4-मैनिफोल्ड: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Mathematical space}} | {{Short description|Mathematical space}} | ||
गणित में, 4-मनिफोल्ड एक 4-आयामी [[टोपोलॉजिकल मैनिफोल्ड| | गणित में, 4-मनिफोल्ड एक 4-आयामी [[टोपोलॉजिकल मैनिफोल्ड|सामयिक मनिफोल्ड]] है। एक सुचारु 4-मनिफोल्ड एक [[चिकनी संरचना|सुचारु संरचना]] के साथ 4-मनिफोल्ड है। आयाम चार में, निचले आयामों के साथ स्पष्ट विपरीतता में, सामयिक और सुचारु मनिफोल्ड अत्यधिक अलग हैं। कुछ सामयिक 4-मनिफोल्ड स्थित हैं जो कोई सुचारु संरचना स्वीकार नहीं करते हैं, और यहां तक कि यदि कोई सुचारु संरचना स्थित है, तो यह अद्वितीय नहीं होना चाहिए (अर्थात सुचारु 4-मनिफोल्ड हैं जो [[होमियोमॉर्फिक]] हैं परन्तु [[ डिफियोमॉर्फिक ]] नहीं हैं)। | ||
भौतिकी में 4-मनिफोल्ड महत्वपूर्ण हैं क्योंकि [[सामान्य सापेक्षता]] में, अंतरिक्ष-समय को [[छद्म-रीमैनियन]] 4-मनिफोल्ड के रूप में प्रतिरूपित किया जाता है। | भौतिकी में 4-मनिफोल्ड महत्वपूर्ण हैं क्योंकि [[सामान्य सापेक्षता]] में, अंतरिक्ष-समय को [[छद्म-रीमैनियन]] 4-मनिफोल्ड के रूप में प्रतिरूपित किया जाता है। | ||
== सामयिक 4-मनिफोल्ड == | == सामयिक 4-मनिफोल्ड == | ||
मात्र संयोजित सुसम्बद्ध 4-मनिफोल्ड का [[होमोटॉपी प्रकार]] मात्र मध्य आयामी समरूपता पर प्रतिच्छेदन के रूप (4-मनिफोल्ड ) पर निर्भर करता है। {{harvs|txt=yes|first=Michael|last=Freedman|authorlink=Michael Freedman|year=1982}} के एक प्रसिद्ध प्रमेय का तात्पर्य है कि [[होमियोमोर्फिज्म]] प्रकार का मनिफोल्ड मात्र इस प्रतिच्छेदन के रूप पर निर्भर करता है, और एक <math>\Z/2\Z</math> निश्चर पर जिसे किर्बी-सीबेनमैन निश्चर कहा जाता है, और इसके अतिरिक्त [[यूनिमॉड्यूलर जाली]] और किर्बी-सीबेनमैन निश्चर का | मात्र संयोजित सुसम्बद्ध 4-मनिफोल्ड का [[होमोटॉपी प्रकार]] मात्र मध्य आयामी समरूपता पर प्रतिच्छेदन के रूप (4-मनिफोल्ड ) पर निर्भर करता है। {{harvs|txt=yes|first=Michael|last=Freedman|authorlink=Michael Freedman|year=1982}} के एक प्रसिद्ध प्रमेय का तात्पर्य है कि [[होमियोमोर्फिज्म]] प्रकार का मनिफोल्ड मात्र इस प्रतिच्छेदन के रूप पर निर्भर करता है, और एक <math>\Z/2\Z</math> निश्चर पर जिसे किर्बी-सीबेनमैन निश्चर कहा जाता है, और इसके अतिरिक्त [[यूनिमॉड्यूलर जाली]] और किर्बी-सीबेनमैन निश्चर का प्रत्येक संयोजन उत्पन्न हो सकता है, अतिरिक्त इसके कि यदि रूप सम है, तो किर्बी-सीबेनमैन निश्चर को हस्ताक्षर/8 (मॉड 2) होना चाहिए। | ||
उदाहरण: | उदाहरण: | ||
* विशेष | * विशेष स्थिति में जब रूप 0 होता है, तो इसका तात्पर्य 4-आयामी स्थलीय पोंकारे अनुमान से है। | ||
*यदि प्रपत्र E8 जाली है, तो यह मनिफोल्ड देता है जिसे E8 मनिफोल्ड कहा जाता है, किसी भी साधारण परिसर के लिए मनिफोल्ड होमियोमॉर्फिक नहीं। | *यदि प्रपत्र E8 जाली है, तो यह मनिफोल्ड देता है जिसे E8 मनिफोल्ड कहा जाता है, किसी भी साधारण परिसर के लिए मनिफोल्ड होमियोमॉर्फिक नहीं। | ||
*यदि रूप है <math>\Z</math>, किर्बी-सीबेनमैन निश्चर के आधार पर दो मनिफोल्ड हैं: एक 2-आयामी जटिल प्रोजेक्टिव स्पेस है, और दूसरा नकली प्रोजेक्टिव स्पेस है, जिसमें एक ही होमोटोपी प्रकार है परन्तु होमोमोर्फिक नहीं है (और कोई सुचारु संरचना नहीं है)। | *यदि रूप है <math>\Z</math>, किर्बी-सीबेनमैन निश्चर के आधार पर दो मनिफोल्ड हैं: एक 2-आयामी जटिल प्रोजेक्टिव स्पेस है, और दूसरा नकली प्रोजेक्टिव स्पेस है, जिसमें एक ही होमोटोपी प्रकार है परन्तु होमोमोर्फिक नहीं है (और कोई सुचारु संरचना नहीं है)। | ||
*जब | *जब रूप का रैंक लगभग 28 से अधिक होता है, तो यूनिमॉड्यूलर जाली # वर्गीकरण रैंक के साथ बहुत तेज़ी से बढ़ना शुरू हो जाता है, इसलिए बड़ी संख्या में बस जुड़े हुए सामयिक 4-मनिफोल्ड होते हैं (जिनमें से अधिकांश लगभग कोई दिलचस्पी नहीं लगते हैं) ). | ||
फ्रीडमैन के वर्गीकरण को कुछ मामलों में विस्तारित किया जा सकता है जब मौलिक समूह बहुत जटिल नहीं है; उदाहरण के लिए, जब यह है <math>\Z</math>, के समूह वलय के ऊपर हर्मिटियन रूपों का उपयोग करते हुए उपरोक्त के समान एक वर्गीकरण है <math>\Z</math>. यदि मौलिक समूह बहुत बड़ा है (उदाहरण के लिए, 2 जनरेटर पर एक मुक्त समूह), तो फ्रीडमैन की तकनीकें विफल होने लगती हैं और इस तरह के मनिफोल्ड के बारे में बहुत कम जानकारी है। | फ्रीडमैन के वर्गीकरण को कुछ मामलों में विस्तारित किया जा सकता है जब मौलिक समूह बहुत जटिल नहीं है; उदाहरण के लिए, जब यह है <math>\Z</math>, के समूह वलय के ऊपर हर्मिटियन रूपों का उपयोग करते हुए उपरोक्त के समान एक वर्गीकरण है <math>\Z</math>. यदि मौलिक समूह बहुत बड़ा है (उदाहरण के लिए, 2 जनरेटर पर एक मुक्त समूह), तो फ्रीडमैन की तकनीकें विफल होने लगती हैं और इस तरह के मनिफोल्ड के बारे में बहुत कम जानकारी है। | ||
किसी भी सूक्ष्म रूप से प्रस्तुत समूह के लिए इसके मूलभूत समूह के रूप में एक (सुचारु) सुसम्बद्ध 4-मनिफोल्ड बनाना आसान है। जैसा कि यह बताने के लिए कोई एल्गोरिथम नहीं है कि क्या दो सूक्ष्म रूप से प्रस्तुत किए गए समूह आइसोमोर्फिक हैं (भले ही एक को तुच्छ माना जाता है) यह बताने के लिए कोई एल्गोरिथम नहीं है कि क्या दो 4-मनिफोल्ड में एक ही मौलिक समूह है। यह एक कारण है कि क्यों 4-मनिफोल्ड ्स पर ज्यादातर काम सिर्फ जुड़े हुए | किसी भी सूक्ष्म रूप से प्रस्तुत समूह के लिए इसके मूलभूत समूह के रूप में एक (सुचारु) सुसम्बद्ध 4-मनिफोल्ड बनाना आसान है। जैसा कि यह बताने के लिए कोई एल्गोरिथम नहीं है कि क्या दो सूक्ष्म रूप से प्रस्तुत किए गए समूह आइसोमोर्फिक हैं (भले ही एक को तुच्छ माना जाता है) यह बताने के लिए कोई एल्गोरिथम नहीं है कि क्या दो 4-मनिफोल्ड में एक ही मौलिक समूह है। यह एक कारण है कि क्यों 4-मनिफोल्ड ्स पर ज्यादातर काम सिर्फ जुड़े हुए विषय पर विचार करता है: कई समस्याओं का सामान्य विषय पूर्व से ही अचूक होने के लिए जाना जाता है। | ||
== चिकना 4-मनिफोल्ड == | == चिकना 4-मनिफोल्ड == | ||
Line 30: | Line 30: | ||
सुचारु 4-मनिफोल्ड के सिद्धांत में एक बड़ी खुली समस्या है, बस जुड़े हुए सुसम्बद्ध वाले को वर्गीकृत करना। | सुचारु 4-मनिफोल्ड के सिद्धांत में एक बड़ी खुली समस्या है, बस जुड़े हुए सुसम्बद्ध वाले को वर्गीकृत करना। | ||
जैसा कि | जैसा कि सामयिक ज्ञात हैं, यह दो भागों में विभाजित है: | ||
# कौन से | # कौन से सामयिक मनिफोल्ड स्मूथेबल हैं? | ||
# विभिन्न सुचारु संरचनाओं को एक सुगम मनिफोल्ड पर वर्गीकृत करें। | # विभिन्न सुचारु संरचनाओं को एक सुगम मनिफोल्ड पर वर्गीकृत करें। | ||
पहली समस्या का लगभग पूर्ण उत्तर है, जिसमें मात्र सुसम्बद्ध 4-मनिफोल्ड ्स से जुड़ी सुचारु संरचनाएं हैं। | पहली समस्या का लगभग पूर्ण उत्तर है, जिसमें मात्र सुसम्बद्ध 4-मनिफोल्ड ्स से जुड़ी सुचारु संरचनाएं हैं। | ||
सबसे | सबसे पूर्व, किर्बी-सीबेनमैन वर्ग को गायब होना चाहिए। | ||
*यदि प्रतिच्छेदन रूप निश्चित रूप से डोनाल्डसन की प्रमेय है {{harv|Donaldson|1983}} एक पूर्ण उत्तर देता है: एक सुचारु संरचना होती है यदि मात्र और यदि प्रपत्र विकर्ण है। | *यदि प्रतिच्छेदन रूप निश्चित रूप से डोनाल्डसन की प्रमेय है {{harv|Donaldson|1983}} एक पूर्ण उत्तर देता है: एक सुचारु संरचना होती है यदि मात्र और यदि प्रपत्र विकर्ण है। | ||
*यदि रूप अनिश्चित और विषम है तो एक सुचारु संरचना होती है। | *यदि रूप अनिश्चित और विषम है तो एक सुचारु संरचना होती है। | ||
*यदि | *यदि रूप अनिश्चित है और यहां तक कि हम यह भी मान सकते हैं कि यदि आवश्यक हो तो ओरिएंटेशन को बदलकर यह गैर-सकारात्मक हस्ताक्षर का है, जिस स्थिति में यह II की एम प्रतियों के योग के लिए आइसोमोर्फिक है<sub>1,1</sub> और ई की 2 एन प्रतियां<sub>8</sub>(−1) कुछ m और n के लिए। यदि m ≥ 3n (ताकि आयाम |signature| का कम से कम 11/8 गुना हो) तो एक सुचारु संरचना है, जो n [[K3 सतह]]ों और S की m − 3n प्रतियों का एक जुड़ा हुआ योग लेकर दी गई है<sup>2</sup>×एस<sup>2</उप>। यदि m ≤ 2n (तो आयाम अधिक से अधिक 10/8 गुना है | हस्ताक्षर |) तो फुरुता ने साबित किया कि कोई सुचारु संरचना स्थित नहीं है {{harv|Furuta|2001}}. यह 10/8 और 11/8 के बीच एक छोटा सा अंतर छोड़ देता है जहां उत्तर ज्यादातर अज्ञात होता है। (सबसे छोटे विषय में ऊपर कवर नहीं किया गया है n=2 और m=5, परन्तु इसे भी खारिज कर दिया गया है, इसलिए सबसे छोटा जाली जिसके लिए वर्तमान में उत्तर ज्ञात नहीं है, जाली II है<sub>7,55</sub> रैंक 62 की n=3 और m=7 के साथ। देखना <ref>{{cite arXiv | ||
| last1 = Hopkins | first1 = Michael J. | authorlink = Michael J. Hopkins | | last1 = Hopkins | first1 = Michael J. | authorlink = Michael J. Hopkins | ||
| last2 = Lin | first2 = Jianfeng | | last2 = Lin | first2 = Jianfeng | ||
Line 55: | Line 55: | ||
मनिफोल्ड ्स के बारे में कई मौलिक प्रमेय हैं जो कम से कम 3 आयामों में कम-आयामी विधियों द्वारा और कम से कम 5 आयामों में पूरी तरह से भिन्न उच्च-आयामी विधियों द्वारा सिद्ध किए जा सकते हैं, परन्तु जो आयाम 4 में गलत हैं। यहां कुछ उदाहरण दिए गए हैं: | मनिफोल्ड ्स के बारे में कई मौलिक प्रमेय हैं जो कम से कम 3 आयामों में कम-आयामी विधियों द्वारा और कम से कम 5 आयामों में पूरी तरह से भिन्न उच्च-आयामी विधियों द्वारा सिद्ध किए जा सकते हैं, परन्तु जो आयाम 4 में गलत हैं। यहां कुछ उदाहरण दिए गए हैं: | ||
*4 के अतिरिक्त अन्य आयामों में, किर्बी-सीबेनमैन अपरिवर्तनीय पीएल संरचना के अस्तित्व में बाधा प्रदान करता है; दूसरे शब्दों में एक सुसम्बद्ध | *4 के अतिरिक्त अन्य आयामों में, किर्बी-सीबेनमैन अपरिवर्तनीय पीएल संरचना के अस्तित्व में बाधा प्रदान करता है; दूसरे शब्दों में एक सुसम्बद्ध सामयिक मनिफोल्ड में पीएल संरचना होती है यदि और मात्र यदि एच में किर्बी-सीबेनमैन निश्चर<sup>4</sup>(M,'Z'/2'Z') गायब हो जाता है। आयाम 3 और निचले में, प्रत्येक सामयिक मनिफोल्ड अनिवार्य रूप से अद्वितीय पीएल संरचना को स्वीकार करता है। आयाम 4 में गायब होने वाले किर्बी-सीबेनमैन निश्चर के कई उदाहरण हैं परन्तु कोई पीएल संरचना नहीं है। | ||
*4 के अतिरिक्त किसी भी आयाम में, एक सुसम्बद्ध | *4 के अतिरिक्त किसी भी आयाम में, एक सुसम्बद्ध सामयिक मनिफोल्ड में अनिवार्य रूप से विशिष्ट पीएल या सुचारु संरचनाओं की मात्र एक सीमित संख्या होती है। आयाम 4 में, सुसम्बद्ध मनिफोल्ड ्स में गैर-डिफियोमॉर्फिक सुचारु संरचनाओं की संख्या अनंत संख्या में हो सकती है। | ||
*चार ही एकमात्र आयाम n है जिसके लिए 'R'<sup>n</sup> में आकर्षक सुचारु संरचना हो सकती है। 'आर'<sup>4</sup> में विदेशी सुचारु संरचनाओं की एक बेशुमार संख्या है; विदेशी R4 देखें|विदेशी R<sup>4</उप>। | *चार ही एकमात्र आयाम n है जिसके लिए 'R'<sup>n</sup> में आकर्षक सुचारु संरचना हो सकती है। 'आर'<sup>4</sup> में विदेशी सुचारु संरचनाओं की एक बेशुमार संख्या है; विदेशी R4 देखें|विदेशी R<sup>4</उप>। | ||
*सुचारू पॉइनकेयर अनुमान का समाधान 4 के अतिरिक्त अन्य सभी आयामों में जाना जाता है (यह आमतौर पर कम से कम 7 आयामों में झूठा होता है; [[विदेशी क्षेत्र]] देखें)। पीएल मनिफोल्ड ्स के लिए पोंकारे अनुमान 4 के अतिरिक्त अन्य सभी आयामों के लिए सिद्ध किया गया है, परन्तु यह ज्ञात नहीं है कि यह 4 आयामों में सच है या नहीं (यह 4 आयामों में सुचारु पोंकारे अनुमान के बराबर है)। | *सुचारू पॉइनकेयर अनुमान का समाधान 4 के अतिरिक्त अन्य सभी आयामों में जाना जाता है (यह आमतौर पर कम से कम 7 आयामों में झूठा होता है; [[विदेशी क्षेत्र]] देखें)। पीएल मनिफोल्ड ्स के लिए पोंकारे अनुमान 4 के अतिरिक्त अन्य सभी आयामों के लिए सिद्ध किया गया है, परन्तु यह ज्ञात नहीं है कि यह 4 आयामों में सच है या नहीं (यह 4 आयामों में सुचारु पोंकारे अनुमान के बराबर है)। | ||
* सहज एच-कोबोर्डवाद प्रमेय सह-बोर्डवाद के लिए मान्य है, बशर्ते कि न तो सह-बोर्डवाद और न ही इसकी सीमा का आयाम 4 हो। यह विफल हो सकता है यदि सह-बोर्डवाद की सीमा का आयाम 4 हो (जैसा कि [[साइमन डोनाल्डसन]] द्वारा दिखाया गया है)।<ref>{{Cite journal |last=Donaldson |first=Simon K. |title=तर्कहीनता और एच-कोबर्डिज्म अनुमान|journal=J. Differential Geom. |volume=26 |issue=1 |year=1987 |pages=141–168 |doi=10.4310/jdg/1214441179 |mr=0892034 | url=http://projecteuclid.org/euclid.jdg/1214441179 |doi-access=free }}</ref> यदि सह-बोर्डवाद का आयाम 4 है, तो यह अज्ञात है कि एच-सह-बोर्डवाद प्रमेय धारण करता है या नहीं। | * सहज एच-कोबोर्डवाद प्रमेय सह-बोर्डवाद के लिए मान्य है, बशर्ते कि न तो सह-बोर्डवाद और न ही इसकी सीमा का आयाम 4 हो। यह विफल हो सकता है यदि सह-बोर्डवाद की सीमा का आयाम 4 हो (जैसा कि [[साइमन डोनाल्डसन]] द्वारा दिखाया गया है)।<ref>{{Cite journal |last=Donaldson |first=Simon K. |title=तर्कहीनता और एच-कोबर्डिज्म अनुमान|journal=J. Differential Geom. |volume=26 |issue=1 |year=1987 |pages=141–168 |doi=10.4310/jdg/1214441179 |mr=0892034 | url=http://projecteuclid.org/euclid.jdg/1214441179 |doi-access=free }}</ref> यदि सह-बोर्डवाद का आयाम 4 है, तो यह अज्ञात है कि एच-सह-बोर्डवाद प्रमेय धारण करता है या नहीं। | ||
* 4 के बराबर नहीं होने वाले आयाम के एक | * 4 के बराबर नहीं होने वाले आयाम के एक सामयिक मनिफोल्ड में एक हैंडलबॉडी अपघटन है। डायमेंशन 4 के मनिफोल्ड ्स में एक हैंडलबॉडी अपघटन होता है यदि और मात्र यदि वे चिकने हों। | ||
* सुसम्बद्ध 4-आयामी | * सुसम्बद्ध 4-आयामी सामयिक मनिफोल्ड हैं जो किसी भी साधारण जटिल के लिए होमोमोर्फिक नहीं हैं। आयाम में कम से कम 5 सामयिक मनिफोल्ड ्स का अस्तित्व एक साधारण जटिल के लिए होमोमोर्फिक नहीं एक खुली समस्या थी। [[सिप्रियन मनोलेस्कु]] ने दिखाया कि 5 से अधिक या उसके बराबर प्रत्येक आयाम में मनिफोल्ड हैं, जो एक साधारण जटिल के लिए होमोमोर्फिक नहीं हैं।<ref>{{cite journal |first=Ciprian |last=Manolescu |authorlink=Ciprian Manolescu| title=Pin(2)-equivariant Seiberg–Witten Floer homology and the Triangulation Conjecture |journal=[[Journal of the American Mathematical Society|J. Amer. Math. Soc.]] |volume=29 |year=2016 |pages=147–176 |doi=10.1090/jams829|arxiv=1303.2354 |s2cid=16403004 }}</ref> | ||
Revision as of 15:35, 19 March 2023
गणित में, 4-मनिफोल्ड एक 4-आयामी सामयिक मनिफोल्ड है। एक सुचारु 4-मनिफोल्ड एक सुचारु संरचना के साथ 4-मनिफोल्ड है। आयाम चार में, निचले आयामों के साथ स्पष्ट विपरीतता में, सामयिक और सुचारु मनिफोल्ड अत्यधिक अलग हैं। कुछ सामयिक 4-मनिफोल्ड स्थित हैं जो कोई सुचारु संरचना स्वीकार नहीं करते हैं, और यहां तक कि यदि कोई सुचारु संरचना स्थित है, तो यह अद्वितीय नहीं होना चाहिए (अर्थात सुचारु 4-मनिफोल्ड हैं जो होमियोमॉर्फिक हैं परन्तु डिफियोमॉर्फिक नहीं हैं)।
भौतिकी में 4-मनिफोल्ड महत्वपूर्ण हैं क्योंकि सामान्य सापेक्षता में, अंतरिक्ष-समय को छद्म-रीमैनियन 4-मनिफोल्ड के रूप में प्रतिरूपित किया जाता है।
सामयिक 4-मनिफोल्ड
मात्र संयोजित सुसम्बद्ध 4-मनिफोल्ड का होमोटॉपी प्रकार मात्र मध्य आयामी समरूपता पर प्रतिच्छेदन के रूप (4-मनिफोल्ड ) पर निर्भर करता है। Michael Freedman (1982) के एक प्रसिद्ध प्रमेय का तात्पर्य है कि होमियोमोर्फिज्म प्रकार का मनिफोल्ड मात्र इस प्रतिच्छेदन के रूप पर निर्भर करता है, और एक निश्चर पर जिसे किर्बी-सीबेनमैन निश्चर कहा जाता है, और इसके अतिरिक्त यूनिमॉड्यूलर जाली और किर्बी-सीबेनमैन निश्चर का प्रत्येक संयोजन उत्पन्न हो सकता है, अतिरिक्त इसके कि यदि रूप सम है, तो किर्बी-सीबेनमैन निश्चर को हस्ताक्षर/8 (मॉड 2) होना चाहिए।
उदाहरण:
- विशेष स्थिति में जब रूप 0 होता है, तो इसका तात्पर्य 4-आयामी स्थलीय पोंकारे अनुमान से है।
- यदि प्रपत्र E8 जाली है, तो यह मनिफोल्ड देता है जिसे E8 मनिफोल्ड कहा जाता है, किसी भी साधारण परिसर के लिए मनिफोल्ड होमियोमॉर्फिक नहीं।
- यदि रूप है , किर्बी-सीबेनमैन निश्चर के आधार पर दो मनिफोल्ड हैं: एक 2-आयामी जटिल प्रोजेक्टिव स्पेस है, और दूसरा नकली प्रोजेक्टिव स्पेस है, जिसमें एक ही होमोटोपी प्रकार है परन्तु होमोमोर्फिक नहीं है (और कोई सुचारु संरचना नहीं है)।
- जब रूप का रैंक लगभग 28 से अधिक होता है, तो यूनिमॉड्यूलर जाली # वर्गीकरण रैंक के साथ बहुत तेज़ी से बढ़ना शुरू हो जाता है, इसलिए बड़ी संख्या में बस जुड़े हुए सामयिक 4-मनिफोल्ड होते हैं (जिनमें से अधिकांश लगभग कोई दिलचस्पी नहीं लगते हैं) ).
फ्रीडमैन के वर्गीकरण को कुछ मामलों में विस्तारित किया जा सकता है जब मौलिक समूह बहुत जटिल नहीं है; उदाहरण के लिए, जब यह है , के समूह वलय के ऊपर हर्मिटियन रूपों का उपयोग करते हुए उपरोक्त के समान एक वर्गीकरण है . यदि मौलिक समूह बहुत बड़ा है (उदाहरण के लिए, 2 जनरेटर पर एक मुक्त समूह), तो फ्रीडमैन की तकनीकें विफल होने लगती हैं और इस तरह के मनिफोल्ड के बारे में बहुत कम जानकारी है।
किसी भी सूक्ष्म रूप से प्रस्तुत समूह के लिए इसके मूलभूत समूह के रूप में एक (सुचारु) सुसम्बद्ध 4-मनिफोल्ड बनाना आसान है। जैसा कि यह बताने के लिए कोई एल्गोरिथम नहीं है कि क्या दो सूक्ष्म रूप से प्रस्तुत किए गए समूह आइसोमोर्फिक हैं (भले ही एक को तुच्छ माना जाता है) यह बताने के लिए कोई एल्गोरिथम नहीं है कि क्या दो 4-मनिफोल्ड में एक ही मौलिक समूह है। यह एक कारण है कि क्यों 4-मनिफोल्ड ्स पर ज्यादातर काम सिर्फ जुड़े हुए विषय पर विचार करता है: कई समस्याओं का सामान्य विषय पूर्व से ही अचूक होने के लिए जाना जाता है।
चिकना 4-मनिफोल्ड
अधिकतम 6 आयामों के मनिफोल्ड के लिए, किसी भी टुकड़े की रैखिक (पीएल) संरचना को अनिवार्य रूप से अद्वितीय तरीके से चिकना किया जा सकता है,[1] इसलिए विशेष रूप से 4 आयामी पीएल मनिफोल्ड ्स का सिद्धांत 4 आयामी स्मूथ मनिफोल्ड ्स के सिद्धांत के समान है।
सुचारु 4-मनिफोल्ड के सिद्धांत में एक बड़ी खुली समस्या है, बस जुड़े हुए सुसम्बद्ध वाले को वर्गीकृत करना। जैसा कि सामयिक ज्ञात हैं, यह दो भागों में विभाजित है:
- कौन से सामयिक मनिफोल्ड स्मूथेबल हैं?
- विभिन्न सुचारु संरचनाओं को एक सुगम मनिफोल्ड पर वर्गीकृत करें।
पहली समस्या का लगभग पूर्ण उत्तर है, जिसमें मात्र सुसम्बद्ध 4-मनिफोल्ड ्स से जुड़ी सुचारु संरचनाएं हैं। सबसे पूर्व, किर्बी-सीबेनमैन वर्ग को गायब होना चाहिए।
- यदि प्रतिच्छेदन रूप निश्चित रूप से डोनाल्डसन की प्रमेय है (Donaldson 1983) एक पूर्ण उत्तर देता है: एक सुचारु संरचना होती है यदि मात्र और यदि प्रपत्र विकर्ण है।
- यदि रूप अनिश्चित और विषम है तो एक सुचारु संरचना होती है।
- यदि रूप अनिश्चित है और यहां तक कि हम यह भी मान सकते हैं कि यदि आवश्यक हो तो ओरिएंटेशन को बदलकर यह गैर-सकारात्मक हस्ताक्षर का है, जिस स्थिति में यह II की एम प्रतियों के योग के लिए आइसोमोर्फिक है1,1 और ई की 2 एन प्रतियां8(−1) कुछ m और n के लिए। यदि m ≥ 3n (ताकि आयाम |signature| का कम से कम 11/8 गुना हो) तो एक सुचारु संरचना है, जो n K3 सतहों और S की m − 3n प्रतियों का एक जुड़ा हुआ योग लेकर दी गई है2×एस2</उप>। यदि m ≤ 2n (तो आयाम अधिक से अधिक 10/8 गुना है | हस्ताक्षर |) तो फुरुता ने साबित किया कि कोई सुचारु संरचना स्थित नहीं है (Furuta 2001). यह 10/8 और 11/8 के बीच एक छोटा सा अंतर छोड़ देता है जहां उत्तर ज्यादातर अज्ञात होता है। (सबसे छोटे विषय में ऊपर कवर नहीं किया गया है n=2 और m=5, परन्तु इसे भी खारिज कर दिया गया है, इसलिए सबसे छोटा जाली जिसके लिए वर्तमान में उत्तर ज्ञात नहीं है, जाली II है7,55 रैंक 62 की n=3 और m=7 के साथ। देखना [2] इस क्षेत्र में हाल ही में (2019 तक) प्रगति के लिए।) 11/8 अनुमान बताता है कि यदि आयाम 11/8 गुना से कम है तो सुचारु संरचनाएं स्थित नहीं हैं।
इसके विपरीत, सुचारु 4-मनिफोल्ड पर सुचारु संरचनाओं को वर्गीकृत करने के दूसरे प्रश्न के बारे में बहुत कम जानकारी है; वास्तव में, वहाँ एक भी चिकना 4-मनिफोल्ड नहीं है जहाँ उत्तर ज्ञात हो। डोनाल्डसन ने दिखाया कि कुछ सरल रूप से जुड़े सुसम्बद्ध 4-मनिफोल्ड हैं, जैसे कि डोलगाचेव सतहें, अलग-अलग सुचारु संरचनाओं की अनगिनत अनंत संख्या के साथ। R पर विभिन्न सुचारु संरचनाओं की एक बेशुमार संख्या है4; विदेशी R4 देखें|विदेशी R4</उप>। फिंट्यूशेल और स्टर्न ने दिखाया कि कई अलग-अलग मनिफोल्ड ्स पर बड़ी संख्या में अलग-अलग सुचारु संरचनाओं (मनमानी अभिन्न बहुपदों द्वारा अनुक्रमित) के निर्माण के लिए सर्जरी का उपयोग कैसे किया जाता है, यह दिखाने के लिए कि सुचारु संरचनाएं अलग-अलग हैं। उनके नतीजे बताते हैं कि आसानी से जुड़े सुचारु 4-मनिफोल्ड का कोई वर्गीकरण बहुत जटिल होगा। यह वर्गीकरण कैसा दिख सकता है, इसके बारे में वर्तमान में कोई प्रशंसनीय अनुमान नहीं है। (कुछ शुरुआती अनुमान हैं कि सभी आसानी से जुड़े सुचारु 4-मनिफोल्ड बीजगणितीय सतहों के जुड़े योग हो सकते हैं, या सिंपलेक्टिक मनिफोल्ड , संभवतः उलटा झुकाव के साथ, अस्वीकृत कर दिया गया है।)
4 आयामों में विशेष घटनाएं
मनिफोल्ड ्स के बारे में कई मौलिक प्रमेय हैं जो कम से कम 3 आयामों में कम-आयामी विधियों द्वारा और कम से कम 5 आयामों में पूरी तरह से भिन्न उच्च-आयामी विधियों द्वारा सिद्ध किए जा सकते हैं, परन्तु जो आयाम 4 में गलत हैं। यहां कुछ उदाहरण दिए गए हैं:
- 4 के अतिरिक्त अन्य आयामों में, किर्बी-सीबेनमैन अपरिवर्तनीय पीएल संरचना के अस्तित्व में बाधा प्रदान करता है; दूसरे शब्दों में एक सुसम्बद्ध सामयिक मनिफोल्ड में पीएल संरचना होती है यदि और मात्र यदि एच में किर्बी-सीबेनमैन निश्चर4(M,'Z'/2'Z') गायब हो जाता है। आयाम 3 और निचले में, प्रत्येक सामयिक मनिफोल्ड अनिवार्य रूप से अद्वितीय पीएल संरचना को स्वीकार करता है। आयाम 4 में गायब होने वाले किर्बी-सीबेनमैन निश्चर के कई उदाहरण हैं परन्तु कोई पीएल संरचना नहीं है।
- 4 के अतिरिक्त किसी भी आयाम में, एक सुसम्बद्ध सामयिक मनिफोल्ड में अनिवार्य रूप से विशिष्ट पीएल या सुचारु संरचनाओं की मात्र एक सीमित संख्या होती है। आयाम 4 में, सुसम्बद्ध मनिफोल्ड ्स में गैर-डिफियोमॉर्फिक सुचारु संरचनाओं की संख्या अनंत संख्या में हो सकती है।
- चार ही एकमात्र आयाम n है जिसके लिए 'R'n में आकर्षक सुचारु संरचना हो सकती है। 'आर'4 में विदेशी सुचारु संरचनाओं की एक बेशुमार संख्या है; विदेशी R4 देखें|विदेशी R4</उप>।
- सुचारू पॉइनकेयर अनुमान का समाधान 4 के अतिरिक्त अन्य सभी आयामों में जाना जाता है (यह आमतौर पर कम से कम 7 आयामों में झूठा होता है; विदेशी क्षेत्र देखें)। पीएल मनिफोल्ड ्स के लिए पोंकारे अनुमान 4 के अतिरिक्त अन्य सभी आयामों के लिए सिद्ध किया गया है, परन्तु यह ज्ञात नहीं है कि यह 4 आयामों में सच है या नहीं (यह 4 आयामों में सुचारु पोंकारे अनुमान के बराबर है)।
- सहज एच-कोबोर्डवाद प्रमेय सह-बोर्डवाद के लिए मान्य है, बशर्ते कि न तो सह-बोर्डवाद और न ही इसकी सीमा का आयाम 4 हो। यह विफल हो सकता है यदि सह-बोर्डवाद की सीमा का आयाम 4 हो (जैसा कि साइमन डोनाल्डसन द्वारा दिखाया गया है)।[3] यदि सह-बोर्डवाद का आयाम 4 है, तो यह अज्ञात है कि एच-सह-बोर्डवाद प्रमेय धारण करता है या नहीं।
- 4 के बराबर नहीं होने वाले आयाम के एक सामयिक मनिफोल्ड में एक हैंडलबॉडी अपघटन है। डायमेंशन 4 के मनिफोल्ड ्स में एक हैंडलबॉडी अपघटन होता है यदि और मात्र यदि वे चिकने हों।
- सुसम्बद्ध 4-आयामी सामयिक मनिफोल्ड हैं जो किसी भी साधारण जटिल के लिए होमोमोर्फिक नहीं हैं। आयाम में कम से कम 5 सामयिक मनिफोल्ड ्स का अस्तित्व एक साधारण जटिल के लिए होमोमोर्फिक नहीं एक खुली समस्या थी। सिप्रियन मनोलेस्कु ने दिखाया कि 5 से अधिक या उसके बराबर प्रत्येक आयाम में मनिफोल्ड हैं, जो एक साधारण जटिल के लिए होमोमोर्फिक नहीं हैं।[4]
आयाम 4 == में व्हिटनी चाल की विफलता
फ्रैंक क्विन (गणितज्ञ) के अनुसार, आयाम 2n के मनिफोल्ड के दो एन-आयामी सबमनिफोल्ड आमतौर पर अलग-अलग बिंदुओं में खुद को और एक-दूसरे को काटते हैं। व्हिटनी एम्बेडिंग प्रमेय # सबूत के बारे में थोड़ा | व्हिटनी ट्रिक इन चौराहों को सरल बनाने के लिए एक एम्बेडेड 2-डिस्क में एक आइसोटोप का उपयोग करती है। मोटे तौर पर यह 2-डिस्क के एम्बेडिंग के लिए एन-डायमेंशनल एम्बेडिंग के अध्ययन को कम करता है। परन्तु यह कमी नहीं है जब एम्बेडिंग 4 है: 2 डिस्क स्वयं मध्य-आयामी हैं, इसलिए उन्हें एम्बेड करने का प्रयास ठीक उसी समस्या का सामना करता है जिसे वे हल करने वाले हैं। यही वह परिघटना है जो आयाम 4 को दूसरों से अलग करती है।[5]
यह भी देखें
- किर्बी कैलकुलस
- बीजगणितीय सतह
- 3-मनिफोल्ड
- 5-मनिफोल्ड
- एनरिक्स-कोडैरा वर्गीकरण
- कैसन हैंडल
- अकबुलुत कॉर्क
संदर्भ
- ↑ Milnor, John (2011), "Differential topology forty-six years later" (PDF), Notices of the American Mathematical Society, 58 (6): 804–809, MR 2839925.
- ↑ Hopkins, Michael J.; Lin, Jianfeng; Shi, XiaoLin; Xu, Zhouli (2019), "Intersection Forms of Spin 4-Manifolds and the Pin(2)-Equivariant Mahowald Invariant", arXiv:1812.04052 [math.AT].
- ↑ Donaldson, Simon K. (1987). "तर्कहीनता और एच-कोबर्डिज्म अनुमान". J. Differential Geom. 26 (1): 141–168. doi:10.4310/jdg/1214441179. MR 0892034.
- ↑ Manolescu, Ciprian (2016). "Pin(2)-equivariant Seiberg–Witten Floer homology and the Triangulation Conjecture". J. Amer. Math. Soc. 29: 147–176. arXiv:1303.2354. doi:10.1090/jams829. S2CID 16403004.
- ↑ Quinn, F. (1996). "Problems in low-dimensional topology". In Ranicki, A.; Yamasaki, M. (eds.). Surgery and Geometric Topology: Proceedings of a conference held at Josai University, Sakado, Sept. 1996 (PDF). pp. 97–104.
- Donaldson, Simon K. (1983), "An application of gauge theory to four-dimensional topology", Journal of Differential Geometry, 18 (2): 279–315, doi:10.4310/jdg/1214437665
- Donaldson, Simon K.; Kronheimer, Peter B. (1997), The Geometry of Four-Manifolds, Oxford Mathematical Monographs, Oxford: Clarendon Press, ISBN 0-19-850269-9
- Freed, Daniel S.; Uhlenbeck, Karen K. (1984), Instantons and four-manifolds, Mathematical Sciences Research Institute Publications, vol. 1, Springer-Verlag, New York, doi:10.1007/978-1-4684-0258-2, ISBN 0-387-96036-8, MR 0757358
- Freedman, Michael Hartley (1982), "The topology of four-dimensional manifolds", Journal of Differential Geometry, 17 (3): 357–453, doi:10.4310/jdg/1214437136, MR 0679066
- Freedman, Michael H.; Quinn, Frank (1990), Topology of 4-manifolds, Princeton, N.J.: Princeton University Press, ISBN 0-691-08577-3
- Furuta, Mikio (2001), "Monopole Equation and the 11/8-Conjecture", Mathematical Research Letters, 8: 279–291, doi:10.4310/mrl.2001.v8.n3.a5, MR 1839478
- Kirby, Robion C. (1989), The topology of 4-manifolds, Lecture Notes in Mathematics, vol. 1374, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0089031, ISBN 978-3-540-51148-9, MR 1001966
- Gompf, Robert E.; Stipsicz, András I. (1999), 4-Manifolds and Kirby Calculus, Grad. Studies in Math., vol. 20, American Mathematical Society, MR 1707327
- Kirby, R. C.; Taylor, L. R. (1998). "A survey of 4-manifolds through the eyes of surgery". arXiv:math.GT/9803101.
- Mandelbaum, R. (1980), "Four-dimensional topology: an introduction", Bull. Amer. Math. Soc., 2: 1–159, doi:10.1090/S0273-0979-1980-14687-X
- Matveev, S. V. (2001) [1994], "Four-dimensional manifolds", Encyclopedia of Mathematics, EMS Press
- Scorpan, A. (2005), The wild world of 4-manifolds, Providence, R.I.: American Mathematical Society, ISBN 0-8218-3749-4
बाहरी संबंध
- Media related to 4-मैनिफोल्ड at Wikimedia Commons