विभाजन फलन (सांख्यिकीय यांत्रिकी): Difference between revisions
(Created page with "{{About|statistical mechanics|other uses|partition function (disambiguation)}} {{Use American English|date = February 2019}} {{Short description|Function in thermodynamics and...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Use American English|date = February 2019}} | {{Use American English|date = February 2019}} | ||
{{Short description|Function in thermodynamics and statistical physics}} | {{Short description|Function in thermodynamics and statistical physics}} | ||
{{statistical mechanics}} | {{statistical mechanics}} | ||
भौतिकी में, एक विभाजन | भौतिकी में, एक विभाजन फलन [[थर्मोडायनामिक संतुलन|ऊष्मागतिकी संतुलन]] में एक प्रणाली के सांख्यिकी गुणों का वर्णन करता है। विभाजन कार्य ऊष्मागतिक अवस्था चर के कार्य हैं, जैसे तापमान और आयतन।कुल ऊर्जा, मुक्त ऊर्जा, एन्ट्रॉपी और दबाव जैसे प्रणाली के अधिकांश समग्र ऊष्मागतिकी चर, विभाजन फलन या इसके डेरिवेटिव के संदर्भ में व्यक्त किए जा सकते हैं। तथा विभाजन कार्य आयाम रहित है। | ||
प्रत्येक विभाजन | प्रत्येक विभाजन फलन का निर्माण एक विशेष [[सांख्यिकीय पहनावा|सांख्यिकीय]] आवरण का प्रतिनिधित्व करने के लिए किया जाता है जो बदले में, एक विशेष ऊष्मागतिकी मुक्त ऊर्जा से मेल खाता है)। सबसे आम सांख्यिकीय समूहों ने विभाजन कार्यों का नाम दिया है। कैनोनिकल विभाजन फलन एक कैनोनिकल समेकन पर लागू होता है, जिसमें प्रणाली को निश्चित तापमान, मात्रा और [[कणों की संख्या]] पर [[पर्यावरण (सिस्टम)|पर्यावरण प्रणाली]] के साथ [[गर्मी]] का आदान-प्रदान करने की अनुमति दी जाती है। भव्य विहित विभाजन फलन एक भव्य [[विहित पहनावा|विहित आवरण]] पर लागू होता है, जिसमें प्रणाली निश्चित तापमान, मात्रा और [[रासायनिक क्षमता]] पर पर्यावरण के साथ गर्मी और कणों दोनों का आदान-प्रदान कर सकता है। अन्य प्रकार के विभाजन कार्यों को विभिन्न परिस्थितियों के लिए परिभाषित किया जा सकता है; सामान्यीकरण के लिए विभाजन [[समारोह (गणित)|फलन]] देखें। विभाजन फलन के कई भौतिक अर्थ हैं, जैसा कि अर्थ और महत्व में चर्चा की गई है। | ||
== विहित विभाजन | == विहित विभाजन फलन == | ||
=== परिभाषा === | === परिभाषा === | ||
प्रारंभ में, आइए मान लें कि | प्रारंभ में, आइए मान लें कि ऊष्मागतिकी रूप से बड़ी प्रणाली पर्यावरण के साथ [[थर्मल संपर्क]] में है, तापमान टी के साथ, और प्रणाली की मात्रा और घटक कणों की संख्या दोनों निश्चित हैं। इस तरह की प्रणाली के संग्रह में एक आवरण शामिल होता है जिसे एक विहित आवरण कहा जाता है। विहित विभाजन फलन के लिए उपयुक्त [[गणितीय अभिव्यक्ति]] प्रणाली की स्वतंत्रता की डिग्री पर निर्भर करती है, चाहे संदर्भ [[शास्त्रीय यांत्रिकी]] या [[क्वांटम यांत्रिकी]] हो, और चाहे राज्यों का स्पेक्ट्रम असतत गणित हो या संभाव्यता वितरण#सतत संभाव्यता वितरण।{{Citation needed|reason=definition of partition function requires referencing|date=December 2016}} | ||
==== शास्त्रीय असतत प्रणाली ==== | ==== शास्त्रीय असतत प्रणाली ==== | ||
शास्त्रीय और असतत एक विहित | शास्त्रीय और असतत एक विहित आवरण के लिए, विहित विभाजन फलन को इस रूप में परिभाषित किया गया है | ||
<math display="block"> Z = \sum_i e^{-\beta E_i}, </math> | <math display="block"> Z = \sum_i e^{-\beta E_i}, </math> | ||
कहाँ | कहाँ | ||
* <math> i </math> | * <math> i </math> प्रणाली के [[माइक्रोस्टेट (सांख्यिकीय यांत्रिकी)]] के लिए सूचकांक है; | ||
* <math> e </math> is e (गणितीय स्थिरांक)|यूलर की संख्या; | * <math> e </math> is e (गणितीय स्थिरांक)|यूलर की संख्या; | ||
* <math> \beta </math> [[थर्मोडायनामिक बीटा]] है, जिसे परिभाषित किया गया है <math> \tfrac{1}{k_\text{B} T} </math> कहाँ <math>k_\text{B}</math> बोल्ट्जमैन स्थिरांक है; | * <math> \beta </math> [[थर्मोडायनामिक बीटा|ऊष्मागतिकी बीटा]] है, जिसे परिभाषित किया गया है <math> \tfrac{1}{k_\text{B} T} </math> कहाँ <math>k_\text{B}</math> बोल्ट्जमैन स्थिरांक है; | ||
* <math> E_i </math> संबंधित माइक्रोस्टेट (सांख्यिकीय यांत्रिकी) में | * <math> E_i </math> संबंधित माइक्रोस्टेट (सांख्यिकीय यांत्रिकी) में प्रणाली की कुल ऊर्जा है। | ||
घातीय | घातीय फलन कारक <math> e^{-\beta E_i} </math> अन्यथा [[बोल्ट्जमान कारक]] के रूप में जाना जाता है। | ||
{{math proof | title = Derivation of canonical partition function (classical, discrete) | {{math proof | title = Derivation of canonical partition function (classical, discrete) | ||
Line 95: | Line 94: | ||
==== शास्त्रीय सतत प्रणाली ==== | ==== शास्त्रीय सतत प्रणाली ==== | ||
शास्त्रीय यांत्रिकी में, एक कण की स्थिति (वेक्टर) और [[मोमेंटम वेक्टर]] चर लगातार भिन्न हो सकते हैं, इसलिए माइक्रोस्टेट्स का सेट वास्तव में [[बेशुमार सेट]] है। शास्त्रीय सांख्यिकीय यांत्रिकी में, असतत शब्दों के [[योग (गणित)]] के रूप में विभाजन कार्य को व्यक्त करना गलत है। इस मामले में हमें एक योग के बजाय एक [[अभिन्न]] का उपयोग करके विभाजन | शास्त्रीय यांत्रिकी में, एक कण की स्थिति (वेक्टर) और [[मोमेंटम वेक्टर]] चर लगातार भिन्न हो सकते हैं, इसलिए माइक्रोस्टेट्स का सेट वास्तव में [[बेशुमार सेट]] है। शास्त्रीय सांख्यिकीय यांत्रिकी में, असतत शब्दों के [[योग (गणित)]] के रूप में विभाजन कार्य को व्यक्त करना गलत है। इस मामले में हमें एक योग के बजाय एक [[अभिन्न]] का उपयोग करके विभाजन फलन का वर्णन करना चाहिए। शास्त्रीय और निरंतर एक विहित आवरण के लिए, विहित विभाजन फलन को इस रूप में परिभाषित किया गया है | ||
<math display="block"> Z = \frac{1}{h^3} \int e^{-\beta H(q, p)} \, \mathrm{d}^3 q \, \mathrm{d}^3 p, </math> | <math display="block"> Z = \frac{1}{h^3} \int e^{-\beta H(q, p)} \, \mathrm{d}^3 q \, \mathrm{d}^3 p, </math> | ||
कहाँ | कहाँ | ||
* <math> h </math> [[प्लैंक स्थिरांक]] है; | * <math> h </math> [[प्लैंक स्थिरांक]] है; | ||
* <math> \beta </math> | * <math> \beta </math> ऊष्मागतिकी बीटा है, जिसे परिभाषित किया गया है <math> \tfrac{1}{k_\text{B} T} </math>; | ||
* <math> H(q, p) </math> | * <math> H(q, p) </math> प्रणाली का [[हैमिल्टनियन यांत्रिकी]] है; | ||
* <math> q </math> विहित निर्देशांक है; | * <math> q </math> विहित निर्देशांक है; | ||
* <math> p </math> कैननिकल निर्देशांक है। | * <math> p </math> कैननिकल निर्देशांक है। | ||
Line 112: | Line 111: | ||
कहाँ | कहाँ | ||
* <math> h </math> प्लैंक स्थिरांक है; | * <math> h </math> प्लैंक स्थिरांक है; | ||
* <math> \beta </math> | * <math> \beta </math> ऊष्मागतिकी बीटा है, जिसे परिभाषित किया गया है <math> \tfrac{1}{k_\text{B} T} </math>; | ||
* <math> i </math> प्रणाली के कणों के लिए सूचक है; | * <math> i </math> प्रणाली के कणों के लिए सूचक है; | ||
* <math> H </math> एक संबंधित कण का हैमिल्टनियन यांत्रिकी है; | * <math> H </math> एक संबंधित कण का हैमिल्टनियन यांत्रिकी है; | ||
Line 119: | Line 118: | ||
* <math> \mathrm{d}^3 </math> यह इंगित करने के लिए आशुलिपि संकेतन है <math> q_i </math> और <math> p_i </math> त्रि-आयामी अंतरिक्ष में वैक्टर हैं। | * <math> \mathrm{d}^3 </math> यह इंगित करने के लिए आशुलिपि संकेतन है <math> q_i </math> और <math> p_i </math> त्रि-आयामी अंतरिक्ष में वैक्टर हैं। | ||
भाज्य कारक N का कारण! # | भाज्य कारक N का कारण! # सब प्रणाली के विभाजन कार्यों पर चर्चा की गई है। भाजक में अतिरिक्त स्थिर कारक पेश किया गया था क्योंकि असतत रूप के विपरीत, ऊपर दिखाया गया निरंतर रूप आयाम रहित नहीं है। जैसा कि पिछले खंड में कहा गया है, इसे आयाम रहित मात्रा में बनाने के लिए, हमें इसे h से विभाजित करना होगा<sup>3N</sup> (जहाँ h को आमतौर पर प्लांक नियतांक के रूप में लिया जाता है)। | ||
==== क्वांटम यांत्रिक असतत प्रणाली ==== | ==== क्वांटम यांत्रिक असतत प्रणाली ==== | ||
क्वांटम यांत्रिक और असतत एक विहित | क्वांटम यांत्रिक और असतत एक विहित आवरण के लिए, विहित विभाजन फलन को बोल्ट्जमैन कारक के [[ट्रेस (रैखिक बीजगणित)]] के रूप में परिभाषित किया गया है: | ||
<math display="block"> Z = \operatorname{tr} ( e^{-\beta \hat{H}} ), </math> | <math display="block"> Z = \operatorname{tr} ( e^{-\beta \hat{H}} ), </math> | ||
कहाँ: | कहाँ: | ||
* <math> \operatorname{tr} ( \circ ) </math> मैट्रिक्स का ट्रेस (रैखिक बीजगणित) है; | * <math> \operatorname{tr} ( \circ ) </math> मैट्रिक्स का ट्रेस (रैखिक बीजगणित) है; | ||
* <math> \beta </math> | * <math> \beta </math> ऊष्मागतिकी बीटा है, जिसे परिभाषित किया गया है <math> \tfrac{1}{k_\text{B} T} </math>; | ||
* <math> \hat{H} </math> [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] है। | * <math> \hat{H} </math> [[हैमिल्टनियन (क्वांटम यांत्रिकी)]] है। | ||
Line 134: | Line 133: | ||
==== क्वांटम यांत्रिक सतत प्रणाली ==== | ==== क्वांटम यांत्रिक सतत प्रणाली ==== | ||
क्वांटम मैकेनिकल और निरंतर एक कैननिकल | क्वांटम मैकेनिकल और निरंतर एक कैननिकल आवरण के लिए, कैनोनिकल विभाजन फलन को इस रूप में परिभाषित किया गया है | ||
<math display="block"> Z = \frac{1}{h} \int \langle q, p | e^{-\beta \hat{H}} | q, p \rangle \, \mathrm{d} q \, \mathrm{d} p, </math> | <math display="block"> Z = \frac{1}{h} \int \langle q, p | e^{-\beta \hat{H}} | q, p \rangle \, \mathrm{d} q \, \mathrm{d} p, </math> | ||
कहाँ: | कहाँ: | ||
* <math> h </math> प्लैंक स्थिरांक है; | * <math> h </math> प्लैंक स्थिरांक है; | ||
* <math> \beta </math> | * <math> \beta </math> ऊष्मागतिकी बीटा है, जिसे परिभाषित किया गया है <math> \tfrac{1}{k_\text{B} T} </math>; | ||
* <math> \hat{H} </math> हैमिल्टनियन (क्वांटम यांत्रिकी) है; | * <math> \hat{H} </math> हैमिल्टनियन (क्वांटम यांत्रिकी) है; | ||
* <math> q </math> विहित निर्देशांक है; | * <math> q </math> विहित निर्देशांक है; | ||
* <math> p </math> कैननिकल निर्देशांक है। | * <math> p </math> कैननिकल निर्देशांक है। | ||
एक ही ऊर्जा ई साझा करने वाले कई क्वांटम राज्यों वाले | एक ही ऊर्जा ई साझा करने वाले कई क्वांटम राज्यों वाले प्रणाली में<sub>s</sub>, यह कहा जाता है कि प्रणाली के ऊर्जा स्तर पतित ऊर्जा स्तर हैं। पतित ऊर्जा स्तरों के मामले में, हम विभाजन फलन को ऊर्जा स्तरों से योगदान के संदर्भ में लिख सकते हैं (j द्वारा अनुक्रमित) इस प्रकार है: | ||
<math display="block"> Z = \sum_j g_j \cdot e^{-\beta E_j},</math> | <math display="block"> Z = \sum_j g_j \cdot e^{-\beta E_j},</math> | ||
जहां जी<sub>j</sub>अध: पतन कारक है, या क्वांटम अवस्थाओं की संख्या है जिनका E द्वारा परिभाषित समान ऊर्जा स्तर है<sub>j</sub>= और<sub>s</sub>. | जहां जी<sub>j</sub>अध: पतन कारक है, या क्वांटम अवस्थाओं की संख्या है जिनका E द्वारा परिभाषित समान ऊर्जा स्तर है<sub>j</sub>= और<sub>s</sub>. | ||
उपरोक्त उपचार क्वांटम [[सांख्यिकीय यांत्रिकी]] पर लागू होता है, जहां एक बॉक्स में एक कण के अंदर एक भौतिक प्रणाली | परिमित आकार के बॉक्स में आमतौर पर ऊर्जा ईजेनस्टेट्स का एक असतत सेट होगा, जिसे हम उपरोक्त राज्यों के रूप में उपयोग कर सकते हैं। क्वांटम यांत्रिकी में, विभाजन | उपरोक्त उपचार क्वांटम [[सांख्यिकीय यांत्रिकी]] पर लागू होता है, जहां एक बॉक्स में एक कण के अंदर एक भौतिक प्रणाली | परिमित आकार के बॉक्स में आमतौर पर ऊर्जा ईजेनस्टेट्स का एक असतत सेट होगा, जिसे हम उपरोक्त राज्यों के रूप में उपयोग कर सकते हैं। क्वांटम यांत्रिकी में, विभाजन फलन को क्वांटम यांत्रिकी के गणितीय सूत्रीकरण पर निशान के रूप में अधिक औपचारिक रूप से लिखा जा सकता है (जो [[आधार (रैखिक बीजगणित)]] की पसंद से स्वतंत्र है): | ||
<math display="block">Z = \operatorname{tr} ( e^{-\beta \hat{H}} ),</math> | <math display="block">Z = \operatorname{tr} ( e^{-\beta \hat{H}} ),</math> | ||
कहाँ {{math|''Ĥ''}} हैमिल्टनियन (क्वांटम यांत्रिकी) है। किसी संचालिका के घातांक को घातीय फलन के अभिलक्षणों का उपयोग करके परिभाषित किया जा सकता है। | कहाँ {{math|''Ĥ''}} हैमिल्टनियन (क्वांटम यांत्रिकी) है। किसी संचालिका के घातांक को घातीय फलन के अभिलक्षणों का उपयोग करके परिभाषित किया जा सकता है। | ||
Line 165: | Line 164: | ||
=== प्रायिकता सिद्धांत से संबंध === | === प्रायिकता सिद्धांत से संबंध === | ||
सादगी के लिए, हम इस खंड में विभाजन | सादगी के लिए, हम इस खंड में विभाजन फलन के असतत रूप का उपयोग करेंगे। हमारे परिणाम निरंतर रूप में समान रूप से लागू होंगे। | ||
एक | एक प्रणाली एस पर विचार करें जो [[ गर्मी स्नान ]] बी में एम्बेडेड है। दोनों प्रणालियों की कुल ऊर्जा ई होने दें। पी दें<sub>i</sub>इस [[संभावना]] को निरूपित करें कि प्रणाली S एक विशेष माइक्रोस्टेट (सांख्यिकीय यांत्रिकी) में है, i, ऊर्जा E के साथ<sub>i</sub>. सांख्यिकीय यांत्रिकी #Fundamental postulate के अनुसार (जो बताता है कि एक प्रणाली के सभी प्राप्य माइक्रोस्टेट्स समान रूप से संभावित हैं), प्रायिकता p<sub>i</sub>कुल [[बंद प्रणाली (थर्मोडायनामिक्स)|बंद प्रणाली ( ऊष्मागतिकी्स)]] (एस, बी) के माइक्रोस्टेट्स की संख्या के व्युत्क्रमानुपाती होगा जिसमें एस ऊर्जा ई के साथ माइक्रोस्टेट i में है<sub>i</sub>. समान रूप से, प<sub>i</sub>ऊर्जा ई - ई के साथ गर्मी स्नान बी के माइक्रोस्टेट की संख्या के अनुपात में होगा<sub>i</sub>: | ||
<math display="block">p_i = \frac{\Omega_B(E - E_i)}{\Omega_{(S,B)}(E)}.</math> | <math display="block">p_i = \frac{\Omega_B(E - E_i)}{\Omega_{(S,B)}(E)}.</math> | ||
यह मानते हुए कि ऊष्मा स्नान की आंतरिक ऊर्जा S (E ≫ E.) की ऊर्जा से बहुत अधिक है<sub>i</sub>), हम [[टेलर विस्तार]] | टेलर-विस्तार कर सकते हैं <math>\Omega_B</math> ई में पहले आदेश के लिए<sub>i</sub>और | यह मानते हुए कि ऊष्मा स्नान की आंतरिक ऊर्जा S (E ≫ E.) की ऊर्जा से बहुत अधिक है<sub>i</sub>), हम [[टेलर विस्तार]] | टेलर-विस्तार कर सकते हैं <math>\Omega_B</math> ई में पहले आदेश के लिए<sub>i</sub>और ऊष्मागतिकी संबंध का उपयोग करें <math>\partial S_B/\partial E = 1/T</math>, यहां कहां <math>S_B</math>, <math>T</math> स्नान की एन्ट्रॉपी और तापमान क्रमशः हैं: | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
k \ln p_i &= k \ln \Omega_B(E - E_i) - k \ln \Omega_{(S,B)}(E) \\[5pt] | k \ln p_i &= k \ln \Omega_B(E - E_i) - k \ln \Omega_{(S,B)}(E) \\[5pt] | ||
Line 179: | Line 178: | ||
इस प्रकार | इस प्रकार | ||
<math display="block">p_i \propto e^{-E_i/(kT)} = e^{-\beta E_i}.</math> | <math display="block">p_i \propto e^{-E_i/(kT)} = e^{-\beta E_i}.</math> | ||
चूंकि किसी माइक्रोस्टेट में | चूंकि किसी माइक्रोस्टेट में प्रणाली को खोजने की कुल संभावना (सभी p<sub>i</sub>) 1 के बराबर होना चाहिए, हम जानते हैं कि आनुपातिकता का स्थिरांक सामान्यीकरण स्थिरांक होना चाहिए, और इसलिए, हम विभाजन फलन को इस स्थिरांक के रूप में परिभाषित कर सकते हैं: | ||
<math display="block"> Z = \sum_i e^{-\beta E_i} = \frac{\Omega_{(S,B)}(E)}{\Omega_B(E)}.</math> | <math display="block"> Z = \sum_i e^{-\beta E_i} = \frac{\Omega_{(S,B)}(E)}{\Omega_B(E)}.</math> | ||
=== | === ऊष्मागतिकी कुल ऊर्जा की गणना === | ||
विभाजन | विभाजन फलन की उपयोगिता को प्रदर्शित करने के लिए, आइए हम कुल ऊर्जा के ऊष्मागतिकी मूल्य की गणना करें। यह केवल [[अपेक्षित मूल्य]] है, या ऊर्जा के लिए औसत समेकन है, जो कि उनकी संभावनाओं से भारित माइक्रोस्टेट ऊर्जा का योग है: | ||
<math display="block">\langle E \rangle = \sum_s E_s P_s = \frac{1}{Z} \sum_s E_s | <math display="block">\langle E \rangle = \sum_s E_s P_s = \frac{1}{Z} \sum_s E_s | ||
e^{- \beta E_s} = - \frac{1}{Z} \frac{\partial}{\partial \beta} | e^{- \beta E_s} = - \frac{1}{Z} \frac{\partial}{\partial \beta} | ||
Line 197: | Line 196: | ||
<math display="block">\langle A\rangle = \sum_s A_s P_s = -\frac{1}{\beta} | <math display="block">\langle A\rangle = \sum_s A_s P_s = -\frac{1}{\beta} | ||
\frac{\partial}{\partial\lambda} \ln Z(\beta,\lambda).</math> | \frac{\partial}{\partial\lambda} \ln Z(\beta,\lambda).</math> | ||
यह हमें कई सूक्ष्म मात्राओं के अपेक्षित मूल्यों की गणना के लिए एक विधि प्रदान करता है। हम कृत्रिम रूप से माइक्रोस्टेट ऊर्जा (या, क्वांटम यांत्रिकी की भाषा में, हैमिल्टनियन के लिए) में मात्रा जोड़ते हैं, नए विभाजन | यह हमें कई सूक्ष्म मात्राओं के अपेक्षित मूल्यों की गणना के लिए एक विधि प्रदान करता है। हम कृत्रिम रूप से माइक्रोस्टेट ऊर्जा (या, क्वांटम यांत्रिकी की भाषा में, हैमिल्टनियन के लिए) में मात्रा जोड़ते हैं, नए विभाजन फलन और अपेक्षित मान की गणना करते हैं, और फिर अंतिम अभिव्यक्ति में λ को शून्य पर सेट करते हैं। यह [[क्वांटम क्षेत्र सिद्धांत]] के [[पथ अभिन्न सूत्रीकरण]] में उपयोग की जाने वाली [[स्रोत क्षेत्र]] विधि के अनुरूप है।{{citation needed|date=December 2015}} | ||
=== ऊष्मप्रवैगिकी चर === से संबंध | === ऊष्मप्रवैगिकी चर === से संबंध | ||
इस खंड में, हम पार्टीशन फंक्शन और | इस खंड में, हम पार्टीशन फंक्शन और प्रणाली के विभिन्न ऊष्मागतिकी पैरामीटर्स के बीच संबंधों को बताएंगे। ये परिणाम पिछले अनुभाग की विधि और विभिन्न ऊष्मागतिकी संबंधों का उपयोग करके प्राप्त किए जा सकते हैं। | ||
जैसा कि हम पहले ही देख चुके हैं, | जैसा कि हम पहले ही देख चुके हैं, ऊष्मागतिकी ऊर्जा है | ||
<math display="block">\langle E \rangle = - \frac{\partial \ln Z}{\partial \beta}.</math> | <math display="block">\langle E \rangle = - \frac{\partial \ln Z}{\partial \beta}.</math> | ||
ऊर्जा में विचरण (या ऊर्जा में उतार-चढ़ाव) है | ऊर्जा में विचरण (या ऊर्जा में उतार-चढ़ाव) है | ||
Line 223: | Line 222: | ||
=== | === सब प्रणाली का विभाजन कार्य === | ||
मान लीजिए कि एक प्रणाली को नगण्य अंतःक्रियात्मक ऊर्जा के साथ N उप-प्रणालियों में उप-विभाजित किया गया है, अर्थात, हम मान सकते हैं कि कण अनिवार्य रूप से गैर-अंतःक्रियात्मक हैं। यदि उप-प्रणालियों के विभाजन कार्य ζ हैं<sub>1</sub>, जी<sub>2</sub>, ..., जी<sub>N</sub>, तब संपूर्ण | मान लीजिए कि एक प्रणाली को नगण्य अंतःक्रियात्मक ऊर्जा के साथ N उप-प्रणालियों में उप-विभाजित किया गया है, अर्थात, हम मान सकते हैं कि कण अनिवार्य रूप से गैर-अंतःक्रियात्मक हैं। यदि उप-प्रणालियों के विभाजन कार्य ζ हैं<sub>1</sub>, जी<sub>2</sub>, ..., जी<sub>N</sub>, तब संपूर्ण प्रणाली का विभाजन कार्य अलग-अलग विभाजन कार्यों का उत्पाद है: | ||
<math display="block">Z =\prod_{j=1}^{N} \zeta_j.</math> | <math display="block">Z =\prod_{j=1}^{N} \zeta_j.</math> | ||
यदि उप-प्रणालियों में समान भौतिक गुण हैं, तो उनके विभाजन कार्य समान हैं, ζ<sub>1</sub> = जी<sub>2</sub> = ... = ζ, किस मामले में <math display="block">Z = \zeta^N.</math> | यदि उप-प्रणालियों में समान भौतिक गुण हैं, तो उनके विभाजन कार्य समान हैं, ζ<sub>1</sub> = जी<sub>2</sub> = ... = ζ, किस मामले में <math display="block">Z = \zeta^N.</math> | ||
हालाँकि, इस नियम का एक प्रसिद्ध अपवाद है। यदि उप-प्रणालियाँ वास्तव में [[समान कण]] हैं, तो क्वांटम यांत्रिकी के अर्थ में कि उन्हें सिद्धांत रूप में भी भेद करना असंभव है, कुल विभाजन | हालाँकि, इस नियम का एक प्रसिद्ध अपवाद है। यदि उप-प्रणालियाँ वास्तव में [[समान कण]] हैं, तो क्वांटम यांत्रिकी के अर्थ में कि उन्हें सिद्धांत रूप में भी भेद करना असंभव है, कुल विभाजन फलन को N द्वारा विभाजित किया जाना चाहिए! (एन फैक्टोरियल): | ||
<math display="block">Z = \frac{\zeta^N}{N!}.</math> | <math display="block">Z = \frac{\zeta^N}{N!}.</math> | ||
यह सुनिश्चित करने के लिए है कि हम माइक्रोस्टेट्स की संख्या की अधिक गणना न करें। हालांकि यह एक अजीब आवश्यकता की तरह लग सकता है, वास्तव में ऐसी प्रणालियों के लिए | यह सुनिश्चित करने के लिए है कि हम माइक्रोस्टेट्स की संख्या की अधिक गणना न करें। हालांकि यह एक अजीब आवश्यकता की तरह लग सकता है, वास्तव में ऐसी प्रणालियों के लिए ऊष्मागतिकी सीमा के अस्तित्व को बनाए रखना आवश्यक है। इसे [[गिब्स विरोधाभास]] के रूप में जाना जाता है। | ||
=== अर्थ और महत्व === | === अर्थ और महत्व === | ||
यह स्पष्ट नहीं हो सकता है कि विभाजन कार्य, जैसा कि हमने इसे ऊपर परिभाषित किया है, एक महत्वपूर्ण मात्रा है। सबसे पहले, विचार करें कि इसमें क्या जाता है। विभाजन | यह स्पष्ट नहीं हो सकता है कि विभाजन कार्य, जैसा कि हमने इसे ऊपर परिभाषित किया है, एक महत्वपूर्ण मात्रा है। सबसे पहले, विचार करें कि इसमें क्या जाता है। विभाजन फलन तापमान टी और माइक्रोस्टेट ऊर्जा ई का एक कार्य है<sub>1</sub>, और<sub>2</sub>, और<sub>3</sub>, आदि। माइक्रोस्टेट ऊर्जा अन्य ऊष्मागतिकी चर द्वारा निर्धारित की जाती है, जैसे कि कणों की संख्या और आयतन, साथ ही सूक्ष्म मात्रा जैसे कि घटक कणों का द्रव्यमान। सूक्ष्म चरों पर यह निर्भरता सांख्यिकीय यांत्रिकी का केंद्रीय बिंदु है। एक प्रणाली के सूक्ष्म घटकों के एक मॉडल के साथ, कोई माइक्रोस्टेट ऊर्जा की गणना कर सकता है, और इस प्रकार विभाजन कार्य कर सकता है, जो हमें प्रणाली के अन्य सभी ऊष्मागतिकी गुणों की गणना करने की अनुमति देगा। | ||
विभाजन | विभाजन फलन ऊष्मागतिकी गुणों से संबंधित हो सकता है क्योंकि इसका एक बहुत ही महत्वपूर्ण सांख्यिकीय अर्थ है। प्रायिकता पी<sub>s</sub>कि प्रणाली माइक्रोस्टेट एस पर कब्जा कर लेता है | ||
<math display="block">P_s = \frac{1}{Z} e^{- \beta E_s}. </math> | <math display="block">P_s = \frac{1}{Z} e^{- \beta E_s}. </math> | ||
इस प्रकार, जैसा कि ऊपर दिखाया गया है, विभाजन | इस प्रकार, जैसा कि ऊपर दिखाया गया है, विभाजन फलन सामान्यीकरण स्थिरांक की भूमिका निभाता है (ध्यान दें कि यह एस पर निर्भर नहीं करता है), यह सुनिश्चित करता है कि संभावनाएं एक तक पहुंचती हैं: | ||
<math display="block">\sum_s P_s = \frac{1}{Z} \sum_s e^{- \beta E_s} = \frac{1}{Z} Z | <math display="block">\sum_s P_s = \frac{1}{Z} \sum_s e^{- \beta E_s} = \frac{1}{Z} Z | ||
= 1. </math> | = 1. </math> | ||
Z को विभाजन | Z को विभाजन फलन कहने का यही कारण है: यह एनकोड करता है कि विभिन्न माइक्रोस्टेट्स के बीच उनकी व्यक्तिगत ऊर्जा के आधार पर संभावनाओं को कैसे विभाजित किया जाता है। अलग-अलग समेकन के लिए अन्य विभाजन कार्य अन्य मैक्रोस्टेट चर के आधार पर संभावनाओं को विभाजित करते हैं। एक उदाहरण के रूप में: [[इज़ोटेर्मल-आइसोबैरिक पहनावा|इज़ोटेर्मल-आइसोबैरिक आवरण]] के लिए विभाजन फलन , बोल्ट्जमैन वितरण#सामान्यीकृत बोल्ट्जमैन वितरण, कण संख्या, दबाव और तापमान के आधार पर संभावनाओं को विभाजित करता है। ऊर्जा को उस आवरण , [[गिब्स फ्री एनर्जी]] की विशिष्ट क्षमता से बदल दिया जाता है। Z अक्षर [[जर्मन भाषा]] के शब्द Zustandssumme के लिए है, राज्यों पर योग। विभाजन फलन की उपयोगिता इस तथ्य से उत्पन्न होती है कि प्रणाली के मैक्रोस्कोपिक ऊष्मागतिकी राज्य को इसके सूक्ष्म विवरण से इसके विभाजन फलन के डेरिवेटिव के माध्यम से संबंधित किया जा सकता है। विभाजन फलन ढूँढना भी ऊर्जा डोमेन से β डोमेन के लिए राज्य फलन के घनत्व के लाप्लास परिवर्तन करने के बराबर है, और विभाजन फलन के व्युत्क्रम लाप्लास परिवर्तन ऊर्जा के राज्य घनत्व फलन को पुनः प्राप्त करता है। | ||
== भव्य विहित विभाजन | == भव्य विहित विभाजन फलन == | ||
{{Main|Grand canonical ensemble}} | {{Main|Grand canonical ensemble}} | ||
हम एक भव्य विहित विभाजन | हम एक भव्य विहित विभाजन फलन को एक भव्य विहित आवरण के लिए परिभाषित कर सकते हैं, जो एक स्थिर-आयतन प्रणाली के आँकड़ों का वर्णन करता है जो एक जलाशय के साथ गर्मी और कणों दोनों का आदान-प्रदान कर सकता है। जलाशय में एक स्थिर तापमान ''T'' और एक रासायनिक क्षमता ''μ'' होती है। | ||
भव्य विहित विभाजन | भव्य विहित विभाजन फलन , द्वारा दर्शाया गया <math>\mathcal{Z}</math>, माइक्रोस्टेट (सांख्यिकीय यांत्रिकी) पर निम्नलिखित योग है | ||
:<math> \mathcal{Z}(\mu, V, T) = \sum_{i} \exp\left(\frac{N_i\mu - E_i}{k_B T} \right). </math> | :<math> \mathcal{Z}(\mu, V, T) = \sum_{i} \exp\left(\frac{N_i\mu - E_i}{k_B T} \right). </math> | ||
यहां, प्रत्येक माइक्रोस्टेट द्वारा लेबल किया गया है <math>i</math>, और कुल कण संख्या है <math>N_i</math> और कुल ऊर्जा <math>E_i</math>. यह विभाजन कार्य [[भव्य क्षमता]] से निकटता से संबंधित है, <math>\Phi_{\rm G}</math>, संबंध से | यहां, प्रत्येक माइक्रोस्टेट द्वारा लेबल किया गया है <math>i</math>, और कुल कण संख्या है <math>N_i</math> और कुल ऊर्जा <math>E_i</math>. यह विभाजन कार्य [[भव्य क्षमता]] से निकटता से संबंधित है, <math>\Phi_{\rm G}</math>, संबंध से | ||
:<math> -k_B T \ln \mathcal{Z} = \Phi_{\rm G} = \langle E \rangle - TS - \mu \langle N\rangle. </math> | :<math> -k_B T \ln \mathcal{Z} = \Phi_{\rm G} = \langle E \rangle - TS - \mu \langle N\rangle. </math> | ||
इसे उपरोक्त विहित विभाजन | इसे उपरोक्त विहित विभाजन फलन से अलग किया जा सकता है, जो हेल्महोल्ट्ज़ मुक्त ऊर्जा के बजाय संबंधित है। | ||
यह ध्यान रखना महत्वपूर्ण है कि भव्य विहित | यह ध्यान रखना महत्वपूर्ण है कि भव्य विहित आवरण में माइक्रोस्टेट्स की संख्या कैनोनिकल आवरण की तुलना में बहुत बड़ी हो सकती है, क्योंकि यहां हम न केवल ऊर्जा में बल्कि कण संख्या में भी भिन्नता पर विचार करते हैं। फिर से, भव्य विहित विभाजन फलन की उपयोगिता यह है कि यह संभावना से संबंधित है कि प्रणाली स्थिति में है <math>i</math>: | ||
:<math> p_i = \frac{1}{\mathcal Z} \exp\left(\frac{N_i\mu - E_i}{k_B T}\right).</math> | :<math> p_i = \frac{1}{\mathcal Z} \exp\left(\frac{N_i\mu - E_i}{k_B T}\right).</math> | ||
ग्रैंड कैनोनिकल | ग्रैंड कैनोनिकल आवरण का एक महत्वपूर्ण अनुप्रयोग एक गैर-अंतःक्रियात्मक कई-निकाय क्वांटम गैस (फर्मी-डायराक सांख्यिकी के लिए फर्मी, बोस-आइंस्टीन सांख्यिकी बोसोन के लिए) के आंकड़ों को प्राप्त करने में है, हालांकि यह उससे कहीं अधिक आम तौर पर लागू होता है। ग्रैंड कैनोनिकल आवरण का उपयोग शास्त्रीय प्रणालियों का वर्णन करने के लिए भी किया जा सकता है, या यहां तक कि क्वांटम गैसों के साथ बातचीत भी की जा सकती है। | ||
भव्य विभाजन | भव्य विभाजन फलन कभी-कभी वैकल्पिक चर के संदर्भ में (समतुल्य) लिखा जाता है<ref>{{cite book | isbn = 9780120831807 | title = सांख्यिकीय यांत्रिकी में सटीक रूप से हल किए गए मॉडल| last1 = Baxter | first1 = Rodney J. | year = 1982 | publisher = Academic Press Inc. }}</ref> | ||
:<math> \mathcal{Z}(z, V, T) = \sum_{N_i} z^{N_i} Z(N_i, V, T), </math> | :<math> \mathcal{Z}(z, V, T) = \sum_{N_i} z^{N_i} Z(N_i, V, T), </math> | ||
कहाँ <math>z \equiv \exp(\mu/k_B T)</math> पूर्ण [[गतिविधि (रसायन विज्ञान)]] (या भगोड़ापन) के रूप में जाना जाता है और <math>Z(N_i, V, T)</math> विहित विभाजन कार्य है। | कहाँ <math>z \equiv \exp(\mu/k_B T)</math> पूर्ण [[गतिविधि (रसायन विज्ञान)]] (या भगोड़ापन) के रूप में जाना जाता है और <math>Z(N_i, V, T)</math> विहित विभाजन कार्य है। | ||
== यह भी देखें == | == यह भी देखें == | ||
* विभाजन | * विभाजन फलन (गणित) | ||
* विभाजन कार्य (क्वांटम क्षेत्र सिद्धांत) | * विभाजन कार्य (क्वांटम क्षेत्र सिद्धांत) | ||
* [[वायरल प्रमेय]] | * [[वायरल प्रमेय]] |
Revision as of 10:11, 21 March 2023
Statistical mechanics |
---|
भौतिकी में, एक विभाजन फलन ऊष्मागतिकी संतुलन में एक प्रणाली के सांख्यिकी गुणों का वर्णन करता है। विभाजन कार्य ऊष्मागतिक अवस्था चर के कार्य हैं, जैसे तापमान और आयतन।कुल ऊर्जा, मुक्त ऊर्जा, एन्ट्रॉपी और दबाव जैसे प्रणाली के अधिकांश समग्र ऊष्मागतिकी चर, विभाजन फलन या इसके डेरिवेटिव के संदर्भ में व्यक्त किए जा सकते हैं। तथा विभाजन कार्य आयाम रहित है।
प्रत्येक विभाजन फलन का निर्माण एक विशेष सांख्यिकीय आवरण का प्रतिनिधित्व करने के लिए किया जाता है जो बदले में, एक विशेष ऊष्मागतिकी मुक्त ऊर्जा से मेल खाता है)। सबसे आम सांख्यिकीय समूहों ने विभाजन कार्यों का नाम दिया है। कैनोनिकल विभाजन फलन एक कैनोनिकल समेकन पर लागू होता है, जिसमें प्रणाली को निश्चित तापमान, मात्रा और कणों की संख्या पर पर्यावरण प्रणाली के साथ गर्मी का आदान-प्रदान करने की अनुमति दी जाती है। भव्य विहित विभाजन फलन एक भव्य विहित आवरण पर लागू होता है, जिसमें प्रणाली निश्चित तापमान, मात्रा और रासायनिक क्षमता पर पर्यावरण के साथ गर्मी और कणों दोनों का आदान-प्रदान कर सकता है। अन्य प्रकार के विभाजन कार्यों को विभिन्न परिस्थितियों के लिए परिभाषित किया जा सकता है; सामान्यीकरण के लिए विभाजन फलन देखें। विभाजन फलन के कई भौतिक अर्थ हैं, जैसा कि अर्थ और महत्व में चर्चा की गई है।
विहित विभाजन फलन
परिभाषा
प्रारंभ में, आइए मान लें कि ऊष्मागतिकी रूप से बड़ी प्रणाली पर्यावरण के साथ थर्मल संपर्क में है, तापमान टी के साथ, और प्रणाली की मात्रा और घटक कणों की संख्या दोनों निश्चित हैं। इस तरह की प्रणाली के संग्रह में एक आवरण शामिल होता है जिसे एक विहित आवरण कहा जाता है। विहित विभाजन फलन के लिए उपयुक्त गणितीय अभिव्यक्ति प्रणाली की स्वतंत्रता की डिग्री पर निर्भर करती है, चाहे संदर्भ शास्त्रीय यांत्रिकी या क्वांटम यांत्रिकी हो, और चाहे राज्यों का स्पेक्ट्रम असतत गणित हो या संभाव्यता वितरण#सतत संभाव्यता वितरण।[citation needed]
शास्त्रीय असतत प्रणाली
शास्त्रीय और असतत एक विहित आवरण के लिए, विहित विभाजन फलन को इस रूप में परिभाषित किया गया है
- प्रणाली के माइक्रोस्टेट (सांख्यिकीय यांत्रिकी) के लिए सूचकांक है;
- is e (गणितीय स्थिरांक)|यूलर की संख्या;
- ऊष्मागतिकी बीटा है, जिसे परिभाषित किया गया है कहाँ बोल्ट्जमैन स्थिरांक है;
- संबंधित माइक्रोस्टेट (सांख्यिकीय यांत्रिकी) में प्रणाली की कुल ऊर्जा है।
घातीय फलन कारक अन्यथा बोल्ट्जमान कारक के रूप में जाना जाता है।
There are multiple approaches to deriving the partition function. The following derivation follows the more powerful and general information-theoretic Jaynesian maximum entropy approach.
According to the second law of thermodynamics, a system assumes a configuration of maximum entropy at thermodynamic equilibrium. We seek a probability distribution of states that maximizes the discrete Gibbs entropy
subject to two physical constraints:
- The probabilities of all states add to unity (second axiom of probability):
- In the canonical ensemble, the average energy is fixed (conservation of energy):
Applying variational calculus with constraints (analogous in some sense to the method of Lagrange multipliers), we write the Lagrangian (or Lagrange function) as
Varying and extremizing with respect to leads to
Since this equation should hold for any variation , it implies that
Isolating for yields
To obtain , one substitutes the probability into the first constraint:
Isolating for yields .
Rewriting in terms of gives
Rewriting in terms of gives
To obtain , we differentiate with respect to the average energy and apply the first law of thermodynamics, :
Thus the canonical partition function becomes
शास्त्रीय सतत प्रणाली
शास्त्रीय यांत्रिकी में, एक कण की स्थिति (वेक्टर) और मोमेंटम वेक्टर चर लगातार भिन्न हो सकते हैं, इसलिए माइक्रोस्टेट्स का सेट वास्तव में बेशुमार सेट है। शास्त्रीय सांख्यिकीय यांत्रिकी में, असतत शब्दों के योग (गणित) के रूप में विभाजन कार्य को व्यक्त करना गलत है। इस मामले में हमें एक योग के बजाय एक अभिन्न का उपयोग करके विभाजन फलन का वर्णन करना चाहिए। शास्त्रीय और निरंतर एक विहित आवरण के लिए, विहित विभाजन फलन को इस रूप में परिभाषित किया गया है
- प्लैंक स्थिरांक है;
- ऊष्मागतिकी बीटा है, जिसे परिभाषित किया गया है ;
- प्रणाली का हैमिल्टनियन यांत्रिकी है;
- विहित निर्देशांक है;
- कैननिकल निर्देशांक है।
इसे एक आयाम रहित मात्रा में बनाने के लिए, हमें इसे h से विभाजित करना होगा, जो कि क्रिया की इकाइयों (भौतिकी) के साथ कुछ मात्रा है (आमतौर पर प्लैंक स्थिरांक के रूप में लिया जाता है)।
शास्त्रीय निरंतर प्रणाली (कई समान कण)
गैस के लिए तीन आयामों में समान शास्त्रीय कण, विभाजन कार्य है
- प्लैंक स्थिरांक है;
- ऊष्मागतिकी बीटा है, जिसे परिभाषित किया गया है ;
- प्रणाली के कणों के लिए सूचक है;
- एक संबंधित कण का हैमिल्टनियन यांत्रिकी है;
- संबंधित कण के विहित निर्देशांक हैं;
- संबंधित कण के विहित निर्देशांक हैं;
- यह इंगित करने के लिए आशुलिपि संकेतन है और त्रि-आयामी अंतरिक्ष में वैक्टर हैं।
भाज्य कारक N का कारण! # सब प्रणाली के विभाजन कार्यों पर चर्चा की गई है। भाजक में अतिरिक्त स्थिर कारक पेश किया गया था क्योंकि असतत रूप के विपरीत, ऊपर दिखाया गया निरंतर रूप आयाम रहित नहीं है। जैसा कि पिछले खंड में कहा गया है, इसे आयाम रहित मात्रा में बनाने के लिए, हमें इसे h से विभाजित करना होगा3N (जहाँ h को आमतौर पर प्लांक नियतांक के रूप में लिया जाता है)।
क्वांटम यांत्रिक असतत प्रणाली
क्वांटम यांत्रिक और असतत एक विहित आवरण के लिए, विहित विभाजन फलन को बोल्ट्जमैन कारक के ट्रेस (रैखिक बीजगणित) के रूप में परिभाषित किया गया है:
- मैट्रिक्स का ट्रेस (रैखिक बीजगणित) है;
- ऊष्मागतिकी बीटा है, जिसे परिभाषित किया गया है ;
- हैमिल्टनियन (क्वांटम यांत्रिकी) है।
का आयाम प्रणाली की ऊर्जा eigenstates की संख्या है।
क्वांटम यांत्रिक सतत प्रणाली
क्वांटम मैकेनिकल और निरंतर एक कैननिकल आवरण के लिए, कैनोनिकल विभाजन फलन को इस रूप में परिभाषित किया गया है
- प्लैंक स्थिरांक है;
- ऊष्मागतिकी बीटा है, जिसे परिभाषित किया गया है ;
- हैमिल्टनियन (क्वांटम यांत्रिकी) है;
- विहित निर्देशांक है;
- कैननिकल निर्देशांक है।
एक ही ऊर्जा ई साझा करने वाले कई क्वांटम राज्यों वाले प्रणाली मेंs, यह कहा जाता है कि प्रणाली के ऊर्जा स्तर पतित ऊर्जा स्तर हैं। पतित ऊर्जा स्तरों के मामले में, हम विभाजन फलन को ऊर्जा स्तरों से योगदान के संदर्भ में लिख सकते हैं (j द्वारा अनुक्रमित) इस प्रकार है:
उपरोक्त उपचार क्वांटम सांख्यिकीय यांत्रिकी पर लागू होता है, जहां एक बॉक्स में एक कण के अंदर एक भौतिक प्रणाली | परिमित आकार के बॉक्स में आमतौर पर ऊर्जा ईजेनस्टेट्स का एक असतत सेट होगा, जिसे हम उपरोक्त राज्यों के रूप में उपयोग कर सकते हैं। क्वांटम यांत्रिकी में, विभाजन फलन को क्वांटम यांत्रिकी के गणितीय सूत्रीकरण पर निशान के रूप में अधिक औपचारिक रूप से लिखा जा सकता है (जो आधार (रैखिक बीजगणित) की पसंद से स्वतंत्र है):
सुसंगत अवस्थाओं के संदर्भ में ट्रेस व्यक्त किए जाने पर Z का शास्त्रीय रूप पुनः प्राप्त होता है[1] और जब एक कण की स्थिति और संवेग में क्वांटम-मैकेनिकल अनिश्चितता सिद्धांत नगण्य माने जाते हैं। औपचारिक रूप से, ब्रा-केट नोटेशन का उपयोग करते हुए, एक स्वतंत्रता की प्रत्येक डिग्री के लिए ट्रेस के तहत पहचान सम्मिलित करता है:
प्रायिकता सिद्धांत से संबंध
सादगी के लिए, हम इस खंड में विभाजन फलन के असतत रूप का उपयोग करेंगे। हमारे परिणाम निरंतर रूप में समान रूप से लागू होंगे।
एक प्रणाली एस पर विचार करें जो गर्मी स्नान बी में एम्बेडेड है। दोनों प्रणालियों की कुल ऊर्जा ई होने दें। पी देंiइस संभावना को निरूपित करें कि प्रणाली S एक विशेष माइक्रोस्टेट (सांख्यिकीय यांत्रिकी) में है, i, ऊर्जा E के साथi. सांख्यिकीय यांत्रिकी #Fundamental postulate के अनुसार (जो बताता है कि एक प्रणाली के सभी प्राप्य माइक्रोस्टेट्स समान रूप से संभावित हैं), प्रायिकता piकुल बंद प्रणाली ( ऊष्मागतिकी्स) (एस, बी) के माइक्रोस्टेट्स की संख्या के व्युत्क्रमानुपाती होगा जिसमें एस ऊर्जा ई के साथ माइक्रोस्टेट i में हैi. समान रूप से, पiऊर्जा ई - ई के साथ गर्मी स्नान बी के माइक्रोस्टेट की संख्या के अनुपात में होगाi:
ऊष्मागतिकी कुल ऊर्जा की गणना
विभाजन फलन की उपयोगिता को प्रदर्शित करने के लिए, आइए हम कुल ऊर्जा के ऊष्मागतिकी मूल्य की गणना करें। यह केवल अपेक्षित मूल्य है, या ऊर्जा के लिए औसत समेकन है, जो कि उनकी संभावनाओं से भारित माइक्रोस्टेट ऊर्जा का योग है:
=== ऊष्मप्रवैगिकी चर === से संबंध
इस खंड में, हम पार्टीशन फंक्शन और प्रणाली के विभिन्न ऊष्मागतिकी पैरामीटर्स के बीच संबंधों को बताएंगे। ये परिणाम पिछले अनुभाग की विधि और विभिन्न ऊष्मागतिकी संबंधों का उपयोग करके प्राप्त किए जा सकते हैं।
जैसा कि हम पहले ही देख चुके हैं, ऊष्मागतिकी ऊर्जा है
सब प्रणाली का विभाजन कार्य
मान लीजिए कि एक प्रणाली को नगण्य अंतःक्रियात्मक ऊर्जा के साथ N उप-प्रणालियों में उप-विभाजित किया गया है, अर्थात, हम मान सकते हैं कि कण अनिवार्य रूप से गैर-अंतःक्रियात्मक हैं। यदि उप-प्रणालियों के विभाजन कार्य ζ हैं1, जी2, ..., जीN, तब संपूर्ण प्रणाली का विभाजन कार्य अलग-अलग विभाजन कार्यों का उत्पाद है:
अर्थ और महत्व
यह स्पष्ट नहीं हो सकता है कि विभाजन कार्य, जैसा कि हमने इसे ऊपर परिभाषित किया है, एक महत्वपूर्ण मात्रा है। सबसे पहले, विचार करें कि इसमें क्या जाता है। विभाजन फलन तापमान टी और माइक्रोस्टेट ऊर्जा ई का एक कार्य है1, और2, और3, आदि। माइक्रोस्टेट ऊर्जा अन्य ऊष्मागतिकी चर द्वारा निर्धारित की जाती है, जैसे कि कणों की संख्या और आयतन, साथ ही सूक्ष्म मात्रा जैसे कि घटक कणों का द्रव्यमान। सूक्ष्म चरों पर यह निर्भरता सांख्यिकीय यांत्रिकी का केंद्रीय बिंदु है। एक प्रणाली के सूक्ष्म घटकों के एक मॉडल के साथ, कोई माइक्रोस्टेट ऊर्जा की गणना कर सकता है, और इस प्रकार विभाजन कार्य कर सकता है, जो हमें प्रणाली के अन्य सभी ऊष्मागतिकी गुणों की गणना करने की अनुमति देगा।
विभाजन फलन ऊष्मागतिकी गुणों से संबंधित हो सकता है क्योंकि इसका एक बहुत ही महत्वपूर्ण सांख्यिकीय अर्थ है। प्रायिकता पीsकि प्रणाली माइक्रोस्टेट एस पर कब्जा कर लेता है
भव्य विहित विभाजन फलन
हम एक भव्य विहित विभाजन फलन को एक भव्य विहित आवरण के लिए परिभाषित कर सकते हैं, जो एक स्थिर-आयतन प्रणाली के आँकड़ों का वर्णन करता है जो एक जलाशय के साथ गर्मी और कणों दोनों का आदान-प्रदान कर सकता है। जलाशय में एक स्थिर तापमान T और एक रासायनिक क्षमता μ होती है।
भव्य विहित विभाजन फलन , द्वारा दर्शाया गया , माइक्रोस्टेट (सांख्यिकीय यांत्रिकी) पर निम्नलिखित योग है
यहां, प्रत्येक माइक्रोस्टेट द्वारा लेबल किया गया है , और कुल कण संख्या है और कुल ऊर्जा . यह विभाजन कार्य भव्य क्षमता से निकटता से संबंधित है, , संबंध से
इसे उपरोक्त विहित विभाजन फलन से अलग किया जा सकता है, जो हेल्महोल्ट्ज़ मुक्त ऊर्जा के बजाय संबंधित है।
यह ध्यान रखना महत्वपूर्ण है कि भव्य विहित आवरण में माइक्रोस्टेट्स की संख्या कैनोनिकल आवरण की तुलना में बहुत बड़ी हो सकती है, क्योंकि यहां हम न केवल ऊर्जा में बल्कि कण संख्या में भी भिन्नता पर विचार करते हैं। फिर से, भव्य विहित विभाजन फलन की उपयोगिता यह है कि यह संभावना से संबंधित है कि प्रणाली स्थिति में है :
ग्रैंड कैनोनिकल आवरण का एक महत्वपूर्ण अनुप्रयोग एक गैर-अंतःक्रियात्मक कई-निकाय क्वांटम गैस (फर्मी-डायराक सांख्यिकी के लिए फर्मी, बोस-आइंस्टीन सांख्यिकी बोसोन के लिए) के आंकड़ों को प्राप्त करने में है, हालांकि यह उससे कहीं अधिक आम तौर पर लागू होता है। ग्रैंड कैनोनिकल आवरण का उपयोग शास्त्रीय प्रणालियों का वर्णन करने के लिए भी किया जा सकता है, या यहां तक कि क्वांटम गैसों के साथ बातचीत भी की जा सकती है।
भव्य विभाजन फलन कभी-कभी वैकल्पिक चर के संदर्भ में (समतुल्य) लिखा जाता है[2]
कहाँ पूर्ण गतिविधि (रसायन विज्ञान) (या भगोड़ापन) के रूप में जाना जाता है और विहित विभाजन कार्य है।
यह भी देखें
- विभाजन फलन (गणित)
- विभाजन कार्य (क्वांटम क्षेत्र सिद्धांत)
- वायरल प्रमेय
- विडोम सम्मिलन विधि
संदर्भ
- ↑ Klauder, John R.; Skagerstam, Bo-Sture (1985). Coherent States: Applications in Physics and Mathematical Physics. World Scientific. pp. 71–73. ISBN 978-9971-966-52-2.
- ↑ Baxter, Rodney J. (1982). सांख्यिकीय यांत्रिकी में सटीक रूप से हल किए गए मॉडल. Academic Press Inc. ISBN 9780120831807.
- Huang, Kerson (1967). Statistical Mechanics. New York: John Wiley & Sons. ISBN 0-471-81518-7.
- Isihara, A. (1971). Statistical Physics. New York: Academic Press. ISBN 0-12-374650-7.
- Kelly, James J. (2002). "Ideal Quantum Gases" (PDF). Lecture notes.
- Landau, L. D.; Lifshitz, E. M. (1996). Statistical Physics. Part 1 (3rd ed.). Oxford: Butterworth-Heinemann. ISBN 0-08-023039-3.
- Vu-Quoc, L. (2008). "Configuration integral (statistical mechanics)". Archived from the original on April 28, 2012.