं। उदाहरण के लिए, बेसेल फलन और दूसरे क्रम के रैखिक पुनरावृत्ति को संतुष्ट करते है।

गैर-होलोनोमिक फलनों और अनुक्रमों के उदाहरण

गैर-होलोनोमिक फलनों के उदाहरणों में सम्मिलित हैं:

  • कार्यक्रम [2]
  • फलन tan(x) + sec(x)[3]
  • दो होलोनोमिक फलनों का भागफल सामान्यतः होलोनोमिक नहीं होता है।

गैर-होलोनोमिक अनुक्रमों के उदाहरणों में सम्मिलित हैं:


कई चरों में होलोनोमिक फलन

एल्गोरिदम और सॉफ्टवेयर

कंप्यूटर बीजगणित में होलोनोमिक फलन शक्तिशाली उपकरण है। होलोनोमिक फलन या अनुक्रम को डेटा की परिमित मात्रा द्वारा दर्शाया जा सकता है, अर्थात् विनाशकारी ऑपरेटर और प्रारंभिक मूल्यों का परिमित सेट, और क्लोजर गुण एल्गोरिथम फैशन में समानता परीक्षण, योग और एकीकरण जैसे संचालन को पूरा करने की अनुमति देते हैं। हाल के वर्षों में, इन तकनीकों ने बड़ी संख्या में विशेष फलन और संयुक्त पहचान के स्वचालित प्रमाण देने की अनुमति दी है।

इसके अतिरिक्त, जटिल विमान में किसी भी बिंदु पर स्वैच्छिक विधि से परिशुद्धता के लिए होलोनोमिक फलनों का मूल्यांकन करने के लिए और होलोनोमिक अनुक्रम में किसी भी प्रविष्टि की संख्यात्मक रूप से गणना करने के लिए तेज़ एल्गोरिदम उपस्थित हैं।

होलोनोमिक फलनों के साथ काम करने के लिए सॉफ्टवेयर में सम्मिलित हैं:

  • होलोनोमिक फलन मेथेमेटिका के लिए पैकेज, क्रिस्टोफ कौश्चन द्वारा विकसित, जो कम्प्यूटिंग क्लोजर गुण का समर्थन करता है और एकलवेरिएट और बहुवेरिएट होलोनोमिक फलन के लिए पहचान सिद्ध करता है।
  • मेपल (सॉफ्टवेयर) के लिए एल्गोलिब [1] लाइब्रेरी, जिसमें निम्नलिखित पैकेज सम्मिलित हैं:
    • गफुन को ब्रूनो साल्वी पॉल ज़िम्मरमैन और एथेन मुरे द्वारा विकसित किया गया है, जो अविभाजित बंद गुणों और साबित करने के लिए है [2]
    • मगफुन बहुभिन्नरूपी बंद गुणों और साबित करने के लिए फ्रेडरिक चिजाक द्वारा विकसित किया गया [3]
    • नुमगफुन संख्यात्मक मूल्यांकन के लिए मार्क मेजारोबा द्वारा विकसित किया गया

यह भी देखें

डायनेमिक डिक्शनरी ऑफ़ मैथमैटिकल फलन, ऑनलाइन सॉफ़्टवेयर, जो स्वचालित रूप से कई शास्त्रीय और विशेष फलनों (बिंदु पर मूल्यांकन, टेलर श्रृंखला और किसी भी के लिए स्पर्शोन्मुख विस्तार) का अध्ययन करने के लिए होलोनोमिक फलन पर आधारित है। उपयोगकर्ता द्वारा दी गई त्रुटिहीन, अंतर समीकरण, टेलर श्रृंखला के गुणांक के लिए पुनरावृत्ति, व्युत्पन्न, अनिश्चितकालीन अभिन्न, प्लॉटिंग, ...)

टिप्पणियाँ

  1. See Zeilberger 1990 and Kauers & Paule 2011.
  2. This follows from the fact that the function has infinitely many (complex) singularities, whereas functions that satisfy a linear differential equation with polynomial coefficients necessarily have only finitely many singular points.
  3. 3.0 3.1 3.2 3.3 3.4 See Flajolet, Gerhold & Salvy 2005.
  4. This follows from the fact that the function tan(x) + sec(x) is a nonholonomic function. See Flajolet, Gerhold & Salvy 2005.
  5. See Klazar 2003.


संदर्भ

  • Flajolet, Philippe; Gerhold, Stefan; Salvy, Bruno (2005), "On the non-holonomic character of logarithms, powers, and the n-th prime function", Electronic Journal of Combinatorics, 11 (2), doi:10.37236/1894, S2CID 184136.
  • Kauers, Manuel; Paule, Peter (2011). The Concrete Tetrahedron: Symbolic Sums, Recurrence Equations, Generating Functions, Asymptotic Estimates. Text and Monographs in Symbolic Computation. Springer. ISBN 978-3-7091-0444-6.
  • Stanley, Richard P. (1999). Enumerative Combinatorics. Vol. 2. Cambridge University Press. ISBN 978-0-521-56069-6.