थीटा विलायक: Difference between revisions

From Vigyanwiki
(Created page with "{{Complicated|date=December 2022}} एक बहुलक समाधान में, एक थीटा विलायक (या θ विलायक) एक व...")
 
(modification)
Line 1: Line 1:
{{Complicated|date=December 2022}}
{{Complicated|date=December 2022}}


एक बहुलक समाधान में, एक थीटा [[विलायक]] (या θ विलायक) एक विलायक होता है जिसमें बहुलक कॉइल [[आदर्श जंजीर]]ों की तरह कार्य करते हैं, बिल्कुल उनके यादृच्छिक चलने का तार आयाम मानते हैं।{{Clarify|date=December 2022|reason=Random walk? What does that mean in chemical sense?}} इसलिए, मार्क-हौविंक समीकरण प्रतिपादक है <math>1/2</math> एक थीटा विलायक में। थर्मोडायनामिक रूप से, एक बहुलक और थीटा विलायक के बीच मिश्रण की अतिरिक्त [[रासायनिक क्षमता]] शून्य होती है।<ref>{{cite book | last = Hiemenz | first = Paul |author2=Timothy Lodge  | title = पॉलिमर रसायन| publisher = CRC Press | year = 2007 | location = Boca Raton, Florida | isbn = 1-57444-779-3 }}</ref><ref>{{cite web|url=http://www3.interscience.wiley.com/cgi-bin/mrwhome/104554802/HOME |archive-url=https://archive.today/20121217201618/http://www3.interscience.wiley.com/cgi-bin/mrwhome/104554802/HOME |url-status=dead |archive-date=2012-12-17 |title=थीटा सॉल्वैंट्स|access-date=2007-12-12 |last=Elias |first=Hans |date=2003-04-15 |work=Wiley Database of Polymer Properties |publisher=John Wiley & Sons }}</ref><ref>{{cite web|url=http://nobelprize.org/nobel_prizes/chemistry/laureates/1974/flory-lecture.pdf |title=मैक्रोमोलेक्युलर चेन का स्थानिक विन्यास|access-date=2007-12-12 |last=Flory |first=Paul |date=1974-12-11 |format=PDF |work=Nobel Lecture }}</ref><ref>{{cite encyclopedia |last=Sundararajan |first=P |editor=James Mark |encyclopedia=Physical Properties of Polymers Handbook |title=थीटा तापमान|year=2006 |publisher=Springer |location=New York }}</ref>
बहुलक समाधान में, थीटा [[विलायक]] (या θ विलायक) एक विलायक होता है जिसमें बहुलक कॉइल [[आदर्श जंजीर|आदर्श जंजीरों]] की तरह कार्य करते हैं, बिल्कुल उनके यादृच्छिक चलने का तार आयाम मानते हैं। इसलिए, मार्क-हौविंक समीकरण प्रतिपादक है <math>1/2</math> एक थीटा विलायक में। थर्मोडायनामिक रूप से, एक बहुलक और थीटा विलायक के बीच मिश्रण की अतिरिक्त [[रासायनिक क्षमता]] शून्य होती है।<ref>{{cite book | last = Hiemenz | first = Paul |author2=Timothy Lodge  | title = पॉलिमर रसायन| publisher = CRC Press | year = 2007 | location = Boca Raton, Florida | isbn = 1-57444-779-3 }}</ref><ref>{{cite web|url=http://www3.interscience.wiley.com/cgi-bin/mrwhome/104554802/HOME |archive-url=https://archive.today/20121217201618/http://www3.interscience.wiley.com/cgi-bin/mrwhome/104554802/HOME |url-status=dead |archive-date=2012-12-17 |title=थीटा सॉल्वैंट्स|access-date=2007-12-12 |last=Elias |first=Hans |date=2003-04-15 |work=Wiley Database of Polymer Properties |publisher=John Wiley & Sons }}</ref><ref>{{cite web|url=http://nobelprize.org/nobel_prizes/chemistry/laureates/1974/flory-lecture.pdf |title=मैक्रोमोलेक्युलर चेन का स्थानिक विन्यास|access-date=2007-12-12 |last=Flory |first=Paul |date=1974-12-11 |format=PDF |work=Nobel Lecture }}</ref><ref>{{cite encyclopedia |last=Sundararajan |first=P |editor=James Mark |encyclopedia=Physical Properties of Polymers Handbook |title=थीटा तापमान|year=2006 |publisher=Springer |location=New York }}</ref>




== भौतिक व्याख्या ==
== भौतिक व्याख्या ==


तनु घोल में एक बहुलक श्रृंखला द्वारा ग्रहण की गई [[रासायनिक संरचना]] को एक आदर्श श्रृंखला मॉडल का उपयोग करके [[मोनोमर]] उपइकाइयों के यादृच्छिक चलने के रूप में तैयार किया जा सकता है। हालाँकि, यह मॉडल steric प्रभावों के लिए जिम्मेदार नहीं है। रियल पॉलीमर कॉइल्स को एक स्व-परहेज वॉक द्वारा अधिक बारीकी से दर्शाया जाता है क्योंकि विभिन्न श्रृंखला खंडों में एक ही स्थान पर कब्जा करने वाले अनुरूप भौतिक रूप से संभव नहीं हैं। यह बहिष्कृत आयतन प्रभाव बहुलक के विस्तार का कारण बनता है।
तनु घोल में एक बहुलक श्रृंखला द्वारा ग्रहण की गई [[रासायनिक संरचना]] को एक आदर्श श्रृंखला मॉडल का उपयोग करके [[मोनोमर]] उपइकाइयों के यादृच्छिक चलने के रूप में तैयार किया जा सकता है। हालाँकि, यह मॉडल स्टेरिक प्रभावों के लिए जिम्मेदार नहीं है। रियल पॉलीमर कॉइल्स को एक स्व-परहेज वॉक द्वारा अधिक बारीकी से दर्शाया जाता है क्योंकि विभिन्न श्रृंखला खंडों में एक ही स्थान पर कब्जा करने वाले अनुरूप भौतिक रूप से संभव नहीं हैं। यह बहिष्कृत आयतन प्रभाव बहुलक के विस्तार का कारण बनता है।


सॉल्वेंट क्वालिटी से चेन कंफॉर्मेशन भी प्रभावित होता है। बहुलक श्रृंखला खंडों और समन्वित विलायक अणुओं के बीच अंतःक्रियात्मक अन्योन्यक्रियाओं में अन्योन्यक्रिया की संबद्ध ऊर्जा होती है जो धनात्मक या ऋणात्मक हो सकती है। एक अच्छे विलायक के लिए, बहुलक खंडों और विलायक के अणुओं के बीच पारस्परिक क्रिया ऊर्जावान रूप से अनुकूल होती है, और इससे बहुलक कॉइल का विस्तार होगा। खराब सॉल्वेंट के लिए, पॉलीमर-पॉलिमर सेल्फ-इंटरैक्शन को प्राथमिकता दी जाती है, और पॉलीमर कॉइल सिकुड़ जाएगी। विलायक की गुणवत्ता बहुलक और विलायक अणुओं की रासायनिक संरचना और समाधान तापमान दोनों पर निर्भर करती है।
सॉल्वेंट क्वालिटी से चेन कंफॉर्मेशन भी प्रभावित होता है। बहुलक श्रृंखला खंडों और समन्वित विलायक अणुओं के बीच अंतःक्रियात्मक अन्योन्यक्रियाओं में अन्योन्यक्रिया की संबद्ध ऊर्जा होती है जो धनात्मक या ऋणात्मक हो सकती है। एक अच्छे विलायक के लिए, बहुलक खंडों और विलायक के अणुओं के बीच पारस्परिक क्रिया ऊर्जावान रूप से अनुकूल होती है, और इससे बहुलक कॉइल का विस्तार होगा। खराब सॉल्वेंट के लिए, पॉलीमर-पॉलिमर सेल्फ-इंटरैक्शन को प्राथमिकता दी जाती है, और पॉलीमर कॉइल सिकुड़ जाएगी। विलायक की गुणवत्ता बहुलक और विलायक अणुओं की रासायनिक संरचना और समाधान तापमान दोनों पर निर्भर करती है।
Line 15: Line 15:
सामान्य तौर पर, बहुलक समाधान के गुणों का मापन विलायक पर निर्भर करता है। हालाँकि, जब थीटा विलायक का उपयोग किया जाता है, तो मापी गई विशेषताएँ विलायक से स्वतंत्र होती हैं। वे केवल बहुलक की लघु-श्रेणी के गुणों पर निर्भर करते हैं जैसे कि बांड की लंबाई, बंधन कोण और स्टेरिक रूप से अनुकूल घुमाव। बहुलक श्रृंखला बिल्कुल वैसा ही व्यवहार करेगी जैसा कि यादृच्छिक चाल या आदर्श श्रृंखला मॉडल द्वारा भविष्यवाणी की गई थी। यह महत्वपूर्ण मात्राओं का प्रायोगिक निर्धारण करता है जैसे कि मूल माध्य वर्ग अंत-से-अंत दूरी या परिभ्रमण की त्रिज्या बहुत सरल है।
सामान्य तौर पर, बहुलक समाधान के गुणों का मापन विलायक पर निर्भर करता है। हालाँकि, जब थीटा विलायक का उपयोग किया जाता है, तो मापी गई विशेषताएँ विलायक से स्वतंत्र होती हैं। वे केवल बहुलक की लघु-श्रेणी के गुणों पर निर्भर करते हैं जैसे कि बांड की लंबाई, बंधन कोण और स्टेरिक रूप से अनुकूल घुमाव। बहुलक श्रृंखला बिल्कुल वैसा ही व्यवहार करेगी जैसा कि यादृच्छिक चाल या आदर्श श्रृंखला मॉडल द्वारा भविष्यवाणी की गई थी। यह महत्वपूर्ण मात्राओं का प्रायोगिक निर्धारण करता है जैसे कि मूल माध्य वर्ग अंत-से-अंत दूरी या परिभ्रमण की त्रिज्या बहुत सरल है।


इसके अतिरिक्त, थीटा की स्थिति थोक अनाकार बहुलक चरण (पदार्थ) में भी संतुष्ट है। इस प्रकार, थीटा सॉल्वैंट्स में भंग किए गए पॉलिमर द्वारा अपनाए गए अनुरूप बल्क पॉलीमर पोलीमराइज़ेशन में अपनाए गए समान हैं।
इसके अतिरिक्त, थीटा की स्थिति बहुत अव्यवस्थित बहुलक चरण (पदार्थ) में भी संतुष्ट है। इस प्रकार, थीटा सॉल्वैंट्स में भंग किए गए पॉलिमर द्वारा अपनाए गए अनुरूप बल्क पॉलीमर पोलीमराइज़ेशन में अपनाए गए समान हैं।


== थर्मोडायनामिक परिभाषा ==
== थर्मोडायनामिक परिभाषा ==


थर्मोडायनामिक रूप से, थीटा विलायक और एक बहुलक के बीच मिश्रण की अतिरिक्त रासायनिक क्षमता शून्य है।{{Vague|date={{CURRENTMONTHNAME}} {{CURRENTYEAR}}}} समतुल्य रूप से, मिश्रण की [[तापीय धारिता]] शून्य है, जिससे विलयन आदर्श विलयन बन जाता है।{{Vague|date={{CURRENTMONTHNAME}} {{CURRENTYEAR}}}}
थर्मोडायनामिक रूप से, थीटा विलायक और एक बहुलक के बीच मिश्रण की अतिरिक्त रासायनिक क्षमता शून्य है।{{Vague|date={{CURRENTMONTHNAME}} {{CURRENTYEAR}}}} समतुल्य रूप से, मिश्रण की [[तापीय धारिता]] शून्य है, जिससे विलयन आदर्श विलयन बन जाता है।


कोई भी प्रत्यक्ष माध्यम से रासायनिक क्षमता को माप नहीं सकता है, लेकिन कोई इसे समाधान के आसमाटिक दबाव से संबंधित कर सकता है (<math>\Pi</math>) और विलायक का आंशिक विशिष्ट आयतन (<math>v_s</math>):
कोई भी प्रत्यक्ष माध्यम से रासायनिक क्षमता को माप नहीं सकता है, लेकिन कोई इसे समाधान के आसमाटिक दबाव से संबंधित कर सकता है (<math>\Pi</math>) और विलायक का आंशिक विशिष्ट आयतन (<math>v_s</math>):

Revision as of 14:15, 28 March 2023

Template:Complicated

बहुलक समाधान में, थीटा विलायक (या θ विलायक) एक विलायक होता है जिसमें बहुलक कॉइल आदर्श जंजीरों की तरह कार्य करते हैं, बिल्कुल उनके यादृच्छिक चलने का तार आयाम मानते हैं। इसलिए, मार्क-हौविंक समीकरण प्रतिपादक है एक थीटा विलायक में। थर्मोडायनामिक रूप से, एक बहुलक और थीटा विलायक के बीच मिश्रण की अतिरिक्त रासायनिक क्षमता शून्य होती है।[1][2][3][4]


भौतिक व्याख्या

तनु घोल में एक बहुलक श्रृंखला द्वारा ग्रहण की गई रासायनिक संरचना को एक आदर्श श्रृंखला मॉडल का उपयोग करके मोनोमर उपइकाइयों के यादृच्छिक चलने के रूप में तैयार किया जा सकता है। हालाँकि, यह मॉडल स्टेरिक प्रभावों के लिए जिम्मेदार नहीं है। रियल पॉलीमर कॉइल्स को एक स्व-परहेज वॉक द्वारा अधिक बारीकी से दर्शाया जाता है क्योंकि विभिन्न श्रृंखला खंडों में एक ही स्थान पर कब्जा करने वाले अनुरूप भौतिक रूप से संभव नहीं हैं। यह बहिष्कृत आयतन प्रभाव बहुलक के विस्तार का कारण बनता है।

सॉल्वेंट क्वालिटी से चेन कंफॉर्मेशन भी प्रभावित होता है। बहुलक श्रृंखला खंडों और समन्वित विलायक अणुओं के बीच अंतःक्रियात्मक अन्योन्यक्रियाओं में अन्योन्यक्रिया की संबद्ध ऊर्जा होती है जो धनात्मक या ऋणात्मक हो सकती है। एक अच्छे विलायक के लिए, बहुलक खंडों और विलायक के अणुओं के बीच पारस्परिक क्रिया ऊर्जावान रूप से अनुकूल होती है, और इससे बहुलक कॉइल का विस्तार होगा। खराब सॉल्वेंट के लिए, पॉलीमर-पॉलिमर सेल्फ-इंटरैक्शन को प्राथमिकता दी जाती है, और पॉलीमर कॉइल सिकुड़ जाएगी। विलायक की गुणवत्ता बहुलक और विलायक अणुओं की रासायनिक संरचना और समाधान तापमान दोनों पर निर्भर करती है।

थीटा तापमान

यदि एक विलायक बहिष्कृत मात्रा विस्तार के प्रभावों को रद्द करने के लिए पर्याप्त रूप से खराब है, तो थीटा (θ) स्थिति संतुष्ट है। किसी दिए गए बहुलक-विलायक जोड़े के लिए, थीटा स्थिति एक निश्चित तापमान पर संतुष्ट होती है, जिसे थीटा (θ) तापमान या थीटा बिंदु कहा जाता है। इस तापमान पर एक विलायक को थीटा विलायक कहा जाता है।

सामान्य तौर पर, बहुलक समाधान के गुणों का मापन विलायक पर निर्भर करता है। हालाँकि, जब थीटा विलायक का उपयोग किया जाता है, तो मापी गई विशेषताएँ विलायक से स्वतंत्र होती हैं। वे केवल बहुलक की लघु-श्रेणी के गुणों पर निर्भर करते हैं जैसे कि बांड की लंबाई, बंधन कोण और स्टेरिक रूप से अनुकूल घुमाव। बहुलक श्रृंखला बिल्कुल वैसा ही व्यवहार करेगी जैसा कि यादृच्छिक चाल या आदर्श श्रृंखला मॉडल द्वारा भविष्यवाणी की गई थी। यह महत्वपूर्ण मात्राओं का प्रायोगिक निर्धारण करता है जैसे कि मूल माध्य वर्ग अंत-से-अंत दूरी या परिभ्रमण की त्रिज्या बहुत सरल है।

इसके अतिरिक्त, थीटा की स्थिति बहुत अव्यवस्थित बहुलक चरण (पदार्थ) में भी संतुष्ट है। इस प्रकार, थीटा सॉल्वैंट्स में भंग किए गए पॉलिमर द्वारा अपनाए गए अनुरूप बल्क पॉलीमर पोलीमराइज़ेशन में अपनाए गए समान हैं।

थर्मोडायनामिक परिभाषा

थर्मोडायनामिक रूप से, थीटा विलायक और एक बहुलक के बीच मिश्रण की अतिरिक्त रासायनिक क्षमता शून्य है।[vague] समतुल्य रूप से, मिश्रण की तापीय धारिता शून्य है, जिससे विलयन आदर्श विलयन बन जाता है।

कोई भी प्रत्यक्ष माध्यम से रासायनिक क्षमता को माप नहीं सकता है, लेकिन कोई इसे समाधान के आसमाटिक दबाव से संबंधित कर सकता है () और विलायक का आंशिक विशिष्ट आयतन ():

कैसे आसमाटिक दबाव एकाग्रता पर निर्भर करता है यह व्यक्त करने के लिए एक वायरल विस्तार का उपयोग कर सकते हैं:

M बहुलक का आणविक भार है
R गैस स्थिरांक है
टी पूर्ण तापमान है
बी दूसरा वायरल गुणांक है

आसमाटिक दबाव के साथ यह संबंध एक विलायक के लिए थीटा स्थिति या 'थीटा तापमान' निर्धारित करने का एक तरीका है।

जब दोनों को मिलाया जाता है तो रासायनिक क्षमता में परिवर्तन के दो शब्द होते हैं: आदर्श और अधिक:

दूसरा वायरल गुणांक, बी, मिश्रण की अतिरिक्त रासायनिक क्षमता के समानुपाती होता है:

बी विलायक अणुओं और बहुलक श्रृंखला के खंडों के बीच बाइनरी इंटरैक्शन की ऊर्जा को दर्शाता है। जब बी > 0, विलायक अच्छा है, और जब बी < 0, विलायक खराब है। थीटा विलायक के लिए, दूसरा वायरल गुणांक शून्य है क्योंकि अतिरिक्त रासायनिक क्षमता शून्य है; अन्यथा यह थीटा विलायक की परिभाषा से बाहर हो जाएगा। इस प्रकार, थीटा तापमान पर एक विलायक बॉयल तापमान पर वास्तविक गैस के अनुरूप होता है।

अन्य प्रायोगिक तकनीकों के लिए समान संबंध मौजूद हैं, जिनमें प्रकाश प्रकीर्णन, आंतरिक चिपचिपाहट माप, अवसादन संतुलन और क्लाउड बिंदु अनुमापन शामिल हैं।

यह भी देखें

  • फ्लोरी-हगिन्स समाधान सिद्धांत

संदर्भ

  1. Hiemenz, Paul; Timothy Lodge (2007). पॉलिमर रसायन. Boca Raton, Florida: CRC Press. ISBN 1-57444-779-3.
  2. Elias, Hans (2003-04-15). "थीटा सॉल्वैंट्स". Wiley Database of Polymer Properties. John Wiley & Sons. Archived from the original on 2012-12-17. Retrieved 2007-12-12.
  3. Flory, Paul (1974-12-11). "मैक्रोमोलेक्युलर चेन का स्थानिक विन्यास" (PDF). Nobel Lecture. Retrieved 2007-12-12.
  4. Sundararajan, P (2006). "थीटा तापमान". In James Mark (ed.). Physical Properties of Polymers Handbook. New York: Springer.