समूहीकृत डेटा: Difference between revisions
m (4 revisions imported from alpha:समूहीकृत_डेटा) |
No edit summary |
||
Line 112: | Line 112: | ||
==संदर्भ== | ==संदर्भ== | ||
*{{cite book |last=Newbold |first=P. |first2=W. |last2=Carlson |first3=B. |last3=Thorne |year=2009 |title=Statistics for Business and Economics |edition=Seventh |publisher=Pearson Education |isbn=978-0-13-507248-6 }} | *{{cite book |last=Newbold |first=P. |first2=W. |last2=Carlson |first3=B. |last3=Thorne |year=2009 |title=Statistics for Business and Economics |edition=Seventh |publisher=Pearson Education |isbn=978-0-13-507248-6 }} | ||
[[Category:Created On 21/03/2023]] | [[Category:Created On 21/03/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Lua-based templates]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:वर्णनात्मक आँकड़े]] | |||
[[Category:सांख्यिकीय डेटा कोडिंग]] |
Revision as of 10:51, 11 April 2023
समूहीकृत आंकड़े एक चर और विशेषता (अनुसंधान) के व्यक्तिगत यादृच्छिक चर को समूहों में एकत्रित करके बनाए गए आंकड़े हैं, ताकि इन समूहों का आवृत्ति वितरण आंकड़े को संक्षेप या आंकड़े विश्लेषण करने के एक सुविधाजनक साधन के रूप में कार्य करता है। समूहन के दो प्रमुख प्रकार हैं: एकल-आयामी चर का आंकड़े बिनिंग, बिन में गिनती के आधार पर व्यक्तिगत संख्याओं की जगह लेना; और कुछ आयामों (विशेष रूप से स्वतंत्र चर द्वारा) द्वारा बहु-आयामी चर को समूहबद्ध करना, गैर-विकसित आयामों का वितरण प्राप्त करना (विशेष रूप से स्वतंत्र चर द्वारा)।
उदाहरण
निम्नलिखित अपरिष्कृत आंकड़े सेट पर विचार करके समूहीकृत आंकड़े के विचार को चित्रित किया जा सकता है:
20 | 25 | 24 | 33 | 13 | 26 | 8 | 19 | 31 | 11 | 16 | 21 | 17 | 11 | 34 | 14 | 15 | 21 | 18 | 17 |
उपरोक्त आंकड़े को कई तरीकों से एक आवृत्ति वितरण बनाने के लिए समूहबद्ध किया जा सकता है। एक तरीका है अंतराल को आधार के रूप में प्रयोग करना है।
उपर्युक्त आंकड़े में सबसे छोटा मान 8 है और सबसे बड़ा 34 है. 8 से 34 के बीच के अंतराल को छोटे उप अंतरालों में विभाजित किया गया है (जिसे कक्षा अंतराल कहा जाता है)। प्रत्येक कक्षा अंतराल के लिए, इस अंतराल में गिरने वाले आंकड़े मदों की संख्या गिनी जाती है। इस संख्या को उस वर्ग अंतराल की आवृत्ति कहा जाता है। परिणामों को एक आवृत्ति तालिका के रूप में इस प्रकार सारणीबद्ध किया गया है:
(सेकेंड में) समय लिया | आवृत्ति |
---|---|
5 ≤ t < 10 | 1 |
10 ≤ t < 15 | 4 |
15 ≤ t < 20 | 6 |
20 ≤ t < 25 | 4 |
25 ≤ t < 30 | 2 |
30 ≤ t < 35 | 3 |
आंकड़े समूहन की एक अन्य विधि संख्यात्मक अंतराल के बजाय कुछ गुणात्मक विशेषताओं का उपयोग करना है। उदाहरण के लिए, मान लीजिए कि उपरोक्त उदाहरण में, तीन प्रकार के छात्र हैं: 1) सामान्य से नीचे, यदि प्रतिक्रिया समय 5 से 14 सेकंड है, 2 सामान्य है यदि यह 15 से 24 सेकंड के बीच है, और 3) सामान्य से अधिक है यदि यह 25 सेकंड या उससे अधिक है, तो समूह आंकड़े इस तरह दिखता है:
आवृत्ति | |
---|---|
सामान्य से नीचे | 5 |
सामान्य | 10 |
सामान्य से उपर | 5 |
फिर भी आंकड़े को समूहबद्ध करने का एक और उदाहरण सामान्यतः उपयोग किए जाने वाले कुछ संख्यात्मक मूल्यों का उपयोग है, जो वास्तव में नाम हैं जिन्हें हम श्रेणियों में असाइन करते हैं। उदाहरण के लिए, आइए हम एक कक्षा में छात्रों के आयु वितरण को देखें। छात्र 10 वर्ष, 11 वर्ष या 12 वर्ष के हो सकते हैं। ये 10 वर्ष, 11 वर्ष और 12 वर्ष के आयु वर्ग के छात्र हैं। नोट करें कि 10 वर्ष और 0 दिन, 10 वर्ष और 364 दिन के छात्र हैं, और यदि हम निरंतर आयु को देखते हैं तो उनकी औसत आयु 10.5 वर्ष है। समूहित आंकड़े इस तरह दिखता है:
आयु | आवृत्ति |
---|---|
10 | 10 |
11 | 20 |
12 | 10 |
समूहीकृत आंकड़े का माध्य
एक अनुमान, , जिस जनसंख्या से आंकड़े खींचा जाता है, उसकी गणना समूहीकृत आंकड़े से की जा सकती है:
इस सूत्र में, x वर्ग अंतराल के मध्यबिंदु को संदर्भित करता है, और f वर्ग आवृत्ति है। ध्यान दें कि इसका परिणाम असमूहीकृत आंकड़े के नमूना माध्य से भिन्न होगा। उपरोक्त उदाहरण में समूहीकृत आंकड़े के माध्य की गणना निम्नानुसार की जा सकती है:
वर्ग अंतराल | आवृत्ति ( f ) | मध्य बिन्दु ( x ) | f x |
---|---|---|---|
5 और 5 से ऊपर, 10 से नीचे | 1 | 7.5 | 7.5 |
10 ≤ t < 15 | 4 | 12.5 | 50 |
15 ≤ t < 20 | 6 | 17.5 | 105 |
20 ≤ t < 25 | 4 | 22.5 | 90 |
25 ≤ t < 30 | 2 | 27.5 | 55 |
30 ≤ t < 35 | 3 | 32.5 | 97.5 |
योग | 20 | 405 |
इस प्रकार, समूहीकृत आंकड़े का माध्य है
उपरोक्त उदाहरण 4 में समूहीकृत आंकड़े के माध्य की गणना निम्नानुसार की जा सकती है:
वर्ग अंतराल | आवृत्ति ( f ) | मध्य बिन्दु ( x ) | f x |
---|---|---|---|
10 | 10 | 10.5 | 105 |
11 | 20 | 11.5 | 230 |
12 | 10 | 12.5 | 125 |
योग | 40 | 460 |
इस प्रकार, समूहीकृत आंकड़े का माध्य है
यह भी देखें
- संपूर्ण आंकड़ा
- आंकड़े बिनिंग
- एक सेट का विभाजन
- माप का स्तर
- आवृति वितरण
- निरंतर सुविधाओं का विवेक
- समूहबद्ध डेटा के लिए लॉजिस्टिक रिग्रेशन § न्यूनतम ची-वर्ग अनुमानकर्ता
संदर्भ
- Newbold, P.; Carlson, W.; Thorne, B. (2009). Statistics for Business and Economics (Seventh ed.). Pearson Education. ISBN 978-0-13-507248-6.