वोल्टा क्षमता: Difference between revisions
(Created page with "{{More citations needed|date=December 2019}} इलेक्ट्रोकैमिस्ट्री में वोल्टा क्षमता (जिसे वो...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{More citations needed|date=December 2019}} | {{More citations needed|date=December 2019}} | ||
[[इलेक्ट्रोकैमिस्ट्री]] में वोल्टा क्षमता (जिसे वोल्टा संभावित अंतर, संपर्क संभावित अंतर, बाहरी संभावित अंतर, Δψ, या डेल्टा साई भी कहा जाता है | [[इलेक्ट्रोकैमिस्ट्री]] में वोल्टा क्षमता (जिसे वोल्टा संभावित अंतर, संपर्क संभावित अंतर, बाहरी संभावित अंतर, Δψ, या "डेल्टा साई") भी कहा जाता है, दो [[धातुओं]] (या एक धातु और एक [[इलेक्ट्रोलाइट]]) के बीच इलेक्ट्रोस्टैटिक संभावित अंतर है जो संपर्क और हैं [[थर्मोडायनामिक संतुलन]] में हैं । विशेष रूप से, यह पहली धातु की सतह के समीप बिंदु और दूसरी धातु (या इलेक्ट्रोलाइट) की सतह के समीप बिंदु के बीच संभावित अंतर है।<ref>[http://goldbook.iupac.org/C01293.html IUPAC Gold Book, definition of contact (Volta) potential difference.]</ref> | ||
वोल्टा क्षमता का नाम [[अलेक्जेंडर वोल्टा]] के नाम पर रखा गया है। | वोल्टा क्षमता का नाम [[अलेक्जेंडर वोल्टा]] के नाम पर रखा गया है। | ||
== दो धातुओं के बीच वोल्टा क्षमता == | == दो धातुओं के बीच वोल्टा क्षमता == | ||
[[File:Work function mismatch gold aluminum.svg|thumb|300 px|जब यहां दर्शाई गई दो धातुएं एक दूसरे के साथ थर्मोडायनामिक संतुलन में हैं जैसा कि दिखाया गया है (बराबर [[फर्मी स्तर]]), वैक्यूम इलेक्ट्रोस्टैटिक क्षमता ϕ [[समारोह का कार्य]] में अंतर के कारण फ्लैट नहीं है।]]जब दो धातुएं एक दूसरे से विद्युत रूप से पृथक होती हैं, तो उनके बीच एक मनमाना संभावित अंतर मौजूद हो सकता है। | [[File:Work function mismatch gold aluminum.svg|thumb|300 px|जब यहां दर्शाई गई दो धातुएं एक दूसरे के साथ थर्मोडायनामिक संतुलन में हैं जैसा कि दिखाया गया है (बराबर [[फर्मी स्तर]]), वैक्यूम इलेक्ट्रोस्टैटिक क्षमता ϕ [[समारोह का कार्य]] में अंतर के कारण फ्लैट नहीं है।]]जब दो धातुएं एक दूसरे से विद्युत रूप से पृथक होती हैं, तो उनके बीच एक मनमाना संभावित अंतर मौजूद हो सकता है। यद्यपि, जब दो अलग-अलग तटस्थ धातु सतहों को विद्युत संपर्क में लाया जाता है (यहां तक कि अप्रत्यक्ष रूप से, एक लंबे विद्युत-प्रवाहकीय तार के माध्यम से), तो इलेक्ट्रॉन धातु से उच्च फर्मी स्तर के साथ धातु से निचले फर्मी स्तर तक प्रवाहित होंगे। दो चरणों में स्तर बराबर हैं। | ||
एक बार ऐसा हो जाने के बाद, धातुएं एक दूसरे के साथ थर्मोडायनामिक संतुलन में होती हैं (इलेक्ट्रॉनों की वास्तविक संख्या जो दो चरणों के बीच गुजरती है, | एक बार ऐसा हो जाने के बाद, धातुएं एक दूसरे के साथ थर्मोडायनामिक संतुलन में होती हैं (इलेक्ट्रॉनों की वास्तविक संख्या जो दो चरणों के बीच गुजरती है, प्रायः छोटी होती है)। | ||
सिर्फ इसलिए कि फर्मी के स्तर बराबर हैं, | |||
सिर्फ इसलिए कि फर्मी के स्तर बराबर हैं, यद्यपि, इसका मतलब यह नहीं है कि विद्युत क्षमता बराबर है। प्रत्येक सामग्री के बाहर विद्युत क्षमता को उसके कार्य फलन द्वारा नियंत्रित किया जाता है, और इसलिए असमान धातुएं संतुलन पर भी विद्युत क्षमता अंतर दिखा सकती हैं। | |||
वोल्टा क्षमता विचाराधीन दो थोक धातुओं की आंतरिक संपत्ति नहीं है, बल्कि धातुओं की सतहों के बीच कार्य फ़ंक्शन के अंतर से निर्धारित होती है। कार्य फ़ंक्शन की तरह, वोल्टा की क्षमता संवेदनशील रूप से सतह की स्थिति, संदूषण, और इसी तरह पर निर्भर करती है। | वोल्टा क्षमता विचाराधीन दो थोक धातुओं की आंतरिक संपत्ति नहीं है, बल्कि धातुओं की सतहों के बीच कार्य फ़ंक्शन के अंतर से निर्धारित होती है। कार्य फ़ंक्शन की तरह, वोल्टा की क्षमता संवेदनशील रूप से सतह की स्थिति, संदूषण, और इसी तरह पर निर्भर करती है। | ||
Line 13: | Line 15: | ||
{{confused|Kelvin clip}} | {{confused|Kelvin clip}} | ||
[[File:Kelvin probe setup at flat vacuum.svg|thumb|300 px|केल्विन प्रोब एनर्जी डायग्राम फ्लैट वैक्यूम कॉन्फ़िगरेशन पर, नमूना और जांच के बीच वोल्टा क्षमता को मापने के लिए उपयोग किया जाता है।]]वोल्टा क्षमता महत्वपूर्ण हो सकती है (क्रम 1 वोल्ट की) लेकिन इसे साधारण वोल्टमीटर द्वारा सीधे नहीं मापा जा सकता है। | [[File:Kelvin probe setup at flat vacuum.svg|thumb|300 px|केल्विन प्रोब एनर्जी डायग्राम फ्लैट वैक्यूम कॉन्फ़िगरेशन पर, नमूना और जांच के बीच वोल्टा क्षमता को मापने के लिए उपयोग किया जाता है।]]वोल्टा क्षमता महत्वपूर्ण हो सकती है (क्रम 1 वोल्ट की) लेकिन इसे साधारण वोल्टमीटर द्वारा सीधे नहीं मापा जा सकता है। | ||
एक [[वाल्टमीटर]] वैक्यूम इलेक्ट्रोस्टैटिक क्षमता को मापता नहीं है, बल्कि इसके | एक [[वाल्टमीटर]] वैक्यूम इलेक्ट्रोस्टैटिक क्षमता को मापता नहीं है, बल्कि इसके बदले दो सामग्रियों के बीच फर्मी स्तर में अंतर होता है, एक अंतर जो संतुलन पर बिल्कुल शून्य होता है। | ||
यद्यपि, वोल्टा क्षमता, दो धातु की वस्तुओं के बीच और उनके आस-पास के स्थानों में एक वास्तविक विद्युत क्षेत्र से मेल खाती है, एक ऐसा क्षेत्र जो उनकी सतहों पर आवेशों के संचय से उत्पन्न होता है। कुल शुल्क <math>Q</math> प्रत्येक वस्तु की सतह पर [[समाई]] पर निर्भर करता है <math>C</math> दो वस्तुओं के बीच, संबंध द्वारा <math>Q = C \Delta \psi</math>, कहाँ <math>\Delta \psi</math> वोल्टा क्षमता है। इसलिए यह इस प्रकार है कि क्षमता के मूल्य को एक ज्ञात राशि (उदाहरण के लिए, वस्तुओं को एक दूसरे से आगे ले जाकर) द्वारा सामग्री के बीच समाई को अलग करके और उन्हें जोड़ने वाले तार के माध्यम से बहने वाले विस्थापित चार्ज को मापकर मापा जा सकता है। | |||
धातु और इलेक्ट्रोलाइट के बीच वोल्टा संभावित अंतर को इसी तरह से मापा जा सकता है।<ref>V.S. Bagotsky, "Fundamentals of Electrochemistry", Willey Interscience, 2006.</ref> | धातु और इलेक्ट्रोलाइट के बीच वोल्टा संभावित अंतर को इसी तरह से मापा जा सकता है।<ref>V.S. Bagotsky, "Fundamentals of Electrochemistry", Willey Interscience, 2006.</ref> | ||
[[परमाणु बल माइक्रोस्कोपी]] के आधार पर, [[केल्विन जांच बल माइक्रोस्कोप]] के उपयोग से धातु की सतह की वोल्टा क्षमता को बहुत छोटे पैमाने पर मैप किया जा सकता है। मिलीमीटर से सेंटीमीटर के क्रम में बड़े क्षेत्रों में, एक [[स्कैनिंग केल्विन जांच]] (एसकेपी), जो आकार में दसियों से सैकड़ों माइक्रोन की तार जांच का उपयोग करती है, का उपयोग किया जा सकता है। किसी भी मामले में समाई परिवर्तन ज्ञात नहीं है - इसके | |||
[[परमाणु बल माइक्रोस्कोपी]] के आधार पर, [[केल्विन जांच बल माइक्रोस्कोप]] के उपयोग से धातु की सतह की वोल्टा क्षमता को बहुत छोटे पैमाने पर मैप किया जा सकता है। मिलीमीटर से सेंटीमीटर के क्रम में बड़े क्षेत्रों में, एक [[स्कैनिंग केल्विन जांच]] (एसकेपी), जो आकार में दसियों से सैकड़ों माइक्रोन की तार जांच का उपयोग करती है, का उपयोग किया जा सकता है। किसी भी मामले में समाई परिवर्तन ज्ञात नहीं है - इसके बदले, वोल्टा क्षमता को निरस्त करने के लिए एक क्षतिपूर्ति डीसी वोल्टेज जोड़ा जाता है ताकि समाई में परिवर्तन से कोई धारा प्रेरित न हो। यह क्षतिपूर्ति वोल्टेज वोल्टा क्षमता का ऋणात्मक है। | |||
== यह भी देखें == | == यह भी देखें == |
Revision as of 12:23, 18 March 2023
This article needs additional citations for verification. (December 2019) (Learn how and when to remove this template message) |
इलेक्ट्रोकैमिस्ट्री में वोल्टा क्षमता (जिसे वोल्टा संभावित अंतर, संपर्क संभावित अंतर, बाहरी संभावित अंतर, Δψ, या "डेल्टा साई") भी कहा जाता है, दो धातुओं (या एक धातु और एक इलेक्ट्रोलाइट) के बीच इलेक्ट्रोस्टैटिक संभावित अंतर है जो संपर्क और हैं थर्मोडायनामिक संतुलन में हैं । विशेष रूप से, यह पहली धातु की सतह के समीप बिंदु और दूसरी धातु (या इलेक्ट्रोलाइट) की सतह के समीप बिंदु के बीच संभावित अंतर है।[1]
वोल्टा क्षमता का नाम अलेक्जेंडर वोल्टा के नाम पर रखा गया है।
दो धातुओं के बीच वोल्टा क्षमता
जब दो धातुएं एक दूसरे से विद्युत रूप से पृथक होती हैं, तो उनके बीच एक मनमाना संभावित अंतर मौजूद हो सकता है। यद्यपि, जब दो अलग-अलग तटस्थ धातु सतहों को विद्युत संपर्क में लाया जाता है (यहां तक कि अप्रत्यक्ष रूप से, एक लंबे विद्युत-प्रवाहकीय तार के माध्यम से), तो इलेक्ट्रॉन धातु से उच्च फर्मी स्तर के साथ धातु से निचले फर्मी स्तर तक प्रवाहित होंगे। दो चरणों में स्तर बराबर हैं।
एक बार ऐसा हो जाने के बाद, धातुएं एक दूसरे के साथ थर्मोडायनामिक संतुलन में होती हैं (इलेक्ट्रॉनों की वास्तविक संख्या जो दो चरणों के बीच गुजरती है, प्रायः छोटी होती है)।
सिर्फ इसलिए कि फर्मी के स्तर बराबर हैं, यद्यपि, इसका मतलब यह नहीं है कि विद्युत क्षमता बराबर है। प्रत्येक सामग्री के बाहर विद्युत क्षमता को उसके कार्य फलन द्वारा नियंत्रित किया जाता है, और इसलिए असमान धातुएं संतुलन पर भी विद्युत क्षमता अंतर दिखा सकती हैं।
वोल्टा क्षमता विचाराधीन दो थोक धातुओं की आंतरिक संपत्ति नहीं है, बल्कि धातुओं की सतहों के बीच कार्य फ़ंक्शन के अंतर से निर्धारित होती है। कार्य फ़ंक्शन की तरह, वोल्टा की क्षमता संवेदनशील रूप से सतह की स्थिति, संदूषण, और इसी तरह पर निर्भर करती है।
वोल्टा क्षमता का मापन (केल्विन जांच)
वोल्टा क्षमता महत्वपूर्ण हो सकती है (क्रम 1 वोल्ट की) लेकिन इसे साधारण वोल्टमीटर द्वारा सीधे नहीं मापा जा सकता है।
एक वाल्टमीटर वैक्यूम इलेक्ट्रोस्टैटिक क्षमता को मापता नहीं है, बल्कि इसके बदले दो सामग्रियों के बीच फर्मी स्तर में अंतर होता है, एक अंतर जो संतुलन पर बिल्कुल शून्य होता है।
यद्यपि, वोल्टा क्षमता, दो धातु की वस्तुओं के बीच और उनके आस-पास के स्थानों में एक वास्तविक विद्युत क्षेत्र से मेल खाती है, एक ऐसा क्षेत्र जो उनकी सतहों पर आवेशों के संचय से उत्पन्न होता है। कुल शुल्क प्रत्येक वस्तु की सतह पर समाई पर निर्भर करता है दो वस्तुओं के बीच, संबंध द्वारा , कहाँ वोल्टा क्षमता है। इसलिए यह इस प्रकार है कि क्षमता के मूल्य को एक ज्ञात राशि (उदाहरण के लिए, वस्तुओं को एक दूसरे से आगे ले जाकर) द्वारा सामग्री के बीच समाई को अलग करके और उन्हें जोड़ने वाले तार के माध्यम से बहने वाले विस्थापित चार्ज को मापकर मापा जा सकता है।
धातु और इलेक्ट्रोलाइट के बीच वोल्टा संभावित अंतर को इसी तरह से मापा जा सकता है।[2]
परमाणु बल माइक्रोस्कोपी के आधार पर, केल्विन जांच बल माइक्रोस्कोप के उपयोग से धातु की सतह की वोल्टा क्षमता को बहुत छोटे पैमाने पर मैप किया जा सकता है। मिलीमीटर से सेंटीमीटर के क्रम में बड़े क्षेत्रों में, एक स्कैनिंग केल्विन जांच (एसकेपी), जो आकार में दसियों से सैकड़ों माइक्रोन की तार जांच का उपयोग करती है, का उपयोग किया जा सकता है। किसी भी मामले में समाई परिवर्तन ज्ञात नहीं है - इसके बदले, वोल्टा क्षमता को निरस्त करने के लिए एक क्षतिपूर्ति डीसी वोल्टेज जोड़ा जाता है ताकि समाई में परिवर्तन से कोई धारा प्रेरित न हो। यह क्षतिपूर्ति वोल्टेज वोल्टा क्षमता का ऋणात्मक है।
यह भी देखें
- इलेक्ट्रोड क्षमता
- पूर्ण इलेक्ट्रोड क्षमता
- विद्युतीय संभाव्यता
- गलवानी क्षमता
- संभावित अंतर (वाल्ट ेज)
- बैंड झुकना
- वोल्ट
- वोल्टा प्रभाव
संदर्भ
- ↑ IUPAC Gold Book, definition of contact (Volta) potential difference.
- ↑ V.S. Bagotsky, "Fundamentals of Electrochemistry", Willey Interscience, 2006.