परिक्षेप्यता: Difference between revisions
(Created page with "{{Short description|Measure of heterogeneity of particle or molecular sizes}} {{Distinguish|Dispersal (disambiguation)|Dispersion (disambiguation)}} {{Quote box |title= IUPAC...") |
(modification) |
||
Line 1: | Line 1: | ||
{{Short description|Measure of heterogeneity of particle or molecular sizes}} | {{Short description|Measure of heterogeneity of particle or molecular sizes}} | ||
{{Distinguish| | {{Distinguish|फैलाव (बहुविकल्पी)|फैलाव (बहुविकल्पी)}} | ||
{{Quote box | {{Quote box | ||
|title= IUPAC definition | |title= IUPAC definition | ||
Line 23: | Line 23: | ||
|s2cid= 101422067 | |s2cid= 101422067 | ||
}}</ref> | }}</ref> | ||
या एक समाधान या एक ठोस बहुलक द्रव्यमान में बहुलक मैक्रोमोलेक्युलस।<ref>{{Cite journal |last1= Okita |first1= K. |last2= Teramoto |first2= A. |last3= Kawahara |first3= K. |last4= Fujita |first4= H. |title= बाइनरी मिश्रित सॉल्वैंट्स में एक मोनोडिस्पर्स पॉलीमर का प्रकाश प्रकीर्णन और रिफ्रेक्टोमेट्री|doi= 10.1021/j100847a053 |journal= The Journal of Physical Chemistry |volume= 72 |pages= 278–285 |year= 1968 }}</ref> पॉलिमर को आणविक द्रव्यमान वितरण द्वारा वर्णित किया जा सकता है; कणों की आबादी को आकार, सतह क्षेत्र और/या बड़े पैमाने पर वितरण द्वारा वर्णित किया जा सकता है; और पतली फिल्मों को फिल्म मोटाई वितरण द्वारा वर्णित किया जा सकता है। | या एक समाधान या एक ठोस बहुलक द्रव्यमान में बहुलक मैक्रोमोलेक्युलस।<ref>{{Cite journal |last1= Okita |first1= K. |last2= Teramoto |first2= A. |last3= Kawahara |first3= K. |last4= Fujita |first4= H. |title= बाइनरी मिश्रित सॉल्वैंट्स में एक मोनोडिस्पर्स पॉलीमर का प्रकाश प्रकीर्णन और रिफ्रेक्टोमेट्री|doi= 10.1021/j100847a053 |journal= The Journal of Physical Chemistry |volume= 72 |pages= 278–285 |year= 1968 }}</ref> पॉलिमर को आणविक द्रव्यमान वितरण द्वारा वर्णित किया जा सकता है; कणों की आबादी को आकार, सतह क्षेत्र और/या बड़े पैमाने पर वितरण द्वारा वर्णित किया जा सकता है; और पतली फिल्मों को फिल्म मोटाई वितरण द्वारा वर्णित किया जा सकता है। | ||
[[आईयूपीएसी]] ने ''पॉलीडिसपर्सिटी इंडेक्स'' शब्द के इस्तेमाल की निंदा की है, इसे ''डिस्पर्सिटी'' शब्द से बदल दिया है, जिसे प्रतीक | [[आईयूपीएसी]] ने ''पॉलीडिसपर्सिटी इंडेक्स'' शब्द के इस्तेमाल की निंदा की है, इसे ''डिस्पर्सिटी'' शब्द से बदल दिया है, जिसे प्रतीक Đ(उच्चारण डी-स्ट्रोक) द्वारा दर्शाया गया है।<ref name="Stepto">Stepto, R. F. T.; Gilbert, R. G.; Hess, M.; Jenkins, A. D.; Jones, R. G.; Kratochvíl P. (2009). "[http://media.iupac.org/publications/pac/2009/pdf/8102x0351.pdf Dispersity in Polymer Science]" ''Pure Appl. Chem.'' '''81''' (2): 351–353. DOI:10.1351/PAC-REC-08-05-02.</ref>) जो या तो आणविक द्रव्यमान या पोलीमराइज़ेशन की डिग्री को संदर्भित कर सकता है। इसकी गणना समीकरण Đ का उपयोग करके की जा सकती है<sub>M</sub> = एम<sub>w</sub>/एम<sub>n</sub>, जहां एम<sub>w</sub> वजन-औसत दाढ़ द्रव्यमान है और एम<sub>n</sub> संख्या-औसत दाढ़ द्रव्यमान है। इसकी गणना पोलीमराइज़ेशन की डिग्री के अनुसार भी की जा सकती है, जहाँ Đ<sub>X</sub> = एक्स<sub>w</sub>/एक्स<sub>n</sub>, जहां एक्स<sub>w</sub> पोलीमराइजेशन और एक्स की वजन-औसत डिग्री है<sub>n</sub> पोलीमराइज़ेशन की संख्या-औसत डिग्री है। कुछ सीमित मामलों में जहां Đ<sub>M</sub> = लाल<sub>X</sub>, इसे केवल Đ के रूप में संदर्भित किया जाता है। IUPAC ने मोनोडिस्पर्स, जिसे स्व-विरोधाभासी माना जाता है, और पॉलीडिस्पर्स, जिसे निरर्थक माना जाता है, की शर्तों को भी हटा दिया है, इसके बजाय समान और गैर-समान शब्दों को प्राथमिकता दी है। | ||
== | == समीक्षा == | ||
एक समान बहुलक (अक्सर मोनोडिस्पर्स [[ पॉलीमर ]] के रूप में जाना जाता है) एक ही द्रव्यमान के अणुओं से बना होता है।<ref>{{cite journal|url=http://goldbook.iupac.org/terms/view/M04012|title=monodisperse polymer (See: uniform polymer)|journal=IUPAC Gold Book|publisher=International Union of Pure and Applied Chemistry|doi=10.1351/goldbook.M04012|access-date=25 January 2012|doi-access=free}}</ref> लगभग सभी प्राकृतिक बहुलक एकसमान होते हैं।<ref>{{cite book|url=https://books.google.com/books?id=rxRHzOS-3xoC&pg=PT1193|title=कार्बनिक रसायन विज्ञान|last1=Brown|first1=William H.|last2=Foote|first2=Christopher S.|last3=Iverson|first3=Brent L.|last4=Anslyn|first4=Eric V.|publisher=Cengage Learning|year=2012|isbn=978-0-8400-5498-2|edition=6|page=1161}}</ref> सिंथेटिक निकट-समान बहुलक श्रृंखलाओं को एनीओनिक पोलीमराइज़ेशन जैसी प्रक्रियाओं द्वारा बनाया जा सकता है, जो लंबाई में समान श्रृंखलाओं का उत्पादन करने के लिए एनीओनिक [[उत्प्रेरक]] का उपयोग करने वाली एक विधि है। इस तकनीक को [[जीवित पोलीमराइजेशन]] के रूप में भी जाना जाता है। इसका व्यावसायिक रूप से [[ब्लॉक कॉपोलीमर]] के उत्पादन के लिए उपयोग किया जाता है। टेम्प्लेट-आधारित सिंथेसिस, [[नैनो]]टेक्नोलॉजी में संश्लेषण की एक सामान्य विधि के उपयोग के माध्यम से समान संग्रह आसानी से बनाए जा सकते हैं। | एक समान बहुलक (अक्सर मोनोडिस्पर्स[[ पॉलीमर | पॉलीमर]] के रूप में जाना जाता है) एक ही द्रव्यमान के अणुओं से बना होता है।<ref>{{cite journal|url=http://goldbook.iupac.org/terms/view/M04012|title=monodisperse polymer (See: uniform polymer)|journal=IUPAC Gold Book|publisher=International Union of Pure and Applied Chemistry|doi=10.1351/goldbook.M04012|access-date=25 January 2012|doi-access=free}}</ref> लगभग सभी प्राकृतिक बहुलक एकसमान होते हैं।<ref>{{cite book|url=https://books.google.com/books?id=rxRHzOS-3xoC&pg=PT1193|title=कार्बनिक रसायन विज्ञान|last1=Brown|first1=William H.|last2=Foote|first2=Christopher S.|last3=Iverson|first3=Brent L.|last4=Anslyn|first4=Eric V.|publisher=Cengage Learning|year=2012|isbn=978-0-8400-5498-2|edition=6|page=1161}}</ref> सिंथेटिक निकट-समान बहुलक श्रृंखलाओं को एनीओनिक पोलीमराइज़ेशन जैसी प्रक्रियाओं द्वारा बनाया जा सकता है, जो लंबाई में समान श्रृंखलाओं का उत्पादन करने के लिए एनीओनिक [[उत्प्रेरक]] का उपयोग करने वाली एक विधि है। इस तकनीक को [[जीवित पोलीमराइजेशन]] के रूप में भी जाना जाता है। इसका व्यावसायिक रूप से [[ब्लॉक कॉपोलीमर]] के उत्पादन के लिए उपयोग किया जाता है। टेम्प्लेट-आधारित सिंथेसिस, [[नैनो]]टेक्नोलॉजी में संश्लेषण की एक सामान्य विधि के उपयोग के माध्यम से समान संग्रह आसानी से बनाए जा सकते हैं। | ||
एक बहुलक सामग्री को फैलाव, या गैर-समान शब्द द्वारा निरूपित किया जाता है, यदि इसकी श्रृंखला की लंबाई आणविक द्रव्यमान की एक विस्तृत श्रृंखला में भिन्न होती है। यह मानव निर्मित पॉलिमर की विशेषता है।<ref>{{Cite web|url=https://www.chemicool.com/definition/polydisperse.html|title=Definition of polydisperse - Chemistry Dictionary}}</ref> मिट्टी (विनम्र पदार्थ) में पौधों और लकड़ी के मलबे के अपघटन से उत्पन्न [[प्राकृतिक कार्बनिक पदार्थ]] में भी एक स्पष्ट बहुप्रकीर्णित चरित्र होता है। यह [[ ह्युमिक एसिड ]] और [[ फुलविक एसिड ]] का मामला है, प्राकृतिक [[पॉलीइलेक्ट्रोलाइट]] पदार्थ क्रमशः उच्च और निम्न आणविक भार वाले होते हैं। फैलाव की एक और व्याख्या लेख में गतिशील प्रकाश बिखरने (संचयी विधि उपशीर्षक) को समझाया गया है। इस अर्थ में, फैलाव मान 0 से 1 की सीमा में हैं। | एक बहुलक सामग्री को फैलाव, या गैर-समान शब्द द्वारा निरूपित किया जाता है, यदि इसकी श्रृंखला की लंबाई आणविक द्रव्यमान की एक विस्तृत श्रृंखला में भिन्न होती है। यह मानव निर्मित पॉलिमर की विशेषता है।<ref>{{Cite web|url=https://www.chemicool.com/definition/polydisperse.html|title=Definition of polydisperse - Chemistry Dictionary}}</ref> मिट्टी (विनम्र पदार्थ) में पौधों और लकड़ी के मलबे के अपघटन से उत्पन्न [[प्राकृतिक कार्बनिक पदार्थ]] में भी एक स्पष्ट बहुप्रकीर्णित चरित्र होता है। यह[[ ह्युमिक एसिड | ह्युमिक एसिड]] और[[ फुलविक एसिड | फुलविक एसिड]] का मामला है, प्राकृतिक [[पॉलीइलेक्ट्रोलाइट]] पदार्थ क्रमशः उच्च और निम्न आणविक भार वाले होते हैं। फैलाव की एक और व्याख्या लेख में गतिशील प्रकाश बिखरने (संचयी विधि उपशीर्षक) को समझाया गया है। इस अर्थ में, फैलाव मान 0 से 1 की सीमा में हैं। | ||
फैलाव (''Đ''), पूर्व में पॉलीडिस्पर्सिटी इंडेक्स (पीडीआई) या विषमता सूचकांक, किसी दिए गए बहुलक नमूने में आणविक द्रव्यमान के वितरण का एक उपाय है। एक बहुलक की ''Đ'' (पीडीआई) की गणना की जाती है: | फैलाव (''Đ''), पूर्व में पॉलीडिस्पर्सिटी इंडेक्स (पीडीआई) या विषमता सूचकांक, किसी दिए गए बहुलक नमूने में आणविक द्रव्यमान के वितरण का एक उपाय है। एक बहुलक की ''Đ'' (पीडीआई) की गणना की जाती है: |
Revision as of 13:56, 28 March 2023
ĐM = Mw/Mn
where Mw is the mass-average molar mass (or molecular weight) and
Mn is the number-average molar mass (or molecular weight).
रसायन विज्ञान में, फैलाव एक मिश्रण में अणुओं या कणों के आकार की विषमता का एक उपाय है। वस्तुओं के संग्रह को एक समान कहा जाता है यदि वस्तुओं का आकार, आकार या द्रव्यमान समान हो। वस्तुओं का एक नमूना जिसमें असंगत आकार, आकार और द्रव्यमान वितरण होता है, उसे गैर-समान कहा जाता है। वस्तुएँ किसी भी प्रकार के फैलाव (रसायन) में हो सकती हैं, जैसे कि कोलाइड में कण, बादल में बूँदें,[1] एक चट्टान में क्रिस्टल,[2]
या एक समाधान या एक ठोस बहुलक द्रव्यमान में बहुलक मैक्रोमोलेक्युलस।[3] पॉलिमर को आणविक द्रव्यमान वितरण द्वारा वर्णित किया जा सकता है; कणों की आबादी को आकार, सतह क्षेत्र और/या बड़े पैमाने पर वितरण द्वारा वर्णित किया जा सकता है; और पतली फिल्मों को फिल्म मोटाई वितरण द्वारा वर्णित किया जा सकता है।
आईयूपीएसी ने पॉलीडिसपर्सिटी इंडेक्स शब्द के इस्तेमाल की निंदा की है, इसे डिस्पर्सिटी शब्द से बदल दिया है, जिसे प्रतीक Đ(उच्चारण डी-स्ट्रोक) द्वारा दर्शाया गया है।[4]) जो या तो आणविक द्रव्यमान या पोलीमराइज़ेशन की डिग्री को संदर्भित कर सकता है। इसकी गणना समीकरण Đ का उपयोग करके की जा सकती हैM = एमw/एमn, जहां एमw वजन-औसत दाढ़ द्रव्यमान है और एमn संख्या-औसत दाढ़ द्रव्यमान है। इसकी गणना पोलीमराइज़ेशन की डिग्री के अनुसार भी की जा सकती है, जहाँ ĐX = एक्सw/एक्सn, जहां एक्सw पोलीमराइजेशन और एक्स की वजन-औसत डिग्री हैn पोलीमराइज़ेशन की संख्या-औसत डिग्री है। कुछ सीमित मामलों में जहां ĐM = लालX, इसे केवल Đ के रूप में संदर्भित किया जाता है। IUPAC ने मोनोडिस्पर्स, जिसे स्व-विरोधाभासी माना जाता है, और पॉलीडिस्पर्स, जिसे निरर्थक माना जाता है, की शर्तों को भी हटा दिया है, इसके बजाय समान और गैर-समान शब्दों को प्राथमिकता दी है।
समीक्षा
एक समान बहुलक (अक्सर मोनोडिस्पर्स पॉलीमर के रूप में जाना जाता है) एक ही द्रव्यमान के अणुओं से बना होता है।[5] लगभग सभी प्राकृतिक बहुलक एकसमान होते हैं।[6] सिंथेटिक निकट-समान बहुलक श्रृंखलाओं को एनीओनिक पोलीमराइज़ेशन जैसी प्रक्रियाओं द्वारा बनाया जा सकता है, जो लंबाई में समान श्रृंखलाओं का उत्पादन करने के लिए एनीओनिक उत्प्रेरक का उपयोग करने वाली एक विधि है। इस तकनीक को जीवित पोलीमराइजेशन के रूप में भी जाना जाता है। इसका व्यावसायिक रूप से ब्लॉक कॉपोलीमर के उत्पादन के लिए उपयोग किया जाता है। टेम्प्लेट-आधारित सिंथेसिस, नैनोटेक्नोलॉजी में संश्लेषण की एक सामान्य विधि के उपयोग के माध्यम से समान संग्रह आसानी से बनाए जा सकते हैं।
एक बहुलक सामग्री को फैलाव, या गैर-समान शब्द द्वारा निरूपित किया जाता है, यदि इसकी श्रृंखला की लंबाई आणविक द्रव्यमान की एक विस्तृत श्रृंखला में भिन्न होती है। यह मानव निर्मित पॉलिमर की विशेषता है।[7] मिट्टी (विनम्र पदार्थ) में पौधों और लकड़ी के मलबे के अपघटन से उत्पन्न प्राकृतिक कार्बनिक पदार्थ में भी एक स्पष्ट बहुप्रकीर्णित चरित्र होता है। यह ह्युमिक एसिड और फुलविक एसिड का मामला है, प्राकृतिक पॉलीइलेक्ट्रोलाइट पदार्थ क्रमशः उच्च और निम्न आणविक भार वाले होते हैं। फैलाव की एक और व्याख्या लेख में गतिशील प्रकाश बिखरने (संचयी विधि उपशीर्षक) को समझाया गया है। इस अर्थ में, फैलाव मान 0 से 1 की सीमा में हैं।
फैलाव (Đ), पूर्व में पॉलीडिस्पर्सिटी इंडेक्स (पीडीआई) या विषमता सूचकांक, किसी दिए गए बहुलक नमूने में आणविक द्रव्यमान के वितरण का एक उपाय है। एक बहुलक की Đ (पीडीआई) की गणना की जाती है:
- ,
कहाँ वजन औसत आणविक भार है और संख्या औसत आणविक भार है। कम आणविक द्रव्यमान के अणुओं के प्रति अधिक संवेदनशील है, जबकि उच्च आणविक भार के अणुओं के प्रति अधिक संवेदनशील है। फैलाव पॉलिमर के एक बैच में व्यक्तिगत आणविक द्रव्यमान के वितरण को इंगित करता है। Đ का मान 1 के बराबर या उससे अधिक है, लेकिन जैसे-जैसे बहुलक श्रृंखलाएँ एक समान श्रृंखला लंबाई तक पहुँचती हैं, Đ एकता (1) तक पहुँचती है।[8] कुछ प्राकृतिक बहुलकों के लिए Đ को लगभग एकता के रूप में लिया जाता है।
बहुलकीकरण मैकेनिज्म का प्रभाव
पोलीमराइजेशन के तंत्र के आधार पर विशिष्ट फैलाव भिन्न होते हैं और विभिन्न प्रकार की प्रतिक्रिया स्थितियों से प्रभावित हो सकते हैं। सिंथेटिक पॉलिमर में, यह प्रतिक्रियाशील अनुपात के कारण बहुत भिन्न हो सकता है, पोलीमराइज़ेशन पूरा होने के कितने करीब चला गया, आदि। विशिष्ट अतिरिक्त पोलीमराइज़ेशन के लिए, Đ लगभग 5 से 20 तक हो सकता है। विशिष्ट चरण पोलीमराइज़ेशन के लिए, Đ के सबसे संभावित मान लगभग 2 हैं - कैरोथर्स का समीकरण Đ को 2 और उससे कम के मान तक सीमित करता है।
लिविंग पोलीमराइज़ेशन, अतिरिक्त पोलीमराइज़ेशन का एक विशेष मामला, मूल्यों को 1 के बहुत करीब ले जाता है। ऐसा जैविक पॉलिमर में भी होता है, जहाँ फैलाव बहुत करीब या 1 के बराबर हो सकता है, यह दर्शाता है कि बहुलक की केवल एक लंबाई मौजूद है।
रिएक्टर प्रकार का प्रभाव
में होने वाली रिएक्टर पोलीमराइजेशन प्रतिक्रियाएं परिणामी बहुलक के फैलाव को भी प्रभावित कर सकती हैं। कम (<10%) रूपांतरण, आयनिक पोलीमराइज़ेशन, और उच्च रूपांतरण (> 99%) के लिए स्टेप ग्रोथ पोलीमराइज़ेशन के साथ बल्क रेडिकल पोलीमराइज़ेशन के लिए, विशिष्ट फैलाव नीचे दी गई तालिका में हैं।[9]
Polymerization Method | Batch Reactor | Plug Flow Reactor (PFR) | Homogeneous CSTR | Segregated CSTR |
---|---|---|---|---|
Radical Polymerization (RP) | 1.5-2.0 | 1.5-2.0 | 1.5-2.0 | 1.5-2.0 |
Anionic Polymerization | 1.0 + ε | 1.0 + ε | 2.0 | 1.0-2.0 |
Step-Growth | 2.0 | 2.0 | Unbounded (~50) | Unbounded (~20-25) |
बैच और प्लग प्रवाह रिएक्टर मॉडल (PFRs) के संबंध में, विभिन्न पोलीमराइज़ेशन विधियों के लिए फैलाव समान हैं। यह काफी हद तक है क्योंकि बैच रिएक्टर पूरी तरह से प्रतिक्रिया के समय पर निर्भर करते हैं, प्लग फ्लो रिएक्टर रिएक्टर में तय की गई दूरी और इसकी लंबाई पर निर्भर करते हैं। चूंकि समय और दूरी वेग से संबंधित हैं, इसलिए रिएक्टर के वेग और लंबाई को नियंत्रित करके बैच रिएक्टरों को मिरर करने के लिए प्लग फ्लो रिएक्टरों को डिज़ाइन किया जा सकता है। निरंतर निरंतर हलचल-टैंक रिएक्टर|सतत स्टिरर्ड-टैंक रिएक्टर (CSTRs) हालांकि एक निवास समय वितरण है और बैच या प्लग फ्लो रिएक्टरों को प्रतिबिंबित नहीं कर सकता है, जो अंतिम बहुलक के फैलाव में अंतर पैदा कर सकता है।
फैलाव पर रिएक्टर प्रकार के प्रभाव काफी हद तक रिएक्टर से जुड़े सापेक्ष समयमानों पर और पोलीमराइज़ेशन प्रकार पर निर्भर करते हैं। पारंपरिक बल्क फ्री रेडिकल पोलीमराइज़ेशन में, फैलाव को अक्सर चेन के अनुपात द्वारा नियंत्रित किया जाता है जो संयोजन या अनुपातहीनता के माध्यम से समाप्त होता है।[10] रेडिकल इंटरमीडिएट्स की प्रतिक्रियाशीलता के कारण मुक्त कट्टरपंथी पोलीमराइजेशन के लिए प्रतिक्रिया की दर बहुत तेज है। जब ये मूलक किसी भी रिएक्टर में प्रतिक्रिया करते हैं, तो उनका जीवनकाल और परिणामस्वरूप, प्रतिक्रिया के लिए आवश्यक समय किसी भी रिएक्टर निवास समय से बहुत कम होता है। एफआरपी के लिए जिसमें एक निरंतर मोनोमर और सर्जक एकाग्रता होती है, जैसे कि पोलीमराइजेशन की डिग्री | डीपीnस्थिर है, परिणामी मोनोमर का फैलाव 1.5 और 2.0 के बीच है। नतीजतन, जब तक रूपांतरण कम होता है, तब तक रिएक्टर प्रकार किसी भी ध्यान देने योग्य राशि में मुक्त कट्टरपंथी पोलीमराइज़ेशन प्रतिक्रियाओं के फैलाव को प्रभावित नहीं करता है।
आयनिक पोलीमराइज़ेशन के लिए, जीवित पोलीमराइज़ेशन का एक रूप, प्रतिक्रियाशील आयनों के मध्यवर्ती में बहुत लंबे समय तक प्रतिक्रियाशील रहने की क्षमता होती है। बैच रिएक्टरों या पीएफआर में, अच्छी तरह से नियंत्रित आयनिक पोलीमराइज़ेशन के परिणामस्वरूप लगभग एक समान बहुलक हो सकता है। जब CSTR में पेश किया जाता है, तो CSTR में अभिकारकों के लिए निवास समय वितरण आयनों के जीवनकाल के कारण आयनिक बहुलक के फैलाव को प्रभावित करता है। समरूप CSTR के लिए, निवास समय वितरण ज्यामितीय वितरण है।[11] चूंकि एक बैच रिएक्टर या पीएफआर के लिए आयनिक पोलीमराइजेशन फैलाव मूल रूप से एक समान है, आणविक भार वितरण सीएसटी निवास समय के वितरण पर होता है, जिसके परिणामस्वरूप 2 का फैलाव होता है। विषम सीएसटीआरएस सजातीय सीएसटी के समान हैं, लेकिन रिएक्टर के भीतर मिश्रण समरूप CSTR में उतना अच्छा नहीं है। परिणामस्वरूप, रिएक्टर के भीतर छोटे खंड होते हैं जो CSTR के भीतर छोटे बैच रिएक्टर के रूप में कार्य करते हैं और अभिकारकों की विभिन्न सांद्रता के साथ समाप्त होते हैं। नतीजतन, रिएक्टर का फैलाव एक बैच और एक सजातीय सीएसटी के बीच होता है।[9]
स्टेप ग्रोथ पोलीमराइजेशन रिएक्टर प्रकार से सबसे अधिक प्रभावित होता है। किसी भी उच्च आणविक भार बहुलक को प्राप्त करने के लिए, भिन्नात्मक रूपांतरण 0.99 से अधिक होना चाहिए, और एक बैच या PFR में इस प्रतिक्रिया तंत्र का फैलाव 2.0 है। एक CSTR में स्टेप-ग्रोथ पोलीमराइज़ेशन चलाने से उच्च आणविक भार प्राप्त करने से पहले रिएक्टर से कुछ बहुलक श्रृंखलाओं को बाहर निकालने की अनुमति मिलेगी, जबकि अन्य लंबे समय तक रिएक्टर में रहते हैं और प्रतिक्रिया करना जारी रखते हैं। परिणाम एक अधिक व्यापक आणविक भार वितरण है, जो बहुत अधिक फैलाव की ओर जाता है। एक सजातीय CSTR के लिए, फैलाव दमकोहलर संख्याओं के वर्गमूल के समानुपाती होता है। दामकोहलर संख्या, लेकिन एक विषम CSTR के लिए, फैलाव दामकोहलर संख्याओं के प्राकृतिक लॉग के समानुपाती होता है। दमकोहलर संख्या।[9]इस प्रकार, आयनिक पोलीमराइज़ेशन के समान कारणों के लिए, विषम CSTRs के लिए फैलाव एक बैच और एक सजातीय CSTR के बीच होता है।
निर्धारण के तरीके
- जेल पर्मिएशन क्रोमेटोग्राफी (आकार-बहिष्करण क्रोमैटोग्राफी के रूप में भी जाना जाता है)
- प्रकाश प्रकीर्णन माप जैसे गतिशील प्रकाश प्रकीर्णन
- मास स्पेक्ट्रोमेट्री के माध्यम से प्रत्यक्ष माप, मैट्रिक्स-असिस्टेड लेजर डिसोर्शन/आयनीकरण (MALDI) या अग्रानुक्रम मास स्पेक्ट्रोमेट्री (ESI-MS/MS) के साथ इलेक्ट्रोस्प्रे आयनीकरण का उपयोग करके
यह भी देखें
संदर्भ
- ↑ Martins, J. A.; Silva Dias, M. A. F. (2009). "अमेजोनियन क्षेत्र में बादल की बूंदों के आकार के वितरण के वर्णक्रमीय फैलाव पर जंगल की आग से धुएं का प्रभाव" (PDF). Environmental Research Letters. 4 (1): 015002. Bibcode:2009ERL.....4a5002M. doi:10.1088/1748-9326/4/1/015002.
- ↑ Higgins, Michael D. (2000). "Measurement of crystal size distributions" (PDF). American Mineralogist. 85 (9): 1105–1116. Bibcode:2000AmMin..85.1105H. doi:10.2138/am-2000-8-901. S2CID 101422067. Archived from the original (PDF) on 2017-08-08.
- ↑ Okita, K.; Teramoto, A.; Kawahara, K.; Fujita, H. (1968). "बाइनरी मिश्रित सॉल्वैंट्स में एक मोनोडिस्पर्स पॉलीमर का प्रकाश प्रकीर्णन और रिफ्रेक्टोमेट्री". The Journal of Physical Chemistry. 72: 278–285. doi:10.1021/j100847a053.
- ↑ Stepto, R. F. T.; Gilbert, R. G.; Hess, M.; Jenkins, A. D.; Jones, R. G.; Kratochvíl P. (2009). "Dispersity in Polymer Science" Pure Appl. Chem. 81 (2): 351–353. DOI:10.1351/PAC-REC-08-05-02.
- ↑ "monodisperse polymer (See: uniform polymer)". IUPAC Gold Book. International Union of Pure and Applied Chemistry. doi:10.1351/goldbook.M04012. Retrieved 25 January 2012.
- ↑ Brown, William H.; Foote, Christopher S.; Iverson, Brent L.; Anslyn, Eric V. (2012). कार्बनिक रसायन विज्ञान (6 ed.). Cengage Learning. p. 1161. ISBN 978-0-8400-5498-2.
- ↑ "Definition of polydisperse - Chemistry Dictionary".
- ↑ Peter Atkins and Julio De Paula, Atkins' Physical Chemistry, 9th edition (Oxford University Press, 2010, ISBN 978-0-19-954337-3)
- ↑ 9.0 9.1 9.2 Dotson, Neil A.; Galván, Rafael; Laurence, Robert L.; Tirrell, Matthew (1996). पॉलिमराइजेशन प्रोसेस मॉडलिंग. VCH Publishers, Inc. pp. 260–279. ISBN 1-56081-693-7.
- ↑ Chanda, Manas (2013). Introduction to Polymer Science and Chemistry: A Problem-Solving Approach, Second Edition. CRC Press. ISBN 978-1-4665-5384-2.
- ↑ Levenspiel, Octave (1999). केमिकल रिएक्शन इंजीनियरिंग, तीसरा संस्करण. John Wiley & Sons. ISBN 0-471-25424-X.