स्कोनफ्लाइज़ संकेतन: Difference between revisions
(Created page with "{{Short description|Notation to represent symmetry in point groups}जर्मनों गणितज्ञ आर्थर मोरिट्ज़ शोएनफ...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Notation to represent symmetry in point groups}[[जर्मनों]] गणितज्ञ [[आर्थर मोरिट्ज़ शोएनफ्लाइज़]] के नाम पर स्कोएनफ्लाइज़ (या स्कोनफ्लाइज़) संकेतन, एक संकेतन है जिसका उपयोग मुख्य रूप से [[तीन आयामों में बिंदु समूह]] | <nowiki>{{Short description|Notation to represent symmetry in point groups}</nowiki> | ||
[[जर्मनों]] गणितज्ञ [[आर्थर मोरिट्ज़ शोएनफ्लाइज़]] के नाम पर स्कोएनफ्लाइज़ (या स्कोनफ्लाइज़) संकेतन, एक संकेतन है जिसका उपयोग मुख्य रूप से [[तीन आयामों में बिंदु समूह|तीन आयामों में बिंदु समूहों]] को निर्दिष्ट करने के लिए किया जाता है। क्योंकि अकेले एक बिंदु समूह [[आणविक समरूपता]] का वर्णन करने के लिए पूर्ण रूप से पर्याप्त है, संकेतन प्रायः पर्याप्त होता है और आमतौर पर [[स्पेक्ट्रोस्कोपी]] के लिए उपयोग किया जाता है। हालांकि, [[क्रिस्टलोग्राफी]] में, अतिरिक्त [[अनुवादकीय समरूपता]] है, और बिंदु समूह क्रिस्टल की पूर्ण समरूपता का वर्णन करने के लिए पर्याप्त नहीं हैं, इसलिए पूर्ण स्थान समूह आमतौर पर इसके बजाय उपयोग किया जाता है। पूर्ण [[अंतरिक्ष समूह]]ों का नामकरण आम तौर पर एक अन्य आम सम्मेलन, हरमन-मौगुइन नोटेशन का पालन करता है, जिसे अंतरराष्ट्रीय नोटेशन भी कहा जाता है। | |||
हालांकि सुपरस्क्रिप्ट के बिना स्कोएनफ्लाइज़ संकेतन एक शुद्ध बिंदु समूह संकेतन है, वैकल्पिक रूप से, अलग-अलग स्थान समूहों को निर्दिष्ट करने के लिए सुपरस्क्रिप्ट को जोड़ा जा सकता है। हालांकि, अंतरिक्ष समूहों के लिए, अंतर्निहित [[समरूपता तत्व]]ों का कनेक्शन हरमन-मौगुइन संकेतन में अधिक स्पष्ट है, इसलिए बाद वाले अंकन को आमतौर पर अंतरिक्ष समूहों के लिए पसंद किया जाता है। | हालांकि सुपरस्क्रिप्ट के बिना स्कोएनफ्लाइज़ संकेतन एक शुद्ध बिंदु समूह संकेतन है, वैकल्पिक रूप से, अलग-अलग स्थान समूहों को निर्दिष्ट करने के लिए सुपरस्क्रिप्ट को जोड़ा जा सकता है। हालांकि, अंतरिक्ष समूहों के लिए, अंतर्निहित [[समरूपता तत्व]]ों का कनेक्शन हरमन-मौगुइन संकेतन में अधिक स्पष्ट है, इसलिए बाद वाले अंकन को आमतौर पर अंतरिक्ष समूहों के लिए पसंद किया जाता है। |
Revision as of 23:09, 3 April 2023
{{Short description|Notation to represent symmetry in point groups}
जर्मनों गणितज्ञ आर्थर मोरिट्ज़ शोएनफ्लाइज़ के नाम पर स्कोएनफ्लाइज़ (या स्कोनफ्लाइज़) संकेतन, एक संकेतन है जिसका उपयोग मुख्य रूप से तीन आयामों में बिंदु समूहों को निर्दिष्ट करने के लिए किया जाता है। क्योंकि अकेले एक बिंदु समूह आणविक समरूपता का वर्णन करने के लिए पूर्ण रूप से पर्याप्त है, संकेतन प्रायः पर्याप्त होता है और आमतौर पर स्पेक्ट्रोस्कोपी के लिए उपयोग किया जाता है। हालांकि, क्रिस्टलोग्राफी में, अतिरिक्त अनुवादकीय समरूपता है, और बिंदु समूह क्रिस्टल की पूर्ण समरूपता का वर्णन करने के लिए पर्याप्त नहीं हैं, इसलिए पूर्ण स्थान समूह आमतौर पर इसके बजाय उपयोग किया जाता है। पूर्ण अंतरिक्ष समूहों का नामकरण आम तौर पर एक अन्य आम सम्मेलन, हरमन-मौगुइन नोटेशन का पालन करता है, जिसे अंतरराष्ट्रीय नोटेशन भी कहा जाता है।
हालांकि सुपरस्क्रिप्ट के बिना स्कोएनफ्लाइज़ संकेतन एक शुद्ध बिंदु समूह संकेतन है, वैकल्पिक रूप से, अलग-अलग स्थान समूहों को निर्दिष्ट करने के लिए सुपरस्क्रिप्ट को जोड़ा जा सकता है। हालांकि, अंतरिक्ष समूहों के लिए, अंतर्निहित समरूपता तत्वों का कनेक्शन हरमन-मौगुइन संकेतन में अधिक स्पष्ट है, इसलिए बाद वाले अंकन को आमतौर पर अंतरिक्ष समूहों के लिए पसंद किया जाता है।
समरूपता तत्व
समरूपता तत्वों को उलटा केंद्रों के लिए i, उचित घूर्णन अक्षों के लिए C, दर्पण तलों के लिए σ, और अनुचित घूर्णन अक्षों (रोटेशन-परावर्तन अक्षों) के लिए S द्वारा निरूपित किया जाता है। सी और एस आमतौर पर एक सबस्क्रिप्ट नंबर (सार रूप से निरूपित एन) द्वारा पीछा किया जाता है जो रोटेशन के क्रम को दर्शाता है।
परिपाटी के अनुसार, अधिकतम कोटि के उचित घूर्णन के अक्ष को मुख्य अक्ष के रूप में परिभाषित किया जाता है। इसके संबंध में अन्य सभी समरूपता तत्वों का वर्णन किया गया है। एक ऊर्ध्वाधर दर्पण तल (मुख्य अक्ष युक्त) को σ निरूपित किया जाता हैv; एक क्षैतिज दर्पण तल (मुख्य अक्ष के लंबवत) को σ निरूपित किया जाता हैh.
बिंदु समूह
तीन आयामों में, अनंत संख्या में बिंदु समूह होते हैं, लेकिन उन सभी को कई परिवारों द्वारा वर्गीकृत किया जा सकता है।
- सीn (चक्रीय समूह के लिए) में एक n-गुना घूर्णन अक्ष होता है।
- सीnh सी हैn रोटेशन के अक्ष (क्षैतिज विमान) के लंबवत एक दर्पण (प्रतिबिंब) विमान के अतिरिक्त के साथ।
- सीnv सी हैn रोटेशन के अक्ष (ऊर्ध्वाधर विमानों) वाले एन दर्पण विमानों के अतिरिक्त के साथ।
- सीs एक समूह को केवल दर्पण तल (स्पीगेल के लिए, दर्पण के लिए जर्मन) और कोई अन्य समरूपता तत्वों के साथ दर्शाता है।
- एस2n (स्पीगेल के लिए, दर्पण के लिए जर्मन) में केवल 2n-गुना घूर्णन-प्रतिबिंब अक्ष होता है। सूचकांक सम होना चाहिए क्योंकि जब n विषम होता है तो एक n-गुना घूर्णन-परावर्तन अक्ष एक n-गुना घूर्णन अक्ष और एक लंब तल के संयोजन के समतुल्य होता है, इसलिए Sn = सीnh विषम एन के लिए
- सीni केवल एक अनुचित घुमाव है। इस संकेतन का शायद ही कभी उपयोग किया जाता है क्योंकि किसी भी रोटोइनवर्जन अक्ष को रोटेशन-प्रतिबिंब अक्ष के रूप में व्यक्त किया जा सकता है: विषम एन, सी के लिएni = एस2n और सी2ni = एसn = सीnh, और सम n के लिए, C2ni = एस2n. केवल अंकन सीi (अर्थ सी1i) आमतौर पर प्रयोग किया जाता है, और कुछ स्रोत सी लिखते हैं3i, सी5i वगैरह
- डीn (डायहेड्रल समूह, या दो तरफा के लिए) में एक एन-फोल्ड रोटेशन एक्सिस प्लस एन टू फोल्ड एक्सिस है जो उस एक्सिस के लंबवत है।
- डीnh इसके अलावा, एक क्षैतिज दर्पण तल है और, परिणामस्वरूप, n ऊर्ध्वाधर दर्पण तल भी हैं, जिनमें से प्रत्येक में n-गुना अक्ष और दो गुना अक्षों में से एक है।
- डीnd डी के तत्वों के अलावा हैn, n वर्टिकल मिरर प्लेन जो दो गुना अक्षों (विकर्ण विमानों) के बीच से गुजरते हैं।
- टी (चिराल चतुर्पाश्वीय समूह) में टेट्राहेड्रॉन (तीन 2-गुना अक्ष और चार 3-गुना अक्ष) के घूर्णन अक्ष हैं।
- टीd विकर्ण दर्पण तल शामिल हैं (प्रत्येक विकर्ण तल में केवल एक दुगुना अक्ष होता है और दो अन्य दुगुना अक्षों के बीच से गुजरता है, जैसा कि D में है2d). विकर्ण विमानों के इस जोड़ के परिणामस्वरूप तीन अनुचित रोटेशन ऑपरेशन एस होते हैं4.
- टीh तीन क्षैतिज दर्पण विमान शामिल हैं। प्रत्येक तल में दो द्विगुना अक्ष होते हैं और तीसरे दोगुने अक्ष के लंबवत होते हैं, जिसके परिणामस्वरूप व्युत्क्रम केंद्र i होता है।
- O (चिरल ऑक्टाहेड्रोन समूह) में एक अष्टफलक या घनक्षेत्र (तीन 4-गुना अक्ष, चार 3-गुना अक्ष, और छह विकर्ण 2-गुना अक्ष) के घूर्णन अक्ष होते हैं।
- ओh इसमें क्षैतिज दर्पण तल और, परिणामस्वरूप, ऊर्ध्वाधर दर्पण तल शामिल हैं। इसमें उलटा केंद्र और अनुचित रोटेशन ऑपरेशन भी शामिल हैं।
- I (चिराल इकोसैहेड्रॉन समूह) इंगित करता है कि समूह में एक विंशतिफलक या द्वादशफ़लक (छह 5-गुना अक्ष, दस 3-गुना अक्ष, और 15 2-गुना अक्ष) के घूर्णन अक्ष हैं।
- मैंh क्षैतिज दर्पण विमान शामिल हैं और इसमें उलटा केंद्र और अनुचित रोटेशन ऑपरेशन भी शामिल हैं।
सभी समूह जिनमें एक से अधिक उच्च-क्रम अक्ष (क्रम 3 या अधिक) नहीं होते हैं, उन्हें नीचे दी गई तालिका में दिखाए अनुसार व्यवस्थित किया जा सकता है; लाल रंग के प्रतीकों का प्रयोग बहुत कम होता है।
n = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... | ∞ | |
---|---|---|---|---|---|---|---|---|---|---|
Cn | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | ...
|
C∞ |
Cnv | C1v = C1h | C2v | C3v | C4v | C5v | C6v | C7v | C8v | ...
|
C∞v |
Cnh | C1h = Cs | C2h | C3h | C4h | C5h | C6h | C7h | C8h | ...
|
C∞h |
Sn | S1 = Cs | S2 = Ci | S3 = C3h | S4 | S5 = C5h | S6 | S7 = C7h | S8 | ...
|
S∞ = C∞h |
Cni (redundant) | C1i = Ci | C2i = Cs | C3i = S6 | C4i = S4 | C5i = S10 | C6i = C3h | C7i = S14 | C8i = S8 | ...
|
C∞i = C∞h |
Dn | D1 = C2 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | ...
|
D∞ |
Dnh | D1h = C2v | D2h | D3h | D4h | D5h | D6h | D7h | D8h | ...
|
D∞h |
Dnd | D1d = C2h | D2d | D3d | D4d | D5d | D6d | D7d | D8d | ...
|
D∞d = D∞h |
क्रिस्टलोग्राफी में, क्रिस्टलोग्राफिक प्रतिबंध प्रमेय के कारण, n 1, 2, 3, 4, या 6 के मानों तक सीमित है। गैर-क्रिस्टलोग्राफिक समूहों को धूसर पृष्ठभूमि के साथ दिखाया गया है। डी4d और डी6d वर्जित भी हैं क्योंकि उनमें क्रमश: n = 8 और 12 के साथ अनुचित घुमाव होते हैं। तालिका में 27 बिंदु समूह प्लस टी, टीd, टीh, ओ और ओh 32 क्रिस्टलोग्राफिक बिंदु समूह का गठन।
n = ∞ वाले समूह को सीमा समूह या क्यूरी समूह कहा जाता है। दो और सीमा समूह हैं, जो तालिका में सूचीबद्ध नहीं हैं: K (कुगेल के लिए, जर्मन के लिए गेंद, गोला), 3-आयामी अंतरिक्ष में सभी घुमावों का समूह; और केh, सभी घुमावों और प्रतिबिंबों का समूह। गणित और सैद्धांतिक भौतिकी में उन्हें क्रमशः SO(3) और O(3) प्रतीकों के साथ विशेष ऑर्थोगोनल समूह और त्रि-आयामी अंतरिक्ष में ऑर्थोगोनल समूह के रूप में जाना जाता है।
अंतरिक्ष समूह
अंतरिक्ष समूहों की सूची # दिए गए बिंदु समूह के साथ सूची 1, 2, 3, ... (उसी क्रम में उनकी अंतरराष्ट्रीय संख्या के रूप में) द्वारा क्रमांकित की जाती है और यह संख्या संबंधित बिंदु समूह के लिए शॉनफ्लाइज़ प्रतीक के सुपरस्क्रिप्ट के रूप में जोड़ी जाती है . उदाहरण के लिए, समूह संख्या 3 से 5 जिसका बिंदु समूह C है2 Schönflies के प्रतीक C हैं1
2, सी2
2, सी3
2.
जबकि बिंदु समूहों के मामले में, शॉनफ्लाइज़ प्रतीक समूह के समरूपता तत्वों को स्पष्ट रूप से परिभाषित करता है, अंतरिक्ष समूह के लिए अतिरिक्त सुपरस्क्रिप्ट में अंतरिक्ष समूह के अनुवाद संबंधी समरूपता (जाली केंद्र, अक्षों और विमानों के अनुवाद संबंधी घटक) के बारे में कोई जानकारी नहीं है, इसलिए किसी की आवश्यकता है विशेष सारणियों को संदर्भित करने के लिए, जिसमें शॉनफ्लाइज़ और हरमन-मौगुइन संकेतन के बीच पत्राचार के बारे में जानकारी शामिल है। ऐसी तालिका अंतरिक्ष समूहों की सूची पृष्ठ में दी गई है।
यह भी देखें
- क्रिस्टलोग्राफिक बिंदु समूह
- बिंदु समूह तीन आयामों में
- गोलाकार समरूपता समूहों की सूची
संदर्भ
- Flurry, R. L., Symmetry Groups : Theory and Chemical Applications. Prentice-Hall, 1980. ISBN 978-0-13-880013-0 LCCN: 79-18729
- Cotton, F. A., Chemical Applications of Group Theory, John Wiley & Sons: New York, 1990. ISBN 0-471-51094-7
- Harris, D., Bertolucci, M., Symmetry and Spectroscopy. New York, Dover Publications, 1989.