स्कोनफ्लाइज़ संकेतन: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (5 revisions imported from alpha:स्कोनफ्लाइज़_संकेतन) |
(No difference)
|
Revision as of 10:33, 11 April 2023
{{Short description|Notation to represent symmetry in point groups}
जर्मन गणितज्ञ आर्थर मोरिट्ज़ शोएनफ्लाइज़ के नाम पर शोयेनफ्लीज़(या स्कोनफ्लाइज़) संकेतन, एक संकेतन है जिसका उपयोग मुख्य रूप से तीन विमाओं में बिंदु समूहों को निर्दिष्ट करने के लिए किया जाता है। क्योंकि अकेले एक बिंदु समूह आणविक सममिति का वर्णन करने के लिए पूर्ण रूप से पर्याप्त है, संकेतन प्रायः पर्याप्त होता है और सामान्यतः स्पेक्ट्रोमिकी के लिए उपयोग किया जाता है। यद्यपि, क्रिस्टलिकी में, अतिरिक्त अनुवादकीय सममिति है, और बिंदु समूह क्रिस्टल की पूर्ण सममिति का वर्णन करने के लिए पर्याप्त नहीं हैं, इसलिए पूर्ण स्थान समूह सामान्यतः इसके अतिरिक्त उपयोग किया जाता है। पूर्ण समष्टि समूहों का नामकरण सामान्यतः अन्य सामान्य परम्परा, हरमन-मौगुइन संकेतन का पालन करता है, जिसे अंतरराष्ट्रीय संकेतन भी कहा जाता है।
यद्यपि मूर्धांक के बिना शोयेनफ्लीज़ संकेतन एक शुद्ध बिंदु समूह संकेतन है, वैकल्पिक रूप से, अलग-अलग स्थान समूहों को निर्दिष्ट करने के लिए मूर्धांक को जोड़ा जा सकता है। यद्यपि, समष्टि समूहों के लिए, अंतर्निहित सममिति तत्वों का संयोजन हरमन-मौगुइन संकेतन में अधिक स्पष्ट है, इसलिए बाद वाले अंकन को सामान्यतः समष्टि समूहों के लिए अधिमानित किया जाता है।
सममिति तत्व
सममिति तत्वों को व्युत्क्रम केंद्रों के लिए i, उचित घूर्णन अक्षों के लिए C, दर्पण तलों के लिए σ, और अनुचित घूर्णन अक्षों(घूर्णन-परावर्तन अक्षों) के लिए S द्वारा निरूपित किया जाता है। C और S सामान्यतः एक पादांक संख्या(संक्षेप में निरूपित n) द्वारा अनुगमन किया जाता है जो घूर्णन के क्रम को दर्शाता है।
परम्परा के अनुसार, अधिकतम कोटि के उचित घूर्णन के अक्ष को मुख्य अक्ष के रूप में परिभाषित किया जाता है। इसके संबंध में अन्य सभी सममिति तत्वों का वर्णन किया गया है। एक ऊर्ध्वाधर दर्पण तल(मुख्य अक्ष युक्त) को σv निरूपित किया जाता है; एक क्षैतिज दर्पण तल(मुख्य अक्ष के लंबवत) को σh निरूपित किया जाता है।
बिंदु समूह
तीन विमाओं में, अनंत संख्या में बिंदु समूह होते हैं, परन्तु उन सभी को कई वर्गों द्वारा वर्गीकृत किया जा सकता है।
- Cn(चक्रीय समूह के लिए) में एक n-गुना घूर्णन अक्ष होता है।
- Cnh Cn दर्पण(प्रतिबिंब) तल के जोड़ के साथ घूर्णन के अक्ष(क्षैतिज तल) के लंबवत है।
- Cnv Cn है जिसमें n दर्पण तलों को जोड़ा गया है जिसमें घूर्णन अक्ष (ऊर्ध्वाधर तल) हैं।
- Cs एक समूह को मात्र दर्पण तल(स्पीगल के लिए, दर्पण के लिए जर्मन) और कोई अन्य सममिति तत्वों के साथ दर्शाता है।
- S2n(स्पीगेल के लिए, दर्पण के लिए जर्मन) में मात्र 2n-गुना घूर्णन-प्रतिबिंब अक्ष होता है। सूचकांक सम होना चाहिए क्योंकि जब n विषम होता है तो एक n-गुना घूर्णन-परावर्तन अक्ष एक n-गुना घूर्णन अक्ष और एक लंब तल के संयोजन के समतुल्य होता है, इसलिए विषम n के लिए Sn = Cnh।
- Cni मात्र एक अनुचित घूर्णन है। इस संकेतन का कदाचित उपयोग किया जाता है क्योंकि किसी भी घूर्णव्युत्क्रम अक्ष को घूर्णन-प्रतिबिंब अक्ष के रूप में व्यक्त किया जा सकता है: विषम n के लिए, Cni = S2n और C2ni = Sn = Cnh, और यहां तक कि n के लिए, C2ni = S2n। मात्र अंकन Ci(अर्थ C1i) सामान्यतः प्रयोग किया जाता है, और कुछ स्रोत C3i, C5i आदि लिखते हैं।
- Dn(द्वितल समूह, या द्विपक्षी के लिए) में एक n-गुना घूर्णन अक्ष धनात्मक परिमाण n दोगुना अक्ष है जो उस अक्ष के लंबवत है।
- Dnh इसके अतिरिक्त, एक क्षैतिज दर्पण तल है और, परिणामस्वरूप, n ऊर्ध्वाधर दर्पण तल भी हैं, जिनमें से प्रत्येक में n-गुना अक्ष और दो गुना अक्षों में से एक है।
- Dnd में, Dnके तत्वों के अतिरिक्त है, n लंबवत दर्पण तल होते हैं जो दो गुना अक्षों(विकर्ण तलों) के बीच से गुजरते हैं।
- T(चिराल चतुर्पाश्वीय समूह) में चतुष्फलक(तीन 2-गुना अक्ष और चार 3-गुना अक्ष) के घूर्णन अक्ष हैं।
- Td विकर्ण दर्पण तल सम्मिलित हैं(प्रत्येक विकर्ण तल में मात्र एक दुगुना अक्ष होता है और दो अन्य दुगुना अक्षों के बीच से गुजरता है, जैसा कि D2d में है)। विकर्ण तलों के इस जोड़ के परिणामस्वरूप तीन अनुचित घूर्णन संचालन S4 होते हैं।
- Th तीन क्षैतिज दर्पण तल सम्मिलित हैं। प्रत्येक तल में दो द्विगुना अक्ष होते हैं और तीसरे दोगुने अक्ष के लंबवत होते हैं, जिसके परिणामस्वरूप व्युत्क्रम केंद्र i होता है।
- O(चिरल अष्टफलकीय समूह) में एक अष्टफलक या घनक्षेत्र(तीन 4-गुना अक्ष, चार 3-गुना अक्ष, और छह विकर्ण 2-गुना अक्ष) के घूर्णन अक्ष होते हैं।
- Oh इसमें क्षैतिज दर्पण तल और, परिणामस्वरूप, ऊर्ध्वाधर दर्पण तल सम्मिलित हैं। इसमें व्युत्क्रम केंद्र और अनुचित घूर्णन संचालन भी सम्मिलित हैं।
- I(चिराल विंशफलकी समूह) इंगित करता है कि समूह में एक विंशतिफलक या द्वादशफ़लक(छह 5-गुना अक्ष, दस 3-गुना अक्ष, और 15 2-गुना अक्ष) के घूर्णन अक्ष हैं।
- Ih क्षैतिज दर्पण तल सम्मिलित हैं और इसमें व्युत्क्रम केंद्र और अनुचित घूर्णन संचालन भी सम्मिलित हैं।
सभी समूह जिनमें एक से अधिक उच्च-क्रम अक्ष(क्रम 3 या अधिक) नहीं होते हैं, उन्हें नीचे दी गई तालिका में दिखाए अनुसार व्यवस्थित किया जा सकता है; लाल रंग के प्रतीकों का प्रयोग बहुत कम होता है।
n = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... | ∞ | |
---|---|---|---|---|---|---|---|---|---|---|
Cn | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | ...
|
C∞ |
Cnv | C1v = C1h | C2v | C3v | C4v | C5v | C6v | C7v | C8v | ...
|
C∞v |
Cnh | C1h = Cs | C2h | C3h | C4h | C5h | C6h | C7h | C8h | ...
|
C∞h |
Sn | S1 = Cs | S2 = Ci | S3 = C3h | S4 | S5 = C5h | S6 | S7 = C7h | S8 | ...
|
S∞ = C∞h |
Cni(अनावश्यक) | C1i = Ci | C2i = Cs | C3i = S6 | C4i = S4 | C5i = S10 | C6i = C3h | C7i = S14 | C8i = S8 | ...
|
C∞i = C∞h |
Dn | D1 = C2 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | ...
|
D∞ |
Dnh | D1h = C2v | D2h | D3h | D4h | D5h | D6h | D7h | D8h | ...
|
D∞h |
Dnd | D1d = C2h | D2d | D3d | D4d | D5d | D6d | D7d | D8d | ...
|
D∞d = D∞h |
क्रिस्टलिकी में, क्रिस्टलोग्राफिक प्रतिबंध प्रमेय के कारण, n 1, 2, 3, 4, या 6 के मानों तक सीमित है। गैर-क्रिस्टलोग्राफिक समूहों को धूसर पृष्ठभूमि के साथ दिखाया गया है। D4d और D6d वर्जित भी हैं क्योंकि उनमें क्रमश: n = 8 और 12 के साथ अनुचित घूर्णन होते हैं। तालिका में 27 बिंदु समूह धनात्मक परिमाण T, Td, Th, O और Oh 32 क्रिस्टलोग्राफिक बिंदु समूह बनाते हैं।
n = ∞ वाले समूह को सीमा समूह या क्यूरी समूह कहा जाता है। दो और सीमा समूह हैं, जो तालिका में सूचीबद्ध नहीं हैं: K(कुगेल के लिए, जर्मन के लिए गेंद, गोला), 3-आयामी समष्टि में सभी घूर्णनों का समूह; और Kh, सभी घूर्णनों और प्रतिबिंबों का समूह। गणित और सैद्धांतिक भौतिकी में उन्हें क्रमशः SO(3) और O(3) प्रतीकों के साथ विशेष लांबिक समूह और त्रि-आयामी समष्टि में लांबिक समूह के रूप में जाना जाता है।
समष्टि समूह
समष्टि समूहों की सूची दिए गए बिंदु समूह के साथ सूची 1, 2, 3, ...(उसी क्रम में उनकी अंतरराष्ट्रीय संख्या के रूप में) द्वारा क्रमांकित की जाती है और यह संख्या संबंधित बिंदु समूह के लिए शोयेनफ्लीज़ प्रतीक के मूर्धांक के रूप में जोड़ी जाती है। उदाहरण के लिए, समूह संख्या 3 से 5 जिसका बिंदु समूह C2 है, में शोयेनफ्लीज़ प्रतीक C1
2, C2
2, C3
2 हैं।
जबकि बिंदु समूहों की स्थितियों में, शोयेनफ्लीज़ प्रतीक समूह के सममिति तत्वों को स्पष्ट रूप से परिभाषित करता है, समष्टि समूह के लिए अतिरिक्त मूर्धांक में समष्टि समूह के अनुवाद संबंधी सममिति(जाली केंद्र, अक्षों और तलों के अनुवाद संबंधी घटक) के विषय में कोई जानकारी नहीं है, इसलिए किसी की आवश्यकता है विशेष सारणियों को संदर्भित करने के लिए, जिसमें शोयेनफ्लीज़ और हरमन-मौगुइन संकेतन के बीच पत्राचार के विषय में जानकारी सम्मिलित है। ऐसी तालिका समष्टि समूहों की सूची पृष्ठ में दी गई है।
यह भी देखें
- क्रिस्टलोग्राफिक बिंदु समूह
- बिंदु समूह तीन विमाओं में
- गोलाकार सममिति समूहों की सूची
संदर्भ
- Flurry, R. L., Symmetry Groups : Theory and Chemical Applications. Prentice-Hall, 1980. ISBN 978-0-13-880013-0 LCCN: 79-18729
- Cotton, F. A., Chemical Applications of Group Theory, John Wiley & Sons: New York, 1990. ISBN 0-471-51094-7
- Harris, D., Bertolucci, M., Symmetry and Spectroscopy. New York, Dover Publications, 1989.