इंजेक्शन लॉकिंग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 7: Line 7:


== दादाजी घड़ियों से लेजर तक इंजेक्शन ==
== दादाजी घड़ियों से लेजर तक इंजेक्शन ==
इंजेक्शन पुलिंग और इंजेक्शन लॉकिंग को कई भौतिक प्रणालियों में देखा जा सकता है जहां ऑसिलेटर्स के जोड़े एक साथ जोड़े जाते हैं। शायद सबसे पहले इन प्रभावों का दस्तावेजीकरण पेंडुलम घड़ी के आविष्कारक [[क्रिस्टियान ह्यूजेंस]] ने किया था, जो यह जानकर हैरान थे कि दो पेंडुलम घड़ियां जो आम तौर पर थोड़ा अलग समय रखती हैं, फिर भी एक आम बीम से लटकाए जाने पर पूरी तरह से सिंक्रनाइज़ हो जाती हैं। आधुनिक शोधकर्ताओं की [[अजीब सहानुभूति]] है कि [[पेंडुलम क्लॉक]] के बीम में छोटे-छोटे आगे-पीछे के कंपन से जुड़े थे।<ref>http://phys.org/news/2016-03-huygens-pendulum-synchronization.html - Researchers prove Huygens was right about pendulum synchronization</ref> दो घड़ियाँ एक सामान्य आवृत्ति के लिए इंजेक्शन बन गईं।
इंजेक्शन पुलिंग और इंजेक्शन लॉकिंग को कई भौतिक प्रणालियों में देखा जा सकता है जहां दोलक के जोड़े एक साथ जोड़े जाते हैं। शायद सबसे पहले इन प्रभावों को प्रलेखित पेंडुलम घड़ी के आविष्कारक [[क्रिस्टियान ह्यूजेंस]] ने किया था, जो यह जानकर हैरान थे कि दो पेंडुलम घड़ियां जो सामान्यतः थोड़ा अलग समय रखती हैं, फिर भी एक आम बीम से लटकाए जाने पर पूरी तरह से संकालित हो जाती हैं। आधुनिक शोधकर्ताओं ने उनके संदेह की पुष्टि की है कि [[पेंडुलम क्लॉक|पेंडुलम घड़ी]] लकड़ी की बीम में छोटे-छोटे कंपन से जुड़े थे।<ref>http://phys.org/news/2016-03-huygens-pendulum-synchronization.html - Researchers prove Huygens was right about pendulum synchronization</ref> दो घड़ियाँ एक सामान्य आवृत्ति के लिए इंजेक्शन बन गईं।


[[Image:Cross coupled LC oscillator.svg|thumb|शीर्ष पर आउटपुट के साथ क्रॉस युग्मित एलसी ऑसिलेटर]]एक आधुनिक-दिन के वोल्टेज-नियंत्रित ऑसिलेटर में एक इंजेक्शन-लॉकिंग सिग्नल इसके कम-आवृत्ति नियंत्रण वोल्टेज को ओवरराइड कर सकता है, जिसके परिणामस्वरूप नियंत्रण खो जाता है। जानबूझकर नियोजित होने पर, इंजेक्शन लॉकिंग अन्य [[आवृत्ति सिंथेसाइज़र]] और चरण-लॉक लूप डिज़ाइन तकनीकों की तुलना में बिजली की खपत को कम करने और संभवतः [[चरण शोर]] को कम करने का साधन प्रदान करता है। इसी तरह, बड़े लेसरों के आवृत्ति आउटपुट को इंजेक्शन द्वारा उच्च सटीकता संदर्भ लेसरों के साथ लॉक करके शुद्ध किया जा सकता है ([[इंजेक्शन सीडर]] देखें)।
[[Image:Cross coupled LC oscillator.svg|thumb|शीर्ष पर आउटपुट के साथ क्रॉस युग्मित एलसी दोलक]]एक आधुनिक वोल्टेज नियंत्रित दोलक में एक इंजेक्शन-लॉकिंग संकेत अपने कम आवृत्ति नियंत्रण वोल्टेज को ओवरराइड कर सकता है, जिसके परिणामस्वरूप नियंत्रण का नुकसान हो सकता है। जानबूझकर नियोजित होने पर, इंजेक्शन लॉकिंग अन्य [[आवृत्ति सिंथेसाइज़र]] और चरण-लॉक लूप डिज़ाइन तकनीकों की तुलना में बिजली की खपत को कम करने और संभवतः [[चरण शोर]] को कम करने का साधन प्रदान करता है। इसी तरह, बड़े लेज़र के आवृत्ति आउटपुट को उच्च परिशुद्धता संदर्भ लेज़र के साथ इंजेक्शन द्वारा शोधित किया जा सकता है ([[इंजेक्शन सीडर]] देखें)।
 
== इंजेक्शन-लॉक दोलक ==
एक इंजेक्शन-लॉक दोलक (ILO) सामान्यतः क्रॉस-युग्मित [[इलेक्ट्रॉनिक थरथरानवाला|LC दोलक]] पर आधारित होता है। इसे आवृत्ति डिवीजन <ref>{{cite journal | last=Tiebout | first=M. | title=उच्च-आवृत्ति कम-शक्ति आवृत्ति विभक्त के रूप में एक CMOS प्रत्यक्ष इंजेक्शन-लॉक ऑसिलेटर टोपोलॉजी| journal=IEEE Journal of Solid-State Circuits | publisher=Institute of Electrical and Electronics Engineers (IEEE) | volume=39 | issue=7 | year=2004 | issn=0018-9200 | doi=10.1109/jssc.2004.829937 | pages=1170–1174| bibcode=2004IJSSC..39.1170T }}</ref> या फेज-लॉक्ड लूप में जिटर रिडक्शन, शुद्ध साइनसोइडल वेवफॉर्म के इनपुट के साथ के लिए नियोजित किया गया है। इसे निरंतर मोड क्लॉक और डेटा रिकवरी (सीडीआर) या क्लॉक रिकवरी (सीडीआर) में नियोजित किया गया था, ताकि गैर-रिटर्न-टू-शून्य (एनआरजेड) डेटा को कूट-रिटर्न-टू-शून्य (पीआरजेड) प्रारूप <ref>{{cite conference | last=De Matos | first=M. | last2=Bégueret | first2=J-B. | last3=Lapuyade | first3=H. | last4=Belot | first4=D. | last5=Escotte | first5=L. | last6=Deval | first6=Y. | title=A 0.25 μm SiGe receiver front-end for 5GHz applications | conference=SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics| publisher=Institute of Electrical and Electronics Engineers (IEEE) | year=2005 | isbn=0-7803-9341-4 | doi=10.1109/imoc.2005.1579980 | pages=213–217}}</ref> में परिवर्तित करने के लिए पूर्ववर्ती पल्स जनरेशन सर्किट की सहायता से घड़ी की बहाली की जा सके।<ref>{{cite conference | last=Gabara | first=T. | title=An 0.25μm CMOS injection locked 5.6Gb/s clock and data recovery cell | conference=Symposium on Integrated Circuits and Systems Design | year=1999 | doi=10.1109/SBCCI.1999.802973 | pages=84–87 }}</ref> 2000 के दशक के अंत में, आईएलओ को बर्स्ट-मोड क्लॉक-रिकवरी योजना के लिए नियोजित किया गया था।<ref>{{cite conference | last=Lee | first=J. | last2=Liu | first2=M. | title=A 20Gb/s burst-mode CDR circuit using injection-locking technique | conference = International Solid-State Circuits Conference (ISSCC) | publisher=Institute of Electrical and Electronics Engineers (IEEE) | year=2007 | doi=10.1109/ISSCC.2007.373580 | pages=46–47 }}</ref>
 
इंजेक्शन-लॉक करने की क्षमता सभी दोलक्स (इलेक्ट्रॉनिक या अन्य) की एक अंतर्निहित पूर्णावस्था है। इस क्षमता को मौलिक रूप से दोलक की आवधिकता और उसकी स्वायत्तता के संयुक्त प्रभाव के रूप में समझा जा सकता है।विशेष रूप से, एक आवधिक इंजेक्शन (यानी, बाहरी गड़बड़ी) पर विचार करें जो प्रत्येक दोलन चक्र को कुछ चरणों में स्थानांतरित करके दोलक चरण को आगे बढ़ाता या पीछे करता है। दोलक की आवधिकता के कारण, यह चरण शिफ्ट चक्र से चक्र तक समान होगा यदि दोलक इंजेक्शन-लॉक होता है। इसके अलावा, दोलक की स्वायत्तता के कारण, प्रत्येक चरण अनिश्चित रूप से जारी रहता है। इन दो प्रभावों का संयोजन प्रति दोलन चक्र एक निश्चित चरण शिफ्ट का उत्पादन करता है, जो समय के साथ एक निरंतर आवृत्ति परिवर्तन में परिणत होता है। यदि परिणामी, स्थानांतरित दोलन आवृत्ति इंजेक्शन आवृत्ति से मेल खाती है, तो दोलक को इंजेक्शन-लॉक कहा जाता है। यद्यपि, यदि इंजेक्शन के कारण दोलक अनुभव कर सकने वाली अधिकतम आवृत्ति शिफ्ट दोलन और इंजेक्शन आवृत्तियों (यानी, इंजेक्शन आवृत्ति लॉक रेंज के बाहर है) के मेल खाने के लिए पर्याप्त नहीं है, तो दोलक केवल इंजेक्शन लिया जा सकता है (देखें इंजेक्शन)।<ref>{{cite journal | last=Hong | first=B. | last2=Hajimiri | first2=A. | title=A general theory of injection locking and pulling in electrical oscillators—Part I: Time-synchronous modeling and injection waveform design | journal=IEEE Journal of Solid-State Circuits | publisher=Institute of Electrical and Electronics Engineers (IEEE) | volume=54 | issue=8 | year=2019 | doi=10.1109/JSSC.2019.2908753 | pages=2109–2121 }}</ref>


== इंजेक्शन-लॉक ऑसिलेटर ==
एक इंजेक्शन-लॉक ऑसिलेटर (ILO) सामान्यतः क्रॉस-युग्मित LC सर्किट [[इलेक्ट्रॉनिक थरथरानवाला]] पर आधारित होता है। इसे फ्रीक्वेंसी डिवीजन के लिए नियोजित किया गया है<ref>{{cite journal | last=Tiebout | first=M. | title=उच्च-आवृत्ति कम-शक्ति आवृत्ति विभक्त के रूप में एक CMOS प्रत्यक्ष इंजेक्शन-लॉक ऑसिलेटर टोपोलॉजी| journal=IEEE Journal of Solid-State Circuits | publisher=Institute of Electrical and Electronics Engineers (IEEE) | volume=39 | issue=7 | year=2004 | issn=0018-9200 | doi=10.1109/jssc.2004.829937 | pages=1170–1174| bibcode=2004IJSSC..39.1170T }}</ref> या फेज-लॉक्ड लूप में जिटर रिडक्शन, शुद्ध साइनसोइडल वेवफॉर्म के इनपुट के साथ। इसे नॉन-रिटर्न-टू-ज़ीरो (NRZ) डेटा को स्यूडो-रिटर्न-टू-ज़ीरो में बदलने के लिए या तो पूर्ववर्ती पल्स जनरेशन सर्किट की सहायता से क्लॉक रेस्टोरेशन करने के लिए निरंतर मोड क्लॉक और डेटा रिकवरी (CDR) या [[ घड़ी की वसूली ]] में नियोजित किया गया था। (पीआरजेड) प्रारूप<ref>{{cite conference | last=De Matos | first=M. | last2=Bégueret | first2=J-B. | last3=Lapuyade | first3=H. | last4=Belot | first4=D. | last5=Escotte | first5=L. | last6=Deval | first6=Y. | title=A 0.25 μm SiGe receiver front-end for 5GHz applications | conference=SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics| publisher=Institute of Electrical and Electronics Engineers (IEEE) | year=2005 | isbn=0-7803-9341-4 | doi=10.1109/imoc.2005.1579980 | pages=213–217}}</ref> या डेटा में क्लॉक सिग्नल को युगल करने के लिए ट्रांसमीटर की तरफ रहने वाले गैर-आदर्श रेटिमिंग सर्किट।<ref>{{cite conference | last=Gabara | first=T. | title=An 0.25μm CMOS injection locked 5.6Gb/s clock and data recovery cell | conference=Symposium on Integrated Circuits and Systems Design | year=1999 | doi=10.1109/SBCCI.1999.802973 | pages=84–87 }}</ref> 2000 के दशक के अंत में, ILO को बर्स्ट-मोड क्लॉक-रिकवरी योजना के लिए नियोजित किया गया था।<ref>{{cite conference | last=Lee | first=J. | last2=Liu | first2=M. | title=A 20Gb/s burst-mode CDR circuit using injection-locking technique | conference = International Solid-State Circuits Conference (ISSCC) | publisher=Institute of Electrical and Electronics Engineers (IEEE) | year=2007 | doi=10.1109/ISSCC.2007.373580 | pages=46–47 }}</ref>
इंजेक्शन-लॉक करने की क्षमता सभी ऑसिलेटर्स (इलेक्ट्रॉनिक या अन्य) की एक अंतर्निहित संपत्ति है। इस क्षमता को मौलिक रूप से ऑसिलेटर की आवधिकता और उसकी स्वायत्तता के संयुक्त प्रभाव के रूप में समझा जा सकता है। विशेष रूप से, एक आवधिक इंजेक्शन (यानी, बाहरी गड़बड़ी) पर विचार करें जो प्रत्येक दोलन चक्र को कुछ चरण शिफ्ट करके ऑसिलेटर के चरण को आगे बढ़ाता है या पीछे करता है। थरथरानवाला की आवधिकता के कारण, यदि थरथरानवाला इंजेक्शन-लॉक है तो यह चरण परिवर्तन चक्र से चक्र के समान होगा। इसके अलावा, थरथरानवाला की स्वायत्तता के कारण, प्रत्येक चरण बदलाव अनिश्चित काल तक बना रहता है। इन दो प्रभावों के संयोजन से प्रति दोलन चक्र में एक निश्चित चरण बदलाव होता है, जिसके परिणामस्वरूप समय के साथ एक निरंतर आवृत्ति बदलाव होता है। यदि परिणामी, स्थानांतरित दोलन आवृत्ति इंजेक्शन आवृत्ति से मेल खाती है, तो थरथरानवाला को इंजेक्शन-लॉक कहा जाता है। यद्यपि, यदि इंजेक्शन के कारण दोलक अनुभव कर सकने वाली अधिकतम आवृत्ति शिफ्ट दोलन और इंजेक्शन आवृत्तियों के मेल खाने के लिए पर्याप्त नहीं है (यानी, इंजेक्शन आवृत्ति लॉक रेंज के बाहर है), तो दोलक को केवल इंजेक्शन खींचा जा सकता है (देखें) #इंजेक्शन खींच रहा है)।<ref>{{cite journal | last=Hong | first=B. | last2=Hajimiri | first2=A. | title=A general theory of injection locking and pulling in electrical oscillators—Part I: Time-synchronous modeling and injection waveform design | journal=IEEE Journal of Solid-State Circuits | publisher=Institute of Electrical and Electronics Engineers (IEEE) | volume=54 | issue=8 | year=2019 | doi=10.1109/JSSC.2019.2908753 | pages=2109–2121 }}</ref>




== अवांछित इंजेक्शन लॉकिंग ==
== अवांछित इंजेक्शन लॉकिंग ==
हाई-स्पीड लॉजिक सिग्नल और उनके हार्मोनिक्स एक ऑसिलेटर के लिए संभावित खतरे हैं। एक अनपेक्षित लॉक के साथ एक सब्सट्रेट सहवर्ती के माध्यम से एक थरथरानवाला में इन और अन्य उच्च आवृत्ति संकेतों का रिसाव अवांछित इंजेक्शन लॉकिंग है।
उच्च गति तार्किक संकेत और उनके हारमोनिक्स एक दोलक के लिए संभावित खतरे हैं। एक अनपेक्षित लॉक के साथ एक प्रतिस्थापित संयमित के माध्यम से एक दोलक में इन और अन्य उच्च आवृत्ति संकेतों का रिसाव अवांछित इंजेक्शन लॉकिंग है।


== इंजेक्शन लॉकिंग द्वारा लाभ ==
== इंजेक्शन लॉकिंग द्वारा लाभ ==
इंजेक्शन लॉकिंग कुछ अनुप्रयोगों में कम बिजली लागत पर लाभ का साधन भी प्रदान कर सकता है।
इंजेक्शन लॉकिंग कुछ अनुप्रयोगों में कम बिजली लागत पर लाभ का साधन भी प्रदान कर सकता है।


{{Anchor|Injection pulling}}
== इंजेक्शन पुलिंग ==
 
== इंजेक्शन खींच रहा है ==
{{Listen
{{Listen
|filename=InjectionLockedOscillators.ogg
|filename=InjectionLockedOscillators.ogg
Line 31: Line 31:
|format=[[Ogg]]}}
|format=[[Ogg]]}}


इंजेक्शन (उर्फ फ्रीक्वेंसी) पुलिंग तब होता है जब एक इंटरफेरिंग फ्रीक्वेंसी स्रोत एक ऑसीलेटर को परेशान करता है लेकिन इंजेक्शन लॉक करने में असमर्थ होता है। थरथरानवाला की आवृत्ति आवृत्ति स्रोत की ओर खींची जाती है जैसा कि स्पेक्ट्रोग्राम में देखा जा सकता है। लॉक करने में विफलता अपर्याप्त कपलिंग के कारण हो सकती है, या क्योंकि इंजेक्शन स्रोत आवृत्ति ऑसिलेटर की लॉकिंग विंडो (जिसे लॉक रेंज के रूप में भी जाना जाता है) के बाहर होती है। इंजेक्शन पुलिंग मौलिक रूप से एक ऑसिलेटर की अंतर्निहित आवधिकता को दूषित करता है।
इंजेक्शन (एका आवृत्ति) पुलिंग तब होता है जब एक इंटरफेरिंग आवृत्ति स्रोत एक दोलक को विक्षुब्ध करता है लेकिन इंजेक्शन लॉक करने में असमर्थ होता है। दोलक की आवृत्ति को आवृत्ति स्रोत की ओर पुल किया जाता है जैसा कि स्पेक्ट्रोग्राम में देखा जा सकता है। लॉक करने में विफलता अपर्याप्त युग्मन के कारण हो सकती है, या क्योंकि इंजेक्शन स्रोत आवृत्ति दोलक के लॉकिंग विंडो (जिसे लॉक रेंज भी कहा जाता है) के बाहर होती है। इंजेक्शन पुलिंग मूल रूप से दोलक की अंतर्निहित आवृति को खराब करता है।
[[Image:InjectionLockedOscillatorsSpectrogram.png|thumb|उपरोक्त ऑडियो का स्पेक्ट्रोग्राम]]
[[Image:InjectionLockedOscillatorsSpectrogram.png|thumb|उपरोक्त ऑडियो का स्पेक्ट्रोग्राम]]


== प्रवेश ==
== प्रवेश ==
युग्मित चालित ऑसिलेटर्स के मोड लॉकिंग की प्रक्रिया को संदर्भित करने के लिए प्रवेश का उपयोग किया गया है, जो कि प्रक्रिया है जिससे दो परस्पर क्रिया करने वाली दोलन प्रणालियाँ, जिनकी अलग-अलग अवधियाँ होती हैं जब वे स्वतंत्र रूप से कार्य करती हैं, एक सामान्य अवधि मानती हैं। दो दोलक तुल्यकालन में पड़ सकते हैं, लेकिन अन्य चरण संबंध भी संभव हैं। अधिक आवृत्ति वाली प्रणाली धीमी हो जाती है, और दूसरी गति बढ़ जाती है।
युग्मित चालित दोलक्स के मोड लॉकिंग की प्रक्रिया को संदर्भित करने के लिए प्रवेश का उपयोग किया गया है, जो कि प्रक्रिया है जिससे दो परस्पर क्रिया करने वाली दोलन प्रणालियाँ, जिनकी अलग-अलग अवधियाँ होती हैं जब वे स्वतंत्र रूप से कार्य करती हैं, एक सामान्य अवधि मानती हैं। दो दोलक तुल्यकालन में पड़ सकते हैं, लेकिन अन्य चरण संबंध भी संभव हैं। अधिक आवृत्ति वाली प्रणाली धीमी हो जाती है, और दूसरी गति बढ़ जाती है।


पेंडुलम घड़ी के आविष्कारक, डच भौतिक विज्ञानी क्रिस्टियान ह्यूजेंस ने 1666 में यह देखने के बाद अवधारणा पेश की कि एक सामान्य बोर्ड पर लगे दो घड़ियों के पेंडुलम [[तादात्म्य]] हो गए थे, और बाद के प्रयोगों ने इस घटना को दोहराया। उन्होंने इस प्रभाव को विषम सहानुभूति बताया। दो पेंडुलम घड़ियों को उनके पेंडुलम के साथ विपरीत दिशाओं में झूलते हुए सिंक्रनाइज़ किया जाता है, 180 ° [[चरण से बाहर]], लेकिन इन-फेज अवस्थाएँ भी परिणाम दे सकती हैं। प्रवेश इसलिए होता है क्योंकि नकारात्मक प्रतिक्रिया उत्पन्न करने के लिए चरण से बाहर होने पर ऊर्जा की छोटी मात्रा को दो प्रणालियों के बीच स्थानांतरित किया जाता है। जैसा कि वे एक अधिक स्थिर चरण संबंध मानते हैं, ऊर्जा की मात्रा धीरे-धीरे शून्य हो जाती है। भौतिकी के क्षेत्र में, ह्यूजेंस के अवलोकन अनुनाद और हार्मोनिक दोलक के [[गुंजयमान]] युग्मन से संबंधित हैं, जो [[सहानुभूति अनुनाद]] को भी जन्म देता है।
पेंडुलम घड़ी के आविष्कारक, डच भौतिक विज्ञानी क्रिस्टियान ह्यूजेंस ने 1666 में यह देखने के बाद अवधारणा पेश की कि एक सामान्य बोर्ड पर लगे दो घड़ियों के पेंडुलम [[तादात्म्य]] हो गए थे, और बाद के प्रयोगों ने इस घटना को दोहराया। उन्होंने इस प्रभाव को विषम सहानुभूति बताया। दो पेंडुलम घड़ियों को उनके पेंडुलम के साथ विपरीत दिशाओं में झूलते हुए सिंक्रनाइज़ किया जाता है, 180 ° [[चरण से बाहर]], लेकिन इन-फेज अवस्थाएँ भी परिणाम दे सकती हैं। प्रवेश इसलिए होता है क्योंकि नकारात्मक प्रतिक्रिया उत्पन्न करने के लिए चरण से बाहर होने पर ऊर्जा की छोटी मात्रा को दो प्रणालियों के बीच स्थानांतरित किया जाता है। जैसा कि वे एक अधिक स्थिर चरण संबंध मानते हैं, ऊर्जा की मात्रा धीरे-धीरे शून्य हो जाती है। भौतिकी के क्षेत्र में, ह्यूजेंस के अवलोकन अनुनाद और हार्मोनिक दोलक के [[गुंजयमान]] युग्मन से संबंधित हैं, जो [[सहानुभूति अनुनाद]] को भी जन्म देता है।


ह्यूजेन्स के अवलोकनों के 2002 के एक अध्ययन से पता चलता है कि एक एंटीपेज़ स्थिर दोलन कुछ हद तक आकस्मिक था, और अन्य संभावित स्थिर समाधान हैं, जिसमें एक मौत की स्थिति भी शामिल है, जहां घड़ियों के बीच युग्मन की ताकत के आधार पर एक घड़ी चलना बंद हो जाती है।<ref>{{cite journal | last=Bennett | first=Matthew | last2=Schatz | first2=Michael F. | last3=Rockwood | first3=Heidi | last4=Wiesenfeld | first4=Kurt | title=ह्यूजेंस की घड़ियां| journal=Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences | publisher=The Royal Society | volume=458 | issue=2019 | date=2002-03-08 | issn=1364-5021 | doi=10.1098/rspa.2001.0888 | pages=563–579| bibcode=2002RSPSA.458..563. }}</ref>
ह्यूजेन्स के अवलोकनों के 2002 के एक अध्ययन से पता चलता है कि एक एंटीपेज़ स्थिर दोलन कुछ हद तक आकस्मिक था, और अन्य संभावित स्थिर समाधान हैं, जिसमें एक मौत की स्थिति भी शामिल है, जहां घड़ियों के बीच युग्मन की ताकत के आधार पर एक घड़ी चलना बंद हो जाती है।<ref>{{cite journal | last=Bennett | first=Matthew | last2=Schatz | first2=Michael F. | last3=Rockwood | first3=Heidi | last4=Wiesenfeld | first4=Kurt | title=ह्यूजेंस की घड़ियां| journal=Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences | publisher=The Royal Society | volume=458 | issue=2019 | date=2002-03-08 | issn=1364-5021 | doi=10.1098/rspa.2001.0888 | pages=563–579| bibcode=2002RSPSA.458..563. }}</ref>
संचालित ऑसिलेटर्स के बीच मोड लॉकिंग को एक सामान्य, आसानी से चल सकने वाली सतह पर यांत्रिक [[ ताल-मापनी ]] का उपयोग करके आसानी से प्रदर्शित किया जा सकता है।<ref>{{cite journal | last=Pantaleone | first=James | title=मेट्रोनोम का तुल्यकालन| journal=American Journal of Physics | publisher=American Association of Physics Teachers (AAPT) | volume=70 | issue=10 | year=2002 | issn=0002-9505 | doi=10.1119/1.1501118 | pages=992–1000| bibcode=2002AmJPh..70..992P }}</ref><ref>[http://www.cbsnews.com/8301-504784_162-57520822-10391705/watch-the-synchronisation-of-32-metronomes-with-an-explanation-behind-it/ Watch the synchronization of 32 metronomes] CBS News, 2013 Sept 10</ref><ref>{{Cite journal |last=Goldsztein |first=Guillermo H. |last2=English |first2=Lars Q. |last3=Behta |first3=Emma |last4=Finder |first4=Hillel |last5=Nadeau |first5=Alice N. |last6=Strogatz |first6=Steven H. |date=2022-04-01 |title=कूलम्ब घर्षण के साथ एक चलते हुए प्लेटफॉर्म पर युग्मित मेट्रोनोम|url=https://aip.scitation.org/doi/10.1063/5.0085216 |journal=Chaos: An Interdisciplinary Journal of Nonlinear Science |volume=32 |issue=4 |pages=043119 |doi=10.1063/5.0085216 |pmid=35489851 |issn=1054-1500|arxiv=2201.06161 }}</ref> [[जैविक पेसमेकर]] के उचित संचालन सहित कई जैविक प्रणालियों के लिए इस तरह की मोड लॉकिंग महत्वपूर्ण है।<ref>{{cite journal | last=Ermentrout | first=G. B. | last2=Rinzel | first2=J. | title=Beyond a pacemaker's entrainment limit: phase walk-through | journal=American Journal of Physiology. Regulatory, Integrative and Comparative Physiology | publisher=American Physiological Society | volume=246 | issue=1 | date=1984-01-01 | issn=0363-6119 | doi=10.1152/ajpregu.1984.246.1.r102 | pages=R102–R106| pmid=6696096 }}</ref>
संचालित दोलक्स के बीच मोड लॉकिंग को एक सामान्य, आसानी से चल सकने वाली सतह पर यांत्रिक [[ ताल-मापनी ]] का उपयोग करके आसानी से प्रदर्शित किया जा सकता है।<ref>{{cite journal | last=Pantaleone | first=James | title=मेट्रोनोम का तुल्यकालन| journal=American Journal of Physics | publisher=American Association of Physics Teachers (AAPT) | volume=70 | issue=10 | year=2002 | issn=0002-9505 | doi=10.1119/1.1501118 | pages=992–1000| bibcode=2002AmJPh..70..992P }}</ref><ref>[http://www.cbsnews.com/8301-504784_162-57520822-10391705/watch-the-synchronisation-of-32-metronomes-with-an-explanation-behind-it/ Watch the synchronization of 32 metronomes] CBS News, 2013 Sept 10</ref><ref>{{Cite journal |last=Goldsztein |first=Guillermo H. |last2=English |first2=Lars Q. |last3=Behta |first3=Emma |last4=Finder |first4=Hillel |last5=Nadeau |first5=Alice N. |last6=Strogatz |first6=Steven H. |date=2022-04-01 |title=कूलम्ब घर्षण के साथ एक चलते हुए प्लेटफॉर्म पर युग्मित मेट्रोनोम|url=https://aip.scitation.org/doi/10.1063/5.0085216 |journal=Chaos: An Interdisciplinary Journal of Nonlinear Science |volume=32 |issue=4 |pages=043119 |doi=10.1063/5.0085216 |pmid=35489851 |issn=1054-1500|arxiv=2201.06161 }}</ref> [[जैविक पेसमेकर]] के उचित संचालन सहित कई जैविक प्रणालियों के लिए इस तरह की मोड लॉकिंग महत्वपूर्ण है।<ref>{{cite journal | last=Ermentrout | first=G. B. | last2=Rinzel | first2=J. | title=Beyond a pacemaker's entrainment limit: phase walk-through | journal=American Journal of Physiology. Regulatory, Integrative and Comparative Physiology | publisher=American Physiological Society | volume=246 | issue=1 | date=1984-01-01 | issn=0363-6119 | doi=10.1152/ajpregu.1984.246.1.r102 | pages=R102–R106| pmid=6696096 }}</ref>
आधुनिक भौतिकी साहित्य में एंट्रेनमेंट शब्द का उपयोग अधिकांशतः एक तरल पदार्थ के संचलन, या पार्टिकुलेट्स के संग्रह को दूसरे द्वारा संदर्भित करता है ([[ प्रवेश (हाइड्रोडायनामिक्स) ]] देखें)। गैर-रेखीय युग्मित ऑसिलेटर्स के मोड लॉकिंग को संदर्भित करने के लिए शब्द का उपयोग लगभग 1980 के बाद दिखाई देता है, और तुलना में अपेक्षाकृत दुर्लभ रहता है।
आधुनिक भौतिकी साहित्य में एंट्रेनमेंट शब्द का उपयोग अधिकांशतः एक तरल पदार्थ के संचलन, या पार्टिकुलेट्स के संग्रह को दूसरे द्वारा संदर्भित करता है ([[ प्रवेश (हाइड्रोडायनामिक्स) ]] देखें)। गैर-रेखीय युग्मित दोलक्स के मोड लॉकिंग को संदर्भित करने के लिए शब्द का उपयोग लगभग 1980 के बाद दिखाई देता है, और तुलना में अपेक्षाकृत दुर्लभ रहता है।


अनुकूली प्रतिक्रिया रद्दीकरण का उपयोग किए जाने पर श्रवण यंत्रों में एक समान युग्मन घटना की विशेषता थी। यह कैओस सिद्धांत आर्टिफैक्ट (प्रवेश) देखा जाता है जब सहसंबंधित इनपुट सिग्नल अनुकूली प्रतिक्रिया रद्द करने वाले को प्रस्तुत किए जाते हैं।
अनुकूली प्रतिक्रिया रद्दीकरण का उपयोग किए जाने पर श्रवण यंत्रों में एक समान युग्मन घटना की विशेषता थी। यह कैओस सिद्धांत आर्टिफैक्ट (प्रवेश) देखा जाता है जब सहसंबंधित इनपुट सिग्नल अनुकूली प्रतिक्रिया रद्द करने वाले को प्रस्तुत किए जाते हैं।
Line 49: Line 49:


== यह भी देखें ==
== यह भी देखें ==
*फ्रीक्वेंसी डिवाइडर#इंजेक्शन-लॉक फ्रीक्वेंसी डिवाइडर|इंजेक्शन-लॉक फ्रीक्वेंसी डिवाइडर
*आवृत्ति डिवाइडर#इंजेक्शन-लॉक आवृत्ति डिवाइडर|इंजेक्शन-लॉक आवृत्ति डिवाइडर
*चरण बंद लूप
*चरण बंद लूप
* एलसी थरथरानवाला
* एलसी दोलक
*इलेक्ट्रॉनिक ऑसिलेटर
*इलेक्ट्रॉनिक दोलक
* [[बर्स्ट मोड क्लॉक और डेटा रिकवरी]]
* [[बर्स्ट मोड क्लॉक और डेटा रिकवरी]]
*प्रवेश (हाइड्रोडायनामिक्स)
*प्रवेश (हाइड्रोडायनामिक्स)

Revision as of 13:51, 31 March 2023

इंजेक्शन लॉकिंग और इंजेक्शन पुलिंग उन आवृत्ति प्रभावों को कहते हैं जो तब हो सकते हैं जब एक सरल आवर्ती दोलक पास की आवृत्ति पर काम करने वाले दूसरे दोलक द्वारा विक्षुब्ध हो जाता है। जब युग्मन पर्याप्त रूप से मजबूत होता है और आवृत्तियाँ पर्याप्त के पास होती हैं, तो दूसरा दोलक पहले दोलक को पकड़ सकता है, जिससे यह अनिवार्य रूप से दूसरे के समान आवृत्ति का हो जाता है। यह इंजेक्शन लॉकिंग है। जब दूसरा दोलक केवल पहले को विक्षुब्ध करता है लेकिन इसे पकड़ नहीं पाता है, तो प्रभाव को इंजेक्शन पुलिंग कहा जाता है। इंजेक्शन लॉकिंग और पुलिंग प्रभाव कई प्रकार की भौतिक प्रणालियों में देखे जाते हैं, यद्यपि ये शब्द अधिकांशतः इलेक्ट्रॉनिक दोलक या लेजर प्रतिध्वनिकर्ताओं से जुड़े होते हैं।

इंजेक्शन लॉकिंग का उपयोग प्रारंभिक टेलीविजन सेट और दोलोस्कोप के डिजाइन में लाभकारी और चतुर तरीकों में किया गया है, जिससे उपकरण को अपेक्षाकृत कम लागत पर बाहरी संकेतों के साथ तुल्यकालित होने की अनुमति मिली है। उच्च निष्पादन आवृत्ति दोहरीकरण सर्किट में इंजेक्शन लॉकिंग का भी इस्तेमाल किया गया है। यद्यपि, इंजेक्शन लॉकिंग और पुलिंग, जब अनभिप्रेत ही, चरण-बंद लूप और आरएफ एकीकृत परिपथ आवृति के प्रदर्शन को कम कर सकते हैं।

दादाजी घड़ियों से लेजर तक इंजेक्शन

इंजेक्शन पुलिंग और इंजेक्शन लॉकिंग को कई भौतिक प्रणालियों में देखा जा सकता है जहां दोलक के जोड़े एक साथ जोड़े जाते हैं। शायद सबसे पहले इन प्रभावों को प्रलेखित पेंडुलम घड़ी के आविष्कारक क्रिस्टियान ह्यूजेंस ने किया था, जो यह जानकर हैरान थे कि दो पेंडुलम घड़ियां जो सामान्यतः थोड़ा अलग समय रखती हैं, फिर भी एक आम बीम से लटकाए जाने पर पूरी तरह से संकालित हो जाती हैं। आधुनिक शोधकर्ताओं ने उनके संदेह की पुष्टि की है कि पेंडुलम घड़ी लकड़ी की बीम में छोटे-छोटे कंपन से जुड़े थे।[1] दो घड़ियाँ एक सामान्य आवृत्ति के लिए इंजेक्शन बन गईं।

शीर्ष पर आउटपुट के साथ क्रॉस युग्मित एलसी दोलक

एक आधुनिक वोल्टेज नियंत्रित दोलक में एक इंजेक्शन-लॉकिंग संकेत अपने कम आवृत्ति नियंत्रण वोल्टेज को ओवरराइड कर सकता है, जिसके परिणामस्वरूप नियंत्रण का नुकसान हो सकता है। जानबूझकर नियोजित होने पर, इंजेक्शन लॉकिंग अन्य आवृत्ति सिंथेसाइज़र और चरण-लॉक लूप डिज़ाइन तकनीकों की तुलना में बिजली की खपत को कम करने और संभवतः चरण शोर को कम करने का साधन प्रदान करता है। इसी तरह, बड़े लेज़र के आवृत्ति आउटपुट को उच्च परिशुद्धता संदर्भ लेज़र के साथ इंजेक्शन द्वारा शोधित किया जा सकता है (इंजेक्शन सीडर देखें)।

इंजेक्शन-लॉक दोलक

एक इंजेक्शन-लॉक दोलक (ILO) सामान्यतः क्रॉस-युग्मित LC दोलक पर आधारित होता है। इसे आवृत्ति डिवीजन [2] या फेज-लॉक्ड लूप में जिटर रिडक्शन, शुद्ध साइनसोइडल वेवफॉर्म के इनपुट के साथ के लिए नियोजित किया गया है। इसे निरंतर मोड क्लॉक और डेटा रिकवरी (सीडीआर) या क्लॉक रिकवरी (सीडीआर) में नियोजित किया गया था, ताकि गैर-रिटर्न-टू-शून्य (एनआरजेड) डेटा को कूट-रिटर्न-टू-शून्य (पीआरजेड) प्रारूप [3] में परिवर्तित करने के लिए पूर्ववर्ती पल्स जनरेशन सर्किट की सहायता से घड़ी की बहाली की जा सके।[4] 2000 के दशक के अंत में, आईएलओ को बर्स्ट-मोड क्लॉक-रिकवरी योजना के लिए नियोजित किया गया था।[5]

इंजेक्शन-लॉक करने की क्षमता सभी दोलक्स (इलेक्ट्रॉनिक या अन्य) की एक अंतर्निहित पूर्णावस्था है। इस क्षमता को मौलिक रूप से दोलक की आवधिकता और उसकी स्वायत्तता के संयुक्त प्रभाव के रूप में समझा जा सकता है।विशेष रूप से, एक आवधिक इंजेक्शन (यानी, बाहरी गड़बड़ी) पर विचार करें जो प्रत्येक दोलन चक्र को कुछ चरणों में स्थानांतरित करके दोलक चरण को आगे बढ़ाता या पीछे करता है। दोलक की आवधिकता के कारण, यह चरण शिफ्ट चक्र से चक्र तक समान होगा यदि दोलक इंजेक्शन-लॉक होता है। इसके अलावा, दोलक की स्वायत्तता के कारण, प्रत्येक चरण अनिश्चित रूप से जारी रहता है। इन दो प्रभावों का संयोजन प्रति दोलन चक्र एक निश्चित चरण शिफ्ट का उत्पादन करता है, जो समय के साथ एक निरंतर आवृत्ति परिवर्तन में परिणत होता है। यदि परिणामी, स्थानांतरित दोलन आवृत्ति इंजेक्शन आवृत्ति से मेल खाती है, तो दोलक को इंजेक्शन-लॉक कहा जाता है। यद्यपि, यदि इंजेक्शन के कारण दोलक अनुभव कर सकने वाली अधिकतम आवृत्ति शिफ्ट दोलन और इंजेक्शन आवृत्तियों (यानी, इंजेक्शन आवृत्ति लॉक रेंज के बाहर है) के मेल खाने के लिए पर्याप्त नहीं है, तो दोलक केवल इंजेक्शन लिया जा सकता है (देखें इंजेक्शन)।[6]


अवांछित इंजेक्शन लॉकिंग

उच्च गति तार्किक संकेत और उनके हारमोनिक्स एक दोलक के लिए संभावित खतरे हैं। एक अनपेक्षित लॉक के साथ एक प्रतिस्थापित संयमित के माध्यम से एक दोलक में इन और अन्य उच्च आवृत्ति संकेतों का रिसाव अवांछित इंजेक्शन लॉकिंग है।

इंजेक्शन लॉकिंग द्वारा लाभ

इंजेक्शन लॉकिंग कुछ अनुप्रयोगों में कम बिजली लागत पर लाभ का साधन भी प्रदान कर सकता है।

इंजेक्शन पुलिंग

इंजेक्शन (एका आवृत्ति) पुलिंग तब होता है जब एक इंटरफेरिंग आवृत्ति स्रोत एक दोलक को विक्षुब्ध करता है लेकिन इंजेक्शन लॉक करने में असमर्थ होता है। दोलक की आवृत्ति को आवृत्ति स्रोत की ओर पुल किया जाता है जैसा कि स्पेक्ट्रोग्राम में देखा जा सकता है। लॉक करने में विफलता अपर्याप्त युग्मन के कारण हो सकती है, या क्योंकि इंजेक्शन स्रोत आवृत्ति दोलक के लॉकिंग विंडो (जिसे लॉक रेंज भी कहा जाता है) के बाहर होती है। इंजेक्शन पुलिंग मूल रूप से दोलक की अंतर्निहित आवृति को खराब करता है।

उपरोक्त ऑडियो का स्पेक्ट्रोग्राम

प्रवेश

युग्मित चालित दोलक्स के मोड लॉकिंग की प्रक्रिया को संदर्भित करने के लिए प्रवेश का उपयोग किया गया है, जो कि प्रक्रिया है जिससे दो परस्पर क्रिया करने वाली दोलन प्रणालियाँ, जिनकी अलग-अलग अवधियाँ होती हैं जब वे स्वतंत्र रूप से कार्य करती हैं, एक सामान्य अवधि मानती हैं। दो दोलक तुल्यकालन में पड़ सकते हैं, लेकिन अन्य चरण संबंध भी संभव हैं। अधिक आवृत्ति वाली प्रणाली धीमी हो जाती है, और दूसरी गति बढ़ जाती है।

पेंडुलम घड़ी के आविष्कारक, डच भौतिक विज्ञानी क्रिस्टियान ह्यूजेंस ने 1666 में यह देखने के बाद अवधारणा पेश की कि एक सामान्य बोर्ड पर लगे दो घड़ियों के पेंडुलम तादात्म्य हो गए थे, और बाद के प्रयोगों ने इस घटना को दोहराया। उन्होंने इस प्रभाव को विषम सहानुभूति बताया। दो पेंडुलम घड़ियों को उनके पेंडुलम के साथ विपरीत दिशाओं में झूलते हुए सिंक्रनाइज़ किया जाता है, 180 ° चरण से बाहर, लेकिन इन-फेज अवस्थाएँ भी परिणाम दे सकती हैं। प्रवेश इसलिए होता है क्योंकि नकारात्मक प्रतिक्रिया उत्पन्न करने के लिए चरण से बाहर होने पर ऊर्जा की छोटी मात्रा को दो प्रणालियों के बीच स्थानांतरित किया जाता है। जैसा कि वे एक अधिक स्थिर चरण संबंध मानते हैं, ऊर्जा की मात्रा धीरे-धीरे शून्य हो जाती है। भौतिकी के क्षेत्र में, ह्यूजेंस के अवलोकन अनुनाद और हार्मोनिक दोलक के गुंजयमान युग्मन से संबंधित हैं, जो सहानुभूति अनुनाद को भी जन्म देता है।

ह्यूजेन्स के अवलोकनों के 2002 के एक अध्ययन से पता चलता है कि एक एंटीपेज़ स्थिर दोलन कुछ हद तक आकस्मिक था, और अन्य संभावित स्थिर समाधान हैं, जिसमें एक मौत की स्थिति भी शामिल है, जहां घड़ियों के बीच युग्मन की ताकत के आधार पर एक घड़ी चलना बंद हो जाती है।[7] संचालित दोलक्स के बीच मोड लॉकिंग को एक सामान्य, आसानी से चल सकने वाली सतह पर यांत्रिक ताल-मापनी का उपयोग करके आसानी से प्रदर्शित किया जा सकता है।[8][9][10] जैविक पेसमेकर के उचित संचालन सहित कई जैविक प्रणालियों के लिए इस तरह की मोड लॉकिंग महत्वपूर्ण है।[11] आधुनिक भौतिकी साहित्य में एंट्रेनमेंट शब्द का उपयोग अधिकांशतः एक तरल पदार्थ के संचलन, या पार्टिकुलेट्स के संग्रह को दूसरे द्वारा संदर्भित करता है (प्रवेश (हाइड्रोडायनामिक्स) देखें)। गैर-रेखीय युग्मित दोलक्स के मोड लॉकिंग को संदर्भित करने के लिए शब्द का उपयोग लगभग 1980 के बाद दिखाई देता है, और तुलना में अपेक्षाकृत दुर्लभ रहता है।

अनुकूली प्रतिक्रिया रद्दीकरण का उपयोग किए जाने पर श्रवण यंत्रों में एक समान युग्मन घटना की विशेषता थी। यह कैओस सिद्धांत आर्टिफैक्ट (प्रवेश) देखा जाता है जब सहसंबंधित इनपुट सिग्नल अनुकूली प्रतिक्रिया रद्द करने वाले को प्रस्तुत किए जाते हैं।

हाल के वर्षों में, एपेरियोडिक एंट्रेंस को एंट्रेंस के वैकल्पिक रूप के रूप में पहचाना गया है जो जैविक लय में रुचि रखता है।[12][13][14]


यह भी देखें

संदर्भ

  1. http://phys.org/news/2016-03-huygens-pendulum-synchronization.html - Researchers prove Huygens was right about pendulum synchronization
  2. Tiebout, M. (2004). "उच्च-आवृत्ति कम-शक्ति आवृत्ति विभक्त के रूप में एक CMOS प्रत्यक्ष इंजेक्शन-लॉक ऑसिलेटर टोपोलॉजी". IEEE Journal of Solid-State Circuits. Institute of Electrical and Electronics Engineers (IEEE). 39 (7): 1170–1174. Bibcode:2004IJSSC..39.1170T. doi:10.1109/jssc.2004.829937. ISSN 0018-9200.
  3. De Matos, M.; Bégueret, J-B.; Lapuyade, H.; Belot, D.; Escotte, L.; Deval, Y. (2005). A 0.25 μm SiGe receiver front-end for 5GHz applications. SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics. Institute of Electrical and Electronics Engineers (IEEE). pp. 213–217. doi:10.1109/imoc.2005.1579980. ISBN 0-7803-9341-4.
  4. Gabara, T. (1999). An 0.25μm CMOS injection locked 5.6Gb/s clock and data recovery cell. Symposium on Integrated Circuits and Systems Design. pp. 84–87. doi:10.1109/SBCCI.1999.802973.
  5. Lee, J.; Liu, M. (2007). A 20Gb/s burst-mode CDR circuit using injection-locking technique. International Solid-State Circuits Conference (ISSCC). Institute of Electrical and Electronics Engineers (IEEE). pp. 46–47. doi:10.1109/ISSCC.2007.373580.
  6. Hong, B.; Hajimiri, A. (2019). "A general theory of injection locking and pulling in electrical oscillators—Part I: Time-synchronous modeling and injection waveform design". IEEE Journal of Solid-State Circuits. Institute of Electrical and Electronics Engineers (IEEE). 54 (8): 2109–2121. doi:10.1109/JSSC.2019.2908753.
  7. Bennett, Matthew; Schatz, Michael F.; Rockwood, Heidi; Wiesenfeld, Kurt (2002-03-08). "ह्यूजेंस की घड़ियां". Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. The Royal Society. 458 (2019): 563–579. Bibcode:2002RSPSA.458..563.. doi:10.1098/rspa.2001.0888. ISSN 1364-5021.
  8. Pantaleone, James (2002). "मेट्रोनोम का तुल्यकालन". American Journal of Physics. American Association of Physics Teachers (AAPT). 70 (10): 992–1000. Bibcode:2002AmJPh..70..992P. doi:10.1119/1.1501118. ISSN 0002-9505.
  9. Watch the synchronization of 32 metronomes CBS News, 2013 Sept 10
  10. Goldsztein, Guillermo H.; English, Lars Q.; Behta, Emma; Finder, Hillel; Nadeau, Alice N.; Strogatz, Steven H. (2022-04-01). "कूलम्ब घर्षण के साथ एक चलते हुए प्लेटफॉर्म पर युग्मित मेट्रोनोम". Chaos: An Interdisciplinary Journal of Nonlinear Science. 32 (4): 043119. arXiv:2201.06161. doi:10.1063/5.0085216. ISSN 1054-1500. PMID 35489851.
  11. Ermentrout, G. B.; Rinzel, J. (1984-01-01). "Beyond a pacemaker's entrainment limit: phase walk-through". American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. American Physiological Society. 246 (1): R102–R106. doi:10.1152/ajpregu.1984.246.1.r102. ISSN 0363-6119. PMID 6696096.
  12. Mainen, Z.; Sejnowski, T. (1995-06-09). "नियोकोर्टिकल न्यूरॉन्स में स्पाइक टाइमिंग की विश्वसनीयता". Science. American Association for the Advancement of Science (AAAS). 268 (5216): 1503–1506. Bibcode:1995Sci...268.1503M. doi:10.1126/science.7770778. ISSN 0036-8075. PMID 7770778.
  13. Mori, Toshio; Kai, Shoichi (2002-05-10). "मानव मस्तिष्क तरंगों में शोर-प्रेरित प्रवेश और स्टोचैस्टिक अनुनाद". Physical Review Letters. American Physical Society (APS). 88 (21): 218101. Bibcode:2002PhRvL..88u8101M. doi:10.1103/physrevlett.88.218101. ISSN 0031-9007. PMID 12059504.
  14. Butzin, Nicholas C.; Hochendoner, Philip; Ogle, Curtis T.; Hill, Paul; Mather, William H. (2015-11-12). "Marching along to an Offbeat Drum: Entrainment of Synthetic Gene Oscillators by a Noisy Stimulus". ACS Synthetic Biology. American Chemical Society (ACS). 5 (2): 146–153. doi:10.1021/acssynbio.5b00127. ISSN 2161-5063. PMID 26524465.


अग्रिम पठन

* Wolaver, Dan H. 1991. Phase-Locked Loop Circuit Design, Prentice Hall, ISBN 0-13-662743-9, pages 95–105

  • Adler, Robert (June 1946). "A Study of Locking Phenomena in Oscillators". Proceedings of the IRE. 34 (6): 351–357. doi:10.1109/JRPROC.1946.229930.
  • Kurokawa, K. (October 1973). "Injection locking of microwave solid-state oscillators". Proceedings of the IEEE. 61 (10): 1386–1410. doi:10.1109/PROC.1973.9293.

* Lee, Thomas H. 2004. The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge, ISBN 0-521-83539-9, pages 563–566


बाहरी संबंध