तापमान गुणांक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:


{{Short description|Differential equation parameter in thermal physics}}
{{Short description|Differential equation parameter in thermal physics}}


एक [[तापमान]] गुणांक एक भौतिक संपत्ति के सापेक्ष परिवर्तन का वर्णन करता है जो तापमान में दिए गए परिवर्तन से जुड़ा होता है। एक गुण ''R'' के लिए जो तापमान में ''dT'' परिवर्तन होने पर बदलता है, तापमान गुणांक α को निम्नलिखित समीकरण द्वारा परिभाषित किया जाता है:
एक [[तापमान]] गुणांक एक भौतिक संपत्ति के सापेक्ष परिवर्तन का वर्णन करता है जो तापमान में दिए गए परिवर्तन से जुड़ा होता है। एक गुण ''R'' के लिए जो तापमान में ''dT'' परिवर्तन होने पर बदलता है, तापमान गुणांक α को निम्नलिखित समीकरण द्वारा परिभाषित किया जाता है:
Line 20: Line 19:
जहाँ R प्रतिरोध है, A और B स्थिरांक हैं, और T परम तापमान (K) है।
जहाँ R प्रतिरोध है, A और B स्थिरांक हैं, और T परम तापमान (K) है।


निरंतर बी विद्युत चालन के लिए जिम्मेदार चार्ज वाहक बनाने और स्थानांतरित करने के लिए आवश्यक ऊर्जा से संबंधित है{{snd}} इसलिए, जैसे ही बी का मान बढ़ता है, सामग्री इन्सुलेट हो जाती है। व्यावहारिक और वाणिज्यिक एनटीसी प्रतिरोधों का लक्ष्य बी के मान के साथ मामूली प्रतिरोध को जोड़ना है जो तापमान को अच्छी संवेदनशीलता प्रदान करता है। बी स्थिर मूल्य का इतना महत्व है कि बी पैरामीटर समीकरण का उपयोग करके एनटीसी [[ thermistor ]]्स को चिह्नित करना संभव है:
निरंतर बी विद्युत चालन के लिए जिम्मेदार चार्ज वाहक बनाने और स्थानांतरित करने के लिए आवश्यक ऊर्जा से संबंधित है{{snd}} इसलिए, जैसे ही बी का मान बढ़ता है, सामग्री इन्सुलेट हो जाती है। व्यावहारिक और वाणिज्यिक एनटीसी प्रतिरोधों का लक्ष्य बी के मान के साथ मामूली प्रतिरोध को जोड़ना है जो तापमान को अच्छी संवेदनशीलता प्रदान करता है। बी स्थिर मूल्य का इतना महत्व है कि बी पैरामीटर समीकरण का उपयोग करके एनटीसी [[ thermistor |thermistor]] को चिह्नित करना संभव है:
:<math>R = r^{\infty}e^{\frac{B}{T}} = R_{0}e^{-\frac{B}{T_{0}}}e^{\frac{B}{T}}</math>
:<math>R = r^{\infty}e^{\frac{B}{T}} = R_{0}e^{-\frac{B}{T_{0}}}e^{\frac{B}{T}}</math>
कहाँ <math>R_{0}</math> तापमान पर प्रतिरोध है <math>T_{0}</math>.
कहाँ <math>R_{0}</math> तापमान पर प्रतिरोध है <math>T_{0}</math>.
Line 31: Line 30:
अवशेष या बी{{sub|r}} तापमान के साथ बदलता है और यह चुंबक के प्रदर्शन की महत्वपूर्ण विशेषताओं में से एक है। कुछ अनुप्रयोगों, जैसे जड़त्वीय [[जाइरोस्कोप]] और यात्रा-तरंग ट्यूब (TWTs) को एक विस्तृत तापमान सीमा पर निरंतर क्षेत्र की आवश्यकता होती है। बी का प्रतिवर्ती तापमान गुणांक (आरटीसी)।{{sub|r}} परिभाषित किया जाता है:
अवशेष या बी{{sub|r}} तापमान के साथ बदलता है और यह चुंबक के प्रदर्शन की महत्वपूर्ण विशेषताओं में से एक है। कुछ अनुप्रयोगों, जैसे जड़त्वीय [[जाइरोस्कोप]] और यात्रा-तरंग ट्यूब (TWTs) को एक विस्तृत तापमान सीमा पर निरंतर क्षेत्र की आवश्यकता होती है। बी का प्रतिवर्ती तापमान गुणांक (आरटीसी)।{{sub|r}} परिभाषित किया जाता है:
:<math>\text{RTC} = \frac{|\Delta\mathbf{B}_r|}{|\mathbf{B}_r|\Delta T} \times 100\%</math>
:<math>\text{RTC} = \frac{|\Delta\mathbf{B}_r|}{|\mathbf{B}_r|\Delta T} \times 100\%</math>
इन आवश्यकताओं को पूरा करने के लिए, 1970 के दशक के अंत में तापमान मुआवजा मैग्नेट विकसित किए गए थे।<ref>{{cite web |url=http://www.electronenergy.com/about-us/about-us.htm |title=हमारे बारे में|publisher=Electron Energy Corporation |url-status=dead |archive-url=https://web.archive.org/web/20091029044111/http://www.electronenergy.com/about-us/about-us.htm |archive-date=2009-10-29 }}</ref> पारंपरिक समैरियम-कोबाल्ट चुंबक के लिए, बी{{sub|r}} तापमान बढ़ने पर घटता है। इसके विपरीत, GdCo मैग्नेट के लिए, B{{sub|r}} निश्चित तापमान सीमाओं के भीतर तापमान बढ़ने पर बढ़ता है। मिश्र धातु में [[समैरियम]] और [[ गैडोलीनियम ]] को मिलाकर तापमान गुणांक को लगभग शून्य तक कम किया जा सकता है।
इन आवश्यकताओं को पूरा करने के लिए, 1970 के दशक के अंत में तापमान मुआवजा मैग्नेट विकसित किए गए थे।<ref>{{cite web |url=http://www.electronenergy.com/about-us/about-us.htm |title=हमारे बारे में|publisher=Electron Energy Corporation |url-status=dead |archive-url=https://web.archive.org/web/20091029044111/http://www.electronenergy.com/about-us/about-us.htm |archive-date=2009-10-29 }}</ref> पारंपरिक समैरियम-कोबाल्ट चुंबक के लिए, बी{{sub|r}} तापमान बढ़ने पर घटता है। इसके विपरीत, GdCo मैग्नेट के लिए, B{{sub|r}} निश्चित तापमान सीमाओं के भीतर तापमान बढ़ने पर बढ़ता है। मिश्र धातु में [[समैरियम]] और [[ गैडोलीनियम |गैडोलीनियम]] को मिलाकर तापमान गुणांक को लगभग शून्य तक कम किया जा सकता है।


== विद्युत प्रतिरोध ==  
== विद्युत प्रतिरोध ==  
{{see also|Electrical resistivity and conductivity#Resistivity and conductivity of various materials|l1=Table of materials' resistivities}}
{{see also|Electrical resistivity and conductivity#Resistivity and conductivity of various materials|l1=Table of materials' resistivities}}


उपकरणों और [[विद्युत नेटवर्क]] का निर्माण करते समय विद्युत प्रतिरोध और इस प्रकार इलेक्ट्रॉनिक उपकरणों ([[तार]]ों, प्रतिरोधकों) की तापमान निर्भरता को ध्यान में रखा जाना चाहिए। [[विद्युत कंडक्टर]] की तापमान निर्भरता काफी हद तक रैखिक है और इसे नीचे सन्निकटन द्वारा वर्णित किया जा सकता है।
उपकरणों और [[विद्युत नेटवर्क]] का निर्माण करते समय विद्युत प्रतिरोध और इस प्रकार इलेक्ट्रॉनिक उपकरणों ([[तार|तारों]], प्रतिरोधकों) की तापमान निर्भरता को ध्यान में रखा जाना चाहिए। [[विद्युत कंडक्टर]] की तापमान निर्भरता काफी हद तक रैखिक है और इसे नीचे सन्निकटन द्वारा वर्णित किया जा सकता है।
:<math>\operatorname{\rho}(T) = \rho_{0}\left[1 + \alpha_{0}\left(T - T_{0}\right)\right]</math>
:<math>\operatorname{\rho}(T) = \rho_{0}\left[1 + \alpha_{0}\left(T - T_{0}\right)\right]</math>
कहाँ
कहाँ
Line 88: Line 87:


== इकाइयां ==
== इकाइयां ==
विद्युत नेटवर्क भागों के थर्मल गुणांक को कभी-कभी भागों प्रति नोटेशन / डिग्री [[ सेल्सीयस ]], या भागों प्रति नोटेशन / [[केल्विन]] के रूप में निर्दिष्ट किया जाता है। यह अंश को निर्दिष्ट करता है (प्रति मिलियन भागों में व्यक्त) कि ऑपरेटिंग तापमान के ऊपर या नीचे के तापमान पर ले जाने पर इसकी विद्युत विशेषताएँ विचलित हो जाएँगी।
विद्युत नेटवर्क भागों के थर्मल गुणांक को कभी-कभी भागों प्रति नोटेशन / डिग्री [[ सेल्सीयस |सेल्सीयस]] , या भागों प्रति नोटेशन / [[केल्विन]] के रूप में निर्दिष्ट किया जाता है। यह अंश को निर्दिष्ट करता है (प्रति मिलियन भागों में व्यक्त) कि ऑपरेटिंग तापमान के ऊपर या नीचे के तापमान पर ले जाने पर इसकी विद्युत विशेषताएँ विचलित हो जाएँगी।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 11:32, 2 April 2023

एक तापमान गुणांक एक भौतिक संपत्ति के सापेक्ष परिवर्तन का वर्णन करता है जो तापमान में दिए गए परिवर्तन से जुड़ा होता है। एक गुण R के लिए जो तापमान में dT परिवर्तन होने पर बदलता है, तापमान गुणांक α को निम्नलिखित समीकरण द्वारा परिभाषित किया जाता है:

यहाँ α में व्युत्क्रम तापमान का आयाम है और इसे व्यक्त किया जा सकता है। 1/के या के में-1.

यदि तापमान गुणांक स्वयं तापमान के साथ बहुत अधिक भिन्न नहीं होता है और , एक तापमान T पर एक संपत्ति के मूल्य R का अनुमान लगाने में एक रैखिक सन्निकटन उपयोगी होगा, इसका मान R दिया गया है0 एक संदर्भ तापमान पर टी0:

जहां ΔT, T और T के बीच का अंतर है0.

दृढ़ता से तापमान पर निर्भर α के लिए, यह सन्निकटन केवल छोटे तापमान अंतर ΔT के लिए उपयोगी है।

तापमान गुणांक विभिन्न अनुप्रयोगों के लिए निर्दिष्ट हैं, जिसमें सामग्री के विद्युत और चुंबकीय गुणों के साथ-साथ प्रतिक्रियाशीलता भी शामिल है। अधिकांश प्रतिक्रियाओं का तापमान गुणांक -2 और 3 के बीच होता है।

नकारात्मक तापमान गुणांक

अधिकांश सिरेमिक प्रतिरोध व्यवहार की नकारात्मक तापमान निर्भरता प्रदर्शित करते हैं। यह प्रभाव तापमान की एक विस्तृत श्रृंखला पर अरहेनियस समीकरण द्वारा नियंत्रित होता है:

जहाँ R प्रतिरोध है, A और B स्थिरांक हैं, और T परम तापमान (K) है।

निरंतर बी विद्युत चालन के लिए जिम्मेदार चार्ज वाहक बनाने और स्थानांतरित करने के लिए आवश्यक ऊर्जा से संबंधित है – इसलिए, जैसे ही बी का मान बढ़ता है, सामग्री इन्सुलेट हो जाती है। व्यावहारिक और वाणिज्यिक एनटीसी प्रतिरोधों का लक्ष्य बी के मान के साथ मामूली प्रतिरोध को जोड़ना है जो तापमान को अच्छी संवेदनशीलता प्रदान करता है। बी स्थिर मूल्य का इतना महत्व है कि बी पैरामीटर समीकरण का उपयोग करके एनटीसी thermistor को चिह्नित करना संभव है:

कहाँ तापमान पर प्रतिरोध है .

इसलिए, कई सामग्रियां जो स्वीकार्य मूल्यों का उत्पादन करती हैं ऐसी सामग्रियों को शामिल करें जो मिश्रधातु हैं या चर नकारात्मक तापमान गुणांक (NTC) रखते हैं, जो तब होता है जब किसी सामग्री की भौतिक संपत्ति (जैसे तापीय चालकता या विद्युत प्रतिरोधकता) बढ़ते तापमान के साथ कम हो जाती है, आमतौर पर एक परिभाषित तापमान सीमा में। अधिकांश सामग्रियों के लिए, बढ़ते तापमान के साथ विद्युत प्रतिरोधकता कम हो जाएगी।

नकारात्मक तापमान गुणांक वाली सामग्री का उपयोग 1971 से सतह को गर्म करना में किया गया है। नकारात्मक तापमान गुणांक कालीनों, फलियों का थैला कुर्सियों, गद्दे आदि के नीचे अत्यधिक स्थानीय हीटिंग से बचाता है, जो लकड़ी के फर्श को नुकसान पहुंचा सकता है, और आग लगने का कारण बन सकता है।

प्रतिवर्ती तापमान गुणांक

अवशेष या बीr तापमान के साथ बदलता है और यह चुंबक के प्रदर्शन की महत्वपूर्ण विशेषताओं में से एक है। कुछ अनुप्रयोगों, जैसे जड़त्वीय जाइरोस्कोप और यात्रा-तरंग ट्यूब (TWTs) को एक विस्तृत तापमान सीमा पर निरंतर क्षेत्र की आवश्यकता होती है। बी का प्रतिवर्ती तापमान गुणांक (आरटीसी)।r परिभाषित किया जाता है:

इन आवश्यकताओं को पूरा करने के लिए, 1970 के दशक के अंत में तापमान मुआवजा मैग्नेट विकसित किए गए थे।[1] पारंपरिक समैरियम-कोबाल्ट चुंबक के लिए, बीr तापमान बढ़ने पर घटता है। इसके विपरीत, GdCo मैग्नेट के लिए, Br निश्चित तापमान सीमाओं के भीतर तापमान बढ़ने पर बढ़ता है। मिश्र धातु में समैरियम और गैडोलीनियम को मिलाकर तापमान गुणांक को लगभग शून्य तक कम किया जा सकता है।

विद्युत प्रतिरोध

उपकरणों और विद्युत नेटवर्क का निर्माण करते समय विद्युत प्रतिरोध और इस प्रकार इलेक्ट्रॉनिक उपकरणों (तारों, प्रतिरोधकों) की तापमान निर्भरता को ध्यान में रखा जाना चाहिए। विद्युत कंडक्टर की तापमान निर्भरता काफी हद तक रैखिक है और इसे नीचे सन्निकटन द्वारा वर्णित किया जा सकता है।

कहाँ

निर्दिष्ट संदर्भ मान पर केवल विशिष्ट प्रतिरोध तापमान गुणांक से मेल खाता है (सामान्य रूप से T = 0 °C)[2] अर्धचालक का हालांकि घातीय है:

कहाँ पार के अनुभागीय क्षेत्र के रूप में परिभाषित किया गया है और और किसी दिए गए तापमान पर फ़ंक्शन के आकार और प्रतिरोधकता के मान को निर्धारित करने वाले गुणांक हैं।

दोनों के लिए, प्रतिरोध के तापमान गुणांक (TCR) के रूप में जाना जाता है।[3] इस संपत्ति का उपयोग थर्मिस्टर्स जैसे उपकरणों में किया जाता है।

प्रतिरोध का सकारात्मक तापमान गुणांक

एक सकारात्मक तापमान गुणांक (PTC) उन सामग्रियों को संदर्भित करता है जिनका तापमान बढ़ने पर विद्युत प्रतिरोध में वृद्धि का अनुभव होता है। जिन सामग्रियों में उपयोगी इंजीनियरिंग अनुप्रयोग होते हैं, वे आमतौर पर तापमान के साथ अपेक्षाकृत तेजी से वृद्धि दिखाते हैं, यानी एक उच्च गुणांक। गुणांक जितना अधिक होगा, दिए गए तापमान में वृद्धि के लिए विद्युत प्रतिरोध में उतनी ही अधिक वृद्धि होगी। एक पीटीसी सामग्री को किसी दिए गए इनपुट वोल्टेज के लिए अधिकतम तापमान तक पहुंचने के लिए डिज़ाइन किया जा सकता है, क्योंकि किसी बिंदु पर तापमान में और वृद्धि अधिक विद्युत प्रतिरोध के साथ पूरी की जाएगी। रैखिक प्रतिरोध हीटिंग या एनटीसी सामग्री के विपरीत, पीटीसी सामग्री स्वाभाविक रूप से आत्म-सीमित होती है। दूसरी ओर, यदि निरंतर चालू शक्ति स्रोत का उपयोग किया जाता है, तो एनटीसी सामग्री भी स्वाभाविक रूप से आत्म-सीमित हो सकती है।

कुछ सामग्रियों में तेजी से बढ़ते तापमान गुणांक भी होते हैं। ऐसी सामग्री का उदाहरण पीटीसी रबर है।

प्रतिरोध का नकारात्मक तापमान गुणांक

एक नकारात्मक तापमान गुणांक (NTC) उन सामग्रियों को संदर्भित करता है जिनका तापमान बढ़ने पर विद्युत प्रतिरोध में कमी का अनुभव होता है। जिन सामग्रियों में उपयोगी इंजीनियरिंग अनुप्रयोग होते हैं, वे आमतौर पर तापमान के साथ अपेक्षाकृत तेजी से कमी दिखाते हैं, यानी कम गुणांक। गुणांक जितना कम होगा, दिए गए तापमान में वृद्धि के लिए विद्युत प्रतिरोध में कमी उतनी ही अधिक होगी। एनटीसी सामग्री का उपयोग इनरश करंट लिमिटर्स बनाने के लिए किया जाता है (क्योंकि वे तब तक उच्च प्रारंभिक प्रतिरोध पेश करते हैं जब तक कि करंट लिमिटर मौन तापमान तक नहीं पहुंच जाता), तापमान सेंसर और थर्मिस्टर्स।

एक अर्धचालक के प्रतिरोध का नकारात्मक तापमान गुणांक

एक अर्धचालक पदार्थ के तापमान में वृद्धि के परिणामस्वरूप चार्ज-वाहक एकाग्रता में वृद्धि होती है। इसके परिणामस्वरूप पुनर्संयोजन के लिए अधिक संख्या में आवेश वाहक उपलब्ध होते हैं, जिससे अर्धचालक की चालकता बढ़ जाती है। बढ़ती चालकता तापमान में वृद्धि के साथ अर्धचालक सामग्री की प्रतिरोधकता को कम करने का कारण बनती है, जिसके परिणामस्वरूप प्रतिरोध का नकारात्मक तापमान गुणांक होता है।

लोच का तापमान गुणांक

लोचदार सामग्री का लोचदार मापांक तापमान के साथ बदलता रहता है, आमतौर पर उच्च तापमान के साथ घटता है।

प्रतिक्रियाशीलता का तापमान गुणांक

परमाणु इंजीनियरिंग में, प्रतिक्रियाशीलता का तापमान गुणांक प्रतिक्रियाशीलता में परिवर्तन का एक उपाय है (जिसके परिणामस्वरूप शक्ति में परिवर्तन होता है), रिएक्टर घटकों या रिएक्टर शीतलक के तापमान में परिवर्तन के कारण होता है। इसे इस रूप में परिभाषित किया जा सकता है

कहाँ न्यूक्लियर चेन रिएक्शन # इफेक्टिव न्यूट्रॉन गुणन कारक है और टी तापमान है। सम्बन्ध यही दर्शाता है तापमान के संबंध में प्रतिक्रियाशीलता के आंशिक अंतर का मान है और इसे प्रतिक्रियात्मकता के तापमान गुणांक के रूप में संदर्भित किया जाता है। नतीजतन, द्वारा प्रदान की गई तापमान प्रतिक्रिया निष्क्रिय परमाणु सुरक्षा के लिए एक सहज अनुप्रयोग है। एक नकारात्मक मोटे तौर पर रिएक्टर सुरक्षा के लिए महत्वपूर्ण के रूप में उद्धृत किया जाता है, लेकिन वास्तविक रिएक्टरों में व्यापक तापमान भिन्नताएं (सैद्धांतिक सजातीय रिएक्टर के विपरीत) रिएक्टर सुरक्षा के एक मार्कर के रूप में एकल मीट्रिक की उपयोगिता को सीमित करती हैं।[4]

जल-संचालित परमाणु रिएक्टरों में, तापमान के संबंध में अधिकांश प्रतिक्रियाशीलता परिवर्तन पानी के तापमान में परिवर्तन के कारण होते हैं। हालांकि कोर के प्रत्येक तत्व में प्रतिक्रियाशीलता का एक विशिष्ट तापमान गुणांक होता है (जैसे ईंधन या आवरण)। प्रतिक्रियाशीलता के ईंधन तापमान गुणांक को चलाने वाले तंत्र पानी के तापमान गुणांक से भिन्न होते हैं। जबकि पानी पानी (गुणों) # पानी और बर्फ की घनत्व का विस्तार करता है, जिससे न्यूट्रॉन मॉडरेटर के दौरान न्यूट्रॉन यात्रा के समय में वृद्धि होती है, ईंधन सामग्री का विस्तार नहीं होगा। तापमान के कारण ईंधन में प्रतिक्रियात्मकता में परिवर्तन डॉपलर चौड़ीकरण नामक एक घटना से उत्पन्न होता है, जहां ईंधन भराव सामग्री में तेजी से न्यूट्रॉन का अनुनाद अवशोषण उन न्यूट्रॉन को थर्मलाइजिंग (धीमा होने) से रोकता है।[5]

तापमान गुणांक सन्निकटन की गणितीय व्युत्पत्ति

इसके अधिक सामान्य रूप में, तापमान गुणांक अंतर कानून है:

कहाँ परिभाषित किया गया है:

और से स्वतंत्र है .

तापमान गुणांक अंतर कानून को एकीकृत करना:

की निकटता में, पहले क्रम में टेलर श्रृंखला सन्निकटन को लागू करना , ओर जाता है:


इकाइयां

विद्युत नेटवर्क भागों के थर्मल गुणांक को कभी-कभी भागों प्रति नोटेशन / डिग्री सेल्सीयस , या भागों प्रति नोटेशन / केल्विन के रूप में निर्दिष्ट किया जाता है। यह अंश को निर्दिष्ट करता है (प्रति मिलियन भागों में व्यक्त) कि ऑपरेटिंग तापमान के ऊपर या नीचे के तापमान पर ले जाने पर इसकी विद्युत विशेषताएँ विचलित हो जाएँगी।

यह भी देखें

संदर्भ

  1. "हमारे बारे में". Electron Energy Corporation. Archived from the original on 2009-10-29.
  2. Kasap, S. O. (2006). इलेक्ट्रॉनिक सामग्री और उपकरणों के सिद्धांत (Third ed.). Mc-Graw Hill. p. 126.
  3. Alenitsyn, Alexander G.; Butikov, Eugene I.; Kondraryez, Alexander S. (1997). गणित और भौतिकी की संक्षिप्त पुस्तिका. CRC Press. pp. 331–332. ISBN 0-8493-7745-5.
  4. Duderstadt & Hamilton 1976, pp. 259–261
  5. Duderstadt & Hamilton 1976, pp. 556–559


ग्रन्थसूची