विद्युतीय मिश्रक: Difference between revisions

From Vigyanwiki
(Created page with "{{For|the kitchen utensil|mixer (cooking)}} {{Unreferenced|date=December 2009}} File:Passive Mixer.jpg|right|thumb|250px|एक साधारण तीन-चैनल न...")
 
mNo edit summary
Line 1: Line 1:
{{For|the kitchen utensil|mixer (cooking)}}
{{For|the kitchen utensil|mixer (cooking)}}
{{Unreferenced|date=December 2009}}
{{Unreferenced|date=December 2009}}
[[File:Passive Mixer.jpg|right|thumb|250px|एक साधारण तीन-चैनल निष्क्रिय योज्य मिक्सर। अधिक इनपुट जैक जोड़कर और प्रतिरोधों को मिलाकर अधिक चैनल जोड़े जा सकते हैं।]]
[[File:Passive Mixer.jpg|right|thumb|250px|एक साधारण तीन-चैनल निष्क्रिय योज्य मिश्रित्र। अधिक निविष्ट जैक जोड़कर और प्रतिरोधों को मिलाकर अधिक चैनल जोड़े जा सकते हैं।]]
[[File:Virtual Ground Active Mixer.jpg|right|thumb|250px|एक वर्चुअल ग्राउंड एक्टिव एडिटिव मिक्सर। बफर एम्पलीफायर क्रॉसस्टॉक और विरूपण को कम करने के लिए काम करते हैं। छवि गलत है। दूसरे एम्पलीफायर को पहले एम्पलीफायर आउटपुट और दूसरे एम्पलीफायर के इनवर्टिंग इनपुट के बीच एक अवरोधक की आवश्यकता होती है, अन्यथा लाभ बहुत अधिक होता है और यह क्लिप हो जाएगा। वास्तव में दूसरा एम्पलीफायर सामान्य रूप से आवश्यक नहीं है क्योंकि चरण व्युत्क्रम को समग्र प्रणाली में कई अन्य स्थानों पर उलटा किया जा सकता है।]]एक इलेक्ट्रॉनिक मिक्सर एक ऐसा उपकरण है जो दो या दो से अधिक इलेक्ट्रिकल या [[ इलेक्ट्रानिक्स ]] सिग्नल (सूचना सिद्धांत) को एक या दो मिश्रित आउटपुट सिग्नल में जोड़ता है। दो बुनियादी सर्किट हैं जो दोनों 'मिक्सर' शब्द का उपयोग करते हैं, लेकिन वे बहुत अलग प्रकार के सर्किट हैं: एडिटिव मिक्सर और मल्टीप्लिकेटिव मिक्सर। संबंधित [[योजक (इलेक्ट्रॉनिक्स)]] से अलग करने के लिए योजक मिक्सर को एनालॉग योजक के रूप में भी जाना जाता है।
[[File:Virtual Ground Active Mixer.jpg|right|thumb|250px|एक वर्चुअल ग्राउंड एक्टिव एडिटिव मिश्रित्र। बफर एम्पलीफायर क्रॉसस्टॉक और विरूपण को कम करने के लिए काम करते हैं। छवि गलत है। दूसरे एम्पलीफायर को पहले एम्पलीफायर उत्पादन और दूसरे एम्पलीफायर के इनवर्टिंग निविष्ट के बीच एक अवरोधक की आवश्यकता होती है, अन्यथा लाभ बहुत अधिक होता है और यह क्लिप हो जाएगा। वास्तव में दूसरा एम्पलीफायर सामान्य रूप से आवश्यक नहीं है क्योंकि चरण व्युत्क्रम को समग्र प्रणाली में कई अन्य स्थानों पर उलटा किया जा सकता है।]]एक विद्युतीय मिश्रित्र एक ऐसा उपकरण है जो दो या दो से अधिक विद्युत या [[ इलेक्ट्रानिक्स | विद्युतीय]] संकेत (सूचना सिद्धांत) को एक या दो मिश्रित उत्पादन संकेत में जोड़ता है। दो बुनियादी परिपथ हैं जो दोनों 'मिश्रित्र' शब्द का उपयोग करते हैं, लेकिन वे बहुत अलग प्रकार के परिपथ हैं: योजक मिश्रित्र और प्रवर्धक मिश्रित्र। संबंधित [[योजक (इलेक्ट्रॉनिक्स)|योजक (विद्युतीय)]] से अलग करने के लिए योजक मिश्रित्र को [[अनुरूप योजक]] के रूप में भी जाना जाता है।


सरल योजक मिक्सर दो या दो से अधिक संकेतों की धाराओं को एक साथ जोड़ने के लिए किरचॉफ के सर्किट कानूनों का उपयोग करते हैं, और यह शब्दावली (मिक्सर) केवल [[ऑडियो इलेक्ट्रॉनिक्स]] के दायरे में उपयोग की जाती है जहां [[ऑडियो मिक्सर]] का उपयोग मानव आवाज संकेतों, [[संगीत]] जैसे [[ऑडियो संकेत]]ों को जोड़ने के लिए किया जाता है। संकेत और ध्वनि प्रभाव।
सरल योजक मिश्रित्र दो या दो से अधिक संकेतों की धाराओं को एक साथ जोड़ने के लिए [[किरचॉफ के परिपथ नियम]] का उपयोग करते हैं, और यह शब्दावली (मिश्रित्र) केवल [[ऑडियो इलेक्ट्रॉनिक्स|ध्वनि विद्युतीय]] के क्षेत्र में उपयोग की जाती है जहां [[ऑडियो मिक्सर|श्रव्य मिश्रक]] का उपयोग मानव आवाज संकेतों, [[संगीत]] संकेत और ध्वनि प्रभाव जैसे [[ऑडियो संकेत|ऑडियो संकेतों]] को जोड़ने के लिए किया जाता है।


गुणात्मक मिक्सर दो समय-भिन्न इनपुट संकेतों को तुरंत (तत्काल-दर-तत्काल) एक साथ गुणा करते हैं। यदि दो इनपुट सिग्नल निर्दिष्ट [[ आवृत्ति ]] f की दोनों साइन तरंगें हैं<sub>1</sub> और एफ<sub>2</sub>, तो मिक्सर के आउटपुट में दो नए साइनसॉइड होंगे जिनका योग f होगा<sub>1</sub> + एफ<sub>2</sub> आवृत्ति और अंतर आवृत्ति निरपेक्ष मान | च<sub>1</sub> -  एफ<sub>2</sub>|।
गुणात्मक मिश्रित्र दो समय-भिन्न निविष्ट संकेतों को तुरंत (तत्काल-दर-तत्काल) एक साथ गुणा करते हैं। यदि दो निविष्ट संकेत निर्दिष्ट [[ आवृत्ति | आवृत्तियों]] f<sub>1</sub> और f<sub>2</sub> की दोनों साइन वक्र हैं, तो मिश्रित्र के उत्पादन में दो नए साइन वक्र होंगे जिनका योग f<sub>1</sub> + f<sub>2</sub> आवृत्ति और अंतर आवृत्ति निरपेक्ष मान f<sub>1</sub> -  f<sub>2 हैं।</sub>


फ़्रीक्वेंसी f के साथ दो सिग्नल द्वारा संचालित कोई भी नॉनलाइनियर इलेक्ट्रॉनिक ब्लॉक<sub>1</sub> और एफ<sub>2</sub> इंटरमॉड्यूलेशन (मिश्रण) उत्पाद उत्पन्न करेगा। एक गुणक (जो एक अरेखीय उपकरण है) आदर्श रूप से केवल योग और अंतर आवृत्तियों को उत्पन्न करेगा, जबकि एक मनमाना अरैखिक ब्लॉक भी 2·f पर संकेत उत्पन्न करेगा<sub>1</sub>-3·च<sub>2</sub>, आदि। इसलिए, अधिक जटिल गुणक के बजाय, सामान्य अरैखिक प्रवर्धक या केवल एकल डायोड को मिक्सर के रूप में उपयोग किया गया है। एक गुणक को आमतौर पर - कम से कम आंशिक रूप से - अवांछित उच्च-क्रम इंटरमोड्यूलेशन और बड़े रूपांतरण लाभ को अस्वीकार करने का लाभ होता है।
f<sub>1</sub> और f<sub>2</sub> आवृत्तियों के साथ दो संकेतों द्वारा संचालित कोई भी गैर-रैखिक विद्युतीय खंड अंतरामाडुलन (मिश्रण) उत्पाद उत्पन्न करेगा। एक प्रवर्धक (जो एक अरेखीय उपकरण है) आदर्श रूप से केवल योग और अंतर आवृत्तियों को उत्पन्न करेगा, जबकि एक मनमाना अरैखिक खंड भी 2·f<sub>1</sub>-3·f<sub>2</sub>, आदि पर भी संकेत उत्पन्न करेगा। इसलिए, अधिक जटिल प्रवर्धक के विपरीत, मिश्रित्र के रूप में उपयोग किया गया है। एक प्रवर्धक को समान्यतः - कम से कम आंशिक रूप से - अवांछित उच्च-क्रम अंतरामाडुलन और बड़े रूपांतरण लाभ को अस्वीकार करने का लाभ होता है।


== एडिटिव मिक्सर्स ==
== योजक मिश्रित्र ==
{{See also|Mixing console}}
{{See also|Mixing console}}
एडिटिव मिक्सर सुपरपोज़िशन सिद्धांत, एक समग्र सिग्नल देता है जिसमें प्रत्येक स्रोत सिग्नल के आवृत्ति घटक होते हैं। सबसे सरल योज्य मिक्सर प्रतिरोधी नेटवर्क हैं, और इस प्रकार विशुद्ध रूप से [[निष्क्रियता (इंजीनियरिंग)]] हैं, जबकि अधिक जटिल [[मैट्रिक्स मिक्सर]] [[प्रतिबाधा मिलान]] और बेहतर अलगाव के लिए निष्क्रियता (इंजीनियरिंग) घटकों जैसे [[बफर एम्पलीफायर]]ों को नियोजित करते हैं।
योजक मिश्रित्र सुपरपोज़िशन सिद्धांत, एक समग्र संकेत देता है जिसमें प्रत्येक स्रोत संकेत के आवृत्ति घटक होते हैं। सबसे सरल योज्य मिश्रित्र प्रतिरोधी नेटवर्क हैं, और इस प्रकार विशुद्ध रूप से [[निष्क्रियता (इंजीनियरिंग)]] हैं, जबकि अधिक जटिल [[मैट्रिक्स मिक्सर|मैट्रिक्स मिश्रित्र]] [[प्रतिबाधा मिलान]] और बेहतर अलगाव के लिए निष्क्रियता (इंजीनियरिंग) घटकों जैसे [[बफर एम्पलीफायर]]ों को नियोजित करते हैं।


== गुणक मिश्रक ==
== गुणक मिश्रक ==
{{Main|Frequency mixer}}
{{Main|Frequency mixer}}


एक आदर्श गुणात्मक मिक्सर दो इनपुट सिग्नल के उत्पाद के बराबर आउटपुट सिग्नल उत्पन्न करता है। संचार में, सिग्नल फ्रीक्वेंसी को मॉड्यूलेट करने के लिए अक्सर [[इलेक्ट्रॉनिक ऑसिलेटर]] के साथ एक मल्टीप्लिकेटिव मिक्सर का उपयोग किया जाता है। एक मल्टीप्लिकेटिव मिक्सर को इनपुट सिग्नल फ्रीक्वेंसी को या तो अप-कन्वर्ट या डाउन-कन्वर्ट करने के लिए एक फिल्टर के साथ जोड़ा जा सकता है, लेकिन [[सुपरहेटरोडाइन रिसीवर]] में किए गए सरल फिल्टर डिजाइनों की अनुमति देने के लिए वे आमतौर पर डाउन-कन्वर्ट करने के लिए उपयोग किए जाते हैं। कई विशिष्ट सर्किटों में, एकल आउटपुट सिग्नल में वास्तव में कई तरंगें होती हैं, अर्थात् दो इनपुट आवृत्तियों और हार्मोनिक तरंगों के योग और अंतर पर। फ़िल्टर के साथ अन्य सिग्नल घटकों को हटाकर आउटपुट सिग्नल प्राप्त किया जा सकता है
एक आदर्श गुणात्मक मिश्रित्र दो निविष्ट संकेत के उत्पाद के बराबर उत्पादन संकेत उत्पन्न करता है। संचार में, संकेत फ्रीक्वेंसी को मॉड्यूलेट करने के लिए अक्सर [[इलेक्ट्रॉनिक ऑसिलेटर|विद्युतीय ऑसिलेटर]] के साथ एक प्रवर्धक मिश्रित्र का उपयोग किया जाता है। एक प्रवर्धक मिश्रित्र को निविष्ट संकेत फ्रीक्वेंसी को या तो अप-कन्वर्ट या डाउन-कन्वर्ट करने के लिए एक फिल्टर के साथ जोड़ा जा सकता है, लेकिन [[सुपरहेटरोडाइन रिसीवर]] में किए गए सरल फिल्टर डिजाइनों की अनुमति देने के लिए वे आमतौर पर डाउन-कन्वर्ट करने के लिए उपयोग किए जाते हैं। कई विशिष्ट सर्किटों में, एकल उत्पादन संकेत में वास्तव में कई तरंगें होती हैं, अर्थात् दो निविष्ट आवृत्तियों और हार्मोनिक तरंगों के योग और अंतर पर। फ़िल्टर के साथ अन्य संकेत घटकों को हटाकर उत्पादन संकेत प्राप्त किया जा सकता है


{{Further|Intermediate frequency}}
{{Further|Intermediate frequency}}
Line 28: Line 28:


:<math>E_\mathrm{LO} \cos(\omega_\mathrm{LO}t).\,</math>
:<math>E_\mathrm{LO} \cos(\omega_\mathrm{LO}t).\,</math>
सादगी के लिए, मान लें कि डिटेक्टर का आउटपुट I आयाम के वर्ग के समानुपाती है:
सादगी के लिए, मान लें कि डिटेक्टर का उत्पादन I आयाम के वर्ग के समानुपाती है:
:<math>I\propto \left( E_\mathrm{sig}\cos(\omega_\mathrm{sig}t+\varphi) + E_\mathrm{LO}\cos(\omega_\mathrm{LO}t) \right)^2</math>
:<math>I\propto \left( E_\mathrm{sig}\cos(\omega_\mathrm{sig}t+\varphi) + E_\mathrm{LO}\cos(\omega_\mathrm{LO}t) \right)^2</math>
:<math> =\frac{E_\mathrm{sig}^2}{2}\left( 1+\cos(2\omega_\mathrm{sig}t+2\varphi) \right)</math>
:<math> =\frac{E_\mathrm{sig}^2}{2}\left( 1+\cos(2\omega_\mathrm{sig}t+2\varphi) \right)</math>
Line 40: Line 40:
::<math> + \underbrace{E_\mathrm{sig}E_\mathrm{LO} \cos((\omega_\mathrm{sig}-\omega_\mathrm{LO})t+\varphi)}_{beat\;component}.
::<math> + \underbrace{E_\mathrm{sig}E_\mathrm{LO} \cos((\omega_\mathrm{sig}-\omega_\mathrm{LO})t+\varphi)}_{beat\;component}.
</math>
</math>
आउटपुट में उच्च आवृत्ति है (<math>2\omega_\mathrm{sig}</math>, <math>2\omega_\mathrm{LO}</math> और <math>\omega_\mathrm{sig}+\omega_\mathrm{LO}</math>) और निरंतर घटक। हेटेरोडाइन पहचान में, उच्च आवृत्ति घटकों और आमतौर पर स्थिर घटकों को फ़िल्टर किया जाता है, मध्यवर्ती (बीट) आवृत्ति को छोड़कर <math>\omega_\mathrm{sig}-\omega_\mathrm{LO}</math>. इस अंतिम घटक का आयाम सिग्नल विकिरण के आयाम के समानुपाती होता है। उचित [[संकेत विश्लेषण]] के साथ संकेत के चरण को भी पुनर्प्राप्त किया जा सकता है।
उत्पादन में उच्च आवृत्ति है (<math>2\omega_\mathrm{sig}</math>, <math>2\omega_\mathrm{LO}</math> और <math>\omega_\mathrm{sig}+\omega_\mathrm{LO}</math>) और निरंतर घटक। हेटेरोडाइन पहचान में, उच्च आवृत्ति घटकों और आमतौर पर स्थिर घटकों को फ़िल्टर किया जाता है, मध्यवर्ती (बीट) आवृत्ति को छोड़कर <math>\omega_\mathrm{sig}-\omega_\mathrm{LO}</math>. इस अंतिम घटक का आयाम संकेत विकिरण के आयाम के समानुपाती होता है। उचित [[संकेत विश्लेषण]] के साथ संकेत के चरण को भी पुनर्प्राप्त किया जा सकता है।


अगर <math>\omega_\mathrm{LO}</math> के बराबर है <math>\omega_\mathrm{sig} </math> तो बीट घटक मूल सिग्नल का एक पुनर्प्राप्त संस्करण है, जिसके उत्पाद के बराबर आयाम है <math> E_\mathrm{sig} </math> और <math>E_\mathrm{LO} </math>; अर्थात्, प्राप्त सिग्नल को स्थानीय ऑसिलेटर के साथ मिश्रित करके प्रवर्धित किया जाता है{{Clarify|reason=But at double the frequency?|date=October 2016}}. यह प्रत्यक्ष रूपांतरण प्राप्तकर्ता का आधार है।
अगर <math>\omega_\mathrm{LO}</math> के बराबर है <math>\omega_\mathrm{sig} </math> तो बीट घटक मूल संकेत का एक पुनर्प्राप्त संस्करण है, जिसके उत्पाद के बराबर आयाम है <math> E_\mathrm{sig} </math> और <math>E_\mathrm{LO} </math>; अर्थात्, प्राप्त संकेत को स्थानीय ऑसिलेटर के साथ मिश्रित करके प्रवर्धित किया जाता है{{Clarify|reason=But at double the frequency?|date=October 2016}}. यह प्रत्यक्ष रूपांतरण प्राप्तकर्ता का आधार है।


=== कार्यान्वयन ===
=== कार्यान्वयन ===
गुणक मिक्सर को कई तरीकों से लागू किया गया है। सबसे लोकप्रिय [[गिल्बर्ट सेल]] मिक्सर, [[डायोड]] मिक्सर, डायोड रिंग मिक्सर ([[रिंग मॉड्यूलेशन]]) और स्विचिंग मिक्सर हैं। डायोड मिक्सर वर्ग अवधि में वांछित गुणन का उत्पादन करने के लिए डायोड उपकरणों की गैर-रैखिकता का लाभ उठाते हैं। वे बहुत अक्षम हैं क्योंकि अधिकांश बिजली उत्पादन अन्य अवांछित शर्तों में होता है जिन्हें फ़िल्टर करने की आवश्यकता होती है। सस्ते एएम रेडियो अभी भी डायोड मिक्सर का उपयोग करते हैं।
गुणक मिश्रित्र को कई तरीकों से लागू किया गया है। सबसे लोकप्रिय [[गिल्बर्ट सेल]] मिश्रित्र, [[डायोड]] मिश्रित्र, डायोड रिंग मिश्रित्र ([[रिंग मॉड्यूलेशन]]) और स्विचिंग मिश्रित्र हैं। डायोड मिश्रित्र वर्ग अवधि में वांछित गुणन का उत्पादन करने के लिए डायोड उपकरणों की गैर-रैखिकता का लाभ उठाते हैं। वे बहुत अक्षम हैं क्योंकि अधिकांश बिजली उत्पादन अन्य अवांछित शर्तों में होता है जिन्हें फ़िल्टर करने की आवश्यकता होती है। सस्ते एएम रेडियो अभी भी डायोड मिश्रित्र का उपयोग करते हैं।


इलेक्ट्रॉनिक मिक्सर आमतौर पर एक [[संतुलित सर्किट]] या यहां तक ​​कि एक डबल-संतुलित सर्किट में व्यवस्थित [[ट्रांजिस्टर]] और/या डायोड के साथ बनाए जाते हैं। वे [[अखंड एकीकृत सर्किट]] या हाइब्रिड एकीकृत सर्किट के रूप में आसानी से निर्मित होते हैं। वे फ़्रीक्वेंसी रेंज की एक विस्तृत विविधता के लिए डिज़ाइन किए गए हैं, और वे [[बड़े पैमाने पर उत्पादन]] हैं | सैकड़ों-हजारों की तंग सहनशीलता के लिए बड़े पैमाने पर उत्पादन किया जाता है, जिससे वे अपेक्षाकृत सस्ते हो जाते हैं।
विद्युतीय मिश्रित्र आमतौर पर एक [[संतुलित सर्किट|संतुलित परिपथ]] या यहां तक ​​कि एक डबल-संतुलित परिपथ में व्यवस्थित [[ट्रांजिस्टर]] और/या डायोड के साथ बनाए जाते हैं। वे [[अखंड एकीकृत सर्किट|अखंड एकीकृत परिपथ]] या हाइब्रिड एकीकृत परिपथ के रूप में आसानी से निर्मित होते हैं। वे फ़्रीक्वेंसी रेंज की एक विस्तृत विविधता के लिए डिज़ाइन किए गए हैं, और वे [[बड़े पैमाने पर उत्पादन]] हैं | सैकड़ों-हजारों की तंग सहनशीलता के लिए बड़े पैमाने पर उत्पादन किया जाता है, जिससे वे अपेक्षाकृत सस्ते हो जाते हैं।


[[माइक्रोवेव संचार]], [[उपग्रह संचार]], [[अति उच्च आवृत्ति]] (यूएचएफ) संचार [[ट्रांसमीटर]], [[रिसीवर (रेडियो)]], और [[रडार प्रणाली]] में डबल-संतुलित मिक्सर बहुत व्यापक रूप से उपयोग किए जाते हैं।
[[माइक्रोवेव संचार]], [[उपग्रह संचार]], [[अति उच्च आवृत्ति]] (यूएचएफ) संचार [[ट्रांसमीटर]], [[रिसीवर (रेडियो)]], और [[रडार प्रणाली]] में डबल-संतुलित मिश्रित्र बहुत व्यापक रूप से उपयोग किए जाते हैं।


गिल्बर्ट सेल मिक्सर ट्रांजिस्टर की एक व्यवस्था है जो दो संकेतों को गुणा करती है।
गिल्बर्ट सेल मिश्रित्र ट्रांजिस्टर की एक व्यवस्था है जो दो संकेतों को गुणा करती है।


स्विचिंग मिक्सर क्षेत्र-प्रभाव ट्रांजिस्टर या [[ वेक्यूम - ट्यूब ]]ों के सरणी का उपयोग करते हैं। सिग्नल दिशा को वैकल्पिक करने के लिए इन्हें इलेक्ट्रॉनिक स्विच के रूप में उपयोग किया जाता है। वे मिश्रित सिग्नल द्वारा नियंत्रित होते हैं। वे डिजिटल रूप से नियंत्रित रेडियो के साथ विशेष रूप से लोकप्रिय हैं। स्विचिंग मिक्सर अधिक शक्ति पास करते हैं और आमतौर पर गिल्बर्ट सेल मिक्सर की तुलना में कम विरूपण डालते हैं।
स्विचिंग मिश्रित्र क्षेत्र-प्रभाव ट्रांजिस्टर या [[ वेक्यूम - ट्यूब ]]ों के सरणी का उपयोग करते हैं। संकेत दिशा को वैकल्पिक करने के लिए इन्हें विद्युतीय स्विच के रूप में उपयोग किया जाता है। वे मिश्रित संकेत द्वारा नियंत्रित होते हैं। वे डिजिटल रूप से नियंत्रित रेडियो के साथ विशेष रूप से लोकप्रिय हैं। स्विचिंग मिश्रित्र अधिक शक्ति पास करते हैं और आमतौर पर गिल्बर्ट सेल मिश्रित्र की तुलना में कम विरूपण डालते हैं।


{{Authority control}}
{{Authority control}}


{{DEFAULTSORT:Electronic Mixer}}
{{DEFAULTSORT:Electronic Mixer}}
श्रेणी:एनालॉग सर्किट
 
श्रेणी:एनालॉग परिपथ
श्रेणी:ऑडियो मिक्सिंग
श्रेणी:ऑडियो मिक्सिंग



Revision as of 19:18, 3 April 2023

File:Passive Mixer.jpg
एक साधारण तीन-चैनल निष्क्रिय योज्य मिश्रित्र। अधिक निविष्ट जैक जोड़कर और प्रतिरोधों को मिलाकर अधिक चैनल जोड़े जा सकते हैं।
File:Virtual Ground Active Mixer.jpg
एक वर्चुअल ग्राउंड एक्टिव एडिटिव मिश्रित्र। बफर एम्पलीफायर क्रॉसस्टॉक और विरूपण को कम करने के लिए काम करते हैं। छवि गलत है। दूसरे एम्पलीफायर को पहले एम्पलीफायर उत्पादन और दूसरे एम्पलीफायर के इनवर्टिंग निविष्ट के बीच एक अवरोधक की आवश्यकता होती है, अन्यथा लाभ बहुत अधिक होता है और यह क्लिप हो जाएगा। वास्तव में दूसरा एम्पलीफायर सामान्य रूप से आवश्यक नहीं है क्योंकि चरण व्युत्क्रम को समग्र प्रणाली में कई अन्य स्थानों पर उलटा किया जा सकता है।

एक विद्युतीय मिश्रित्र एक ऐसा उपकरण है जो दो या दो से अधिक विद्युत या विद्युतीय संकेत (सूचना सिद्धांत) को एक या दो मिश्रित उत्पादन संकेत में जोड़ता है। दो बुनियादी परिपथ हैं जो दोनों 'मिश्रित्र' शब्द का उपयोग करते हैं, लेकिन वे बहुत अलग प्रकार के परिपथ हैं: योजक मिश्रित्र और प्रवर्धक मिश्रित्र। संबंधित योजक (विद्युतीय) से अलग करने के लिए योजक मिश्रित्र को अनुरूप योजक के रूप में भी जाना जाता है।

सरल योजक मिश्रित्र दो या दो से अधिक संकेतों की धाराओं को एक साथ जोड़ने के लिए किरचॉफ के परिपथ नियम का उपयोग करते हैं, और यह शब्दावली (मिश्रित्र) केवल ध्वनि विद्युतीय के क्षेत्र में उपयोग की जाती है जहां श्रव्य मिश्रक का उपयोग मानव आवाज संकेतों, संगीत संकेत और ध्वनि प्रभाव जैसे ऑडियो संकेतों को जोड़ने के लिए किया जाता है।

गुणात्मक मिश्रित्र दो समय-भिन्न निविष्ट संकेतों को तुरंत (तत्काल-दर-तत्काल) एक साथ गुणा करते हैं। यदि दो निविष्ट संकेत निर्दिष्ट आवृत्तियों f1 और f2 की दोनों साइन वक्र हैं, तो मिश्रित्र के उत्पादन में दो नए साइन वक्र होंगे जिनका योग f1 + f2 आवृत्ति और अंतर आवृत्ति निरपेक्ष मान f1 - f2 हैं।

f1 और f2 आवृत्तियों के साथ दो संकेतों द्वारा संचालित कोई भी गैर-रैखिक विद्युतीय खंड अंतरामाडुलन (मिश्रण) उत्पाद उत्पन्न करेगा। एक प्रवर्धक (जो एक अरेखीय उपकरण है) आदर्श रूप से केवल योग और अंतर आवृत्तियों को उत्पन्न करेगा, जबकि एक मनमाना अरैखिक खंड भी 2·f1-3·f2, आदि पर भी संकेत उत्पन्न करेगा। इसलिए, अधिक जटिल प्रवर्धक के विपरीत, मिश्रित्र के रूप में उपयोग किया गया है। एक प्रवर्धक को समान्यतः - कम से कम आंशिक रूप से - अवांछित उच्च-क्रम अंतरामाडुलन और बड़े रूपांतरण लाभ को अस्वीकार करने का लाभ होता है।

योजक मिश्रित्र

योजक मिश्रित्र सुपरपोज़िशन सिद्धांत, एक समग्र संकेत देता है जिसमें प्रत्येक स्रोत संकेत के आवृत्ति घटक होते हैं। सबसे सरल योज्य मिश्रित्र प्रतिरोधी नेटवर्क हैं, और इस प्रकार विशुद्ध रूप से निष्क्रियता (इंजीनियरिंग) हैं, जबकि अधिक जटिल मैट्रिक्स मिश्रित्र प्रतिबाधा मिलान और बेहतर अलगाव के लिए निष्क्रियता (इंजीनियरिंग) घटकों जैसे बफर एम्पलीफायरों को नियोजित करते हैं।

गुणक मिश्रक

एक आदर्श गुणात्मक मिश्रित्र दो निविष्ट संकेत के उत्पाद के बराबर उत्पादन संकेत उत्पन्न करता है। संचार में, संकेत फ्रीक्वेंसी को मॉड्यूलेट करने के लिए अक्सर विद्युतीय ऑसिलेटर के साथ एक प्रवर्धक मिश्रित्र का उपयोग किया जाता है। एक प्रवर्धक मिश्रित्र को निविष्ट संकेत फ्रीक्वेंसी को या तो अप-कन्वर्ट या डाउन-कन्वर्ट करने के लिए एक फिल्टर के साथ जोड़ा जा सकता है, लेकिन सुपरहेटरोडाइन रिसीवर में किए गए सरल फिल्टर डिजाइनों की अनुमति देने के लिए वे आमतौर पर डाउन-कन्वर्ट करने के लिए उपयोग किए जाते हैं। कई विशिष्ट सर्किटों में, एकल उत्पादन संकेत में वास्तव में कई तरंगें होती हैं, अर्थात् दो निविष्ट आवृत्तियों और हार्मोनिक तरंगों के योग और अंतर पर। फ़िल्टर के साथ अन्य संकेत घटकों को हटाकर उत्पादन संकेत प्राप्त किया जा सकता है

गणितीय उपचार

प्राप्त संकेत के रूप में प्रतिनिधित्व किया जा सकता है

और स्थानीय थरथरानवाला के रूप में प्रतिनिधित्व किया जा सकता है

सादगी के लिए, मान लें कि डिटेक्टर का उत्पादन I आयाम के वर्ग के समानुपाती है:

उत्पादन में उच्च आवृत्ति है (, और ) और निरंतर घटक। हेटेरोडाइन पहचान में, उच्च आवृत्ति घटकों और आमतौर पर स्थिर घटकों को फ़िल्टर किया जाता है, मध्यवर्ती (बीट) आवृत्ति को छोड़कर . इस अंतिम घटक का आयाम संकेत विकिरण के आयाम के समानुपाती होता है। उचित संकेत विश्लेषण के साथ संकेत के चरण को भी पुनर्प्राप्त किया जा सकता है।

अगर के बराबर है तो बीट घटक मूल संकेत का एक पुनर्प्राप्त संस्करण है, जिसके उत्पाद के बराबर आयाम है और ; अर्थात्, प्राप्त संकेत को स्थानीय ऑसिलेटर के साथ मिश्रित करके प्रवर्धित किया जाता है[clarification needed]. यह प्रत्यक्ष रूपांतरण प्राप्तकर्ता का आधार है।

कार्यान्वयन

गुणक मिश्रित्र को कई तरीकों से लागू किया गया है। सबसे लोकप्रिय गिल्बर्ट सेल मिश्रित्र, डायोड मिश्रित्र, डायोड रिंग मिश्रित्र (रिंग मॉड्यूलेशन) और स्विचिंग मिश्रित्र हैं। डायोड मिश्रित्र वर्ग अवधि में वांछित गुणन का उत्पादन करने के लिए डायोड उपकरणों की गैर-रैखिकता का लाभ उठाते हैं। वे बहुत अक्षम हैं क्योंकि अधिकांश बिजली उत्पादन अन्य अवांछित शर्तों में होता है जिन्हें फ़िल्टर करने की आवश्यकता होती है। सस्ते एएम रेडियो अभी भी डायोड मिश्रित्र का उपयोग करते हैं।

विद्युतीय मिश्रित्र आमतौर पर एक संतुलित परिपथ या यहां तक ​​कि एक डबल-संतुलित परिपथ में व्यवस्थित ट्रांजिस्टर और/या डायोड के साथ बनाए जाते हैं। वे अखंड एकीकृत परिपथ या हाइब्रिड एकीकृत परिपथ के रूप में आसानी से निर्मित होते हैं। वे फ़्रीक्वेंसी रेंज की एक विस्तृत विविधता के लिए डिज़ाइन किए गए हैं, और वे बड़े पैमाने पर उत्पादन हैं | सैकड़ों-हजारों की तंग सहनशीलता के लिए बड़े पैमाने पर उत्पादन किया जाता है, जिससे वे अपेक्षाकृत सस्ते हो जाते हैं।

माइक्रोवेव संचार, उपग्रह संचार, अति उच्च आवृत्ति (यूएचएफ) संचार ट्रांसमीटर, रिसीवर (रेडियो), और रडार प्रणाली में डबल-संतुलित मिश्रित्र बहुत व्यापक रूप से उपयोग किए जाते हैं।

गिल्बर्ट सेल मिश्रित्र ट्रांजिस्टर की एक व्यवस्था है जो दो संकेतों को गुणा करती है।

स्विचिंग मिश्रित्र क्षेत्र-प्रभाव ट्रांजिस्टर या वेक्यूम - ट्यूब ों के सरणी का उपयोग करते हैं। संकेत दिशा को वैकल्पिक करने के लिए इन्हें विद्युतीय स्विच के रूप में उपयोग किया जाता है। वे मिश्रित संकेत द्वारा नियंत्रित होते हैं। वे डिजिटल रूप से नियंत्रित रेडियो के साथ विशेष रूप से लोकप्रिय हैं। स्विचिंग मिश्रित्र अधिक शक्ति पास करते हैं और आमतौर पर गिल्बर्ट सेल मिश्रित्र की तुलना में कम विरूपण डालते हैं।


श्रेणी:एनालॉग परिपथ श्रेणी:ऑडियो मिक्सिंग

दा: लिडमिक्सर मैं: ミキサー en:मिक्सर