पी-एन जंक्शन: Difference between revisions
No edit summary |
No edit summary |
||
Line 2: | Line 2: | ||
{{See also|पी-एन डायोड|अर्धचालक डायोड}} | {{See also|पी-एन डायोड|अर्धचालक डायोड}} | ||
[[File:PN diode with electrical symbol.svg|thumb|280px|पी-एन जंक्शन सर्किट प्रतीक दिखाया गया है: त्रिकोण पी दिशा से मिलता है।]]पी-एन जंक्शन अर्धचालक में क्रिस्टल के अंदर दो प्रकार की अर्धचालक सामग्री, पी-टाइप और एन-टाइप अर्धचालक के मध्य सीमा या इंटरफ़ेस है। पी (सकारात्मक) पक्ष में इलेक्ट्रॉन छिद्र की अधिकता होती है, जबकि एन (नकारात्मक) पक्ष में विद्युत रूप से तटस्थ परमाणुओं के बाहरी गोले में इलेक्ट्रॉनों की अधिकता होती है। यह विद्युत प्रवाह को केवल एक दिशा में जंक्शन से गुजरने की अनुमति देता है। पी-एन जंक्शन डोपिंग (अर्धचालक) द्वारा निर्मित किया गया है, उदाहरण के लिए आयन आरोपण, डोपेंट का प्रसार, या एपिटॉक्सी द्वारा निर्मित किया गया है I यदि सामग्री के दो अलग-अलग टुकड़ों का उपयोग किया जाता है, तो यह अर्धचालक के मध्य अनाज की सीमा का परिचय देता है, जो इलेक्ट्रॉनों और इलेक्ट्रॉन | [[File:PN diode with electrical symbol.svg|thumb|280px|पी-एन जंक्शन सर्किट प्रतीक दिखाया गया है: त्रिकोण पी दिशा से मिलता है।]]पी-एन जंक्शन अर्धचालक में क्रिस्टल के अंदर दो प्रकार की अर्धचालक सामग्री, पी-टाइप और एन-टाइप अर्धचालक के मध्य सीमा या इंटरफ़ेस है। पी (सकारात्मक) पक्ष में इलेक्ट्रॉन छिद्र की अधिकता होती है, जबकि एन (नकारात्मक) पक्ष में विद्युत रूप से तटस्थ परमाणुओं के बाहरी गोले में इलेक्ट्रॉनों की अधिकता होती है। यह विद्युत प्रवाह को केवल एक दिशा में जंक्शन से गुजरने की अनुमति देता है। पी-एन जंक्शन डोपिंग (अर्धचालक) द्वारा निर्मित किया गया है, उदाहरण के लिए आयन आरोपण, डोपेंट का प्रसार, या एपिटॉक्सी द्वारा निर्मित किया गया है I यदि सामग्री के दो अलग-अलग टुकड़ों का उपयोग किया जाता है, तो यह अर्धचालक के मध्य अनाज की सीमा का परिचय देता है, जो इलेक्ट्रॉनों और इलेक्ट्रॉन छिद्र को विभक्त करके इसकी उपयोगिता को गंभीर रूप से बाधित करता है।{{Citation needed|date=April 2010}} | ||
पी-एन जंक्शन अर्धचालक डिवाइस जैसे डायोड, ट्रांजिस्टर, सौर सेल, प्रकाश उत्सर्जक डायोड (एलईडी), और एकीकृत सर्किट के प्राथमिक निर्माण खंड हैं; वे सक्रिय साइट हैं, जहां डिवाइस की इलेक्ट्रॉनिक क्रिया होती है। उदाहरण के लिए, सामान्य प्रकार का ट्रांजिस्टर, बाइपोलर जंक्शन ट्रांजिस्टर, एन-पी-एन या पी-एन-पी के रूप में श्रृंखला में दो पी-एन जंक्शन होते हैं; जबकि डायोड को पी-एन जंक्शन से निर्मित किया जा सकता है। स्कॉटटकी जंक्शन पी-एन जंक्शन का विशेष विषय है, जहाँ धातु एन-टाइप के अर्धचालक की भूमिका निभाते है। | पी-एन जंक्शन अर्धचालक डिवाइस जैसे डायोड, ट्रांजिस्टर, सौर सेल, प्रकाश उत्सर्जक डायोड (एलईडी), और एकीकृत सर्किट के प्राथमिक निर्माण खंड हैं; वे सक्रिय साइट हैं, जहां डिवाइस की इलेक्ट्रॉनिक क्रिया होती है। उदाहरण के लिए, सामान्य प्रकार का ट्रांजिस्टर, बाइपोलर जंक्शन ट्रांजिस्टर, एन-पी-एन या पी-एन-पी के रूप में श्रृंखला में दो पी-एन जंक्शन होते हैं; जबकि डायोड को पी-एन जंक्शन से निर्मित किया जा सकता है। स्कॉटटकी जंक्शन पी-एन जंक्शन का विशेष विषय है, जहाँ धातु एन-टाइप के अर्धचालक की भूमिका निभाते है। | ||
Line 21: | Line 21: | ||
जंक्शन पर, यादृच्छिक थर्मल माइग्रेशन के कारण एन-टाइप में कुछ मुक्त इलेक्ट्रॉन पी-टाइप में भटकते हैं। जैसे ही वे पी-टाइप में फैलते हैं, वे छिद्रों के साथ जुड़ जाते हैं, और एक दूसरे को रद्द कर देते हैं। इसी तरह से p-प्रकार के कुछ धनात्मक छिद्र n-प्रकार में घूमते हैं और मुक्त इलेक्ट्रॉनों के साथ जुड़ते हैं, और एक दूसरे को रद्द कर देते हैं। एन-टाइप में सकारात्मक रूप से चार्ज किए गए, दाता, डोपेंट परमाणु क्रिस्टल का हिस्सा हैं, और स्थानांतरित नहीं हो सकते हैं। इस प्रकार, n-प्रकार में, जंक्शन के निकट का क्षेत्र धनावेशित हो जाता है। पी-प्रकार में नकारात्मक रूप से आवेशित, स्वीकर्ता, डोपेंट परमाणु क्रिस्टल का हिस्सा हैं, और गति नहीं कर सकते। इस प्रकार, पी-प्रकार में, जंक्शन के पास का क्षेत्र ऋणात्मक रूप से आवेशित हो जाता है। नतीजा जंक्शन के पास एक क्षेत्र है जो इन चार्ज किए गए क्षेत्रों को बनाने वाले विद्युत क्षेत्र के माध्यम से जंक्शन से मोबाइल चार्ज को दूर करने के लिए कार्य करता है। पी-एन इंटरफ़ेस के पास के क्षेत्र अपनी तटस्थता खो देते हैं और उनके अधिकांश मोबाइल वाहक, स्पेस चार्ज क्षेत्र या कमी परत बनाते हैं (see [[:Image:Pn-junction-equilibrium.png|चित्रा ए)]] | जंक्शन पर, यादृच्छिक थर्मल माइग्रेशन के कारण एन-टाइप में कुछ मुक्त इलेक्ट्रॉन पी-टाइप में भटकते हैं। जैसे ही वे पी-टाइप में फैलते हैं, वे छिद्रों के साथ जुड़ जाते हैं, और एक दूसरे को रद्द कर देते हैं। इसी तरह से p-प्रकार के कुछ धनात्मक छिद्र n-प्रकार में घूमते हैं और मुक्त इलेक्ट्रॉनों के साथ जुड़ते हैं, और एक दूसरे को रद्द कर देते हैं। एन-टाइप में सकारात्मक रूप से चार्ज किए गए, दाता, डोपेंट परमाणु क्रिस्टल का हिस्सा हैं, और स्थानांतरित नहीं हो सकते हैं। इस प्रकार, n-प्रकार में, जंक्शन के निकट का क्षेत्र धनावेशित हो जाता है। पी-प्रकार में नकारात्मक रूप से आवेशित, स्वीकर्ता, डोपेंट परमाणु क्रिस्टल का हिस्सा हैं, और गति नहीं कर सकते। इस प्रकार, पी-प्रकार में, जंक्शन के पास का क्षेत्र ऋणात्मक रूप से आवेशित हो जाता है। नतीजा जंक्शन के पास एक क्षेत्र है जो इन चार्ज किए गए क्षेत्रों को बनाने वाले विद्युत क्षेत्र के माध्यम से जंक्शन से मोबाइल चार्ज को दूर करने के लिए कार्य करता है। पी-एन इंटरफ़ेस के पास के क्षेत्र अपनी तटस्थता खो देते हैं और उनके अधिकांश मोबाइल वाहक, स्पेस चार्ज क्षेत्र या कमी परत बनाते हैं (see [[:Image:Pn-junction-equilibrium.png|चित्रा ए)]] | ||
[[File:Pn-junction-equilibrium.png|400px|left|thumb|चित्रा ए। शून्य-पूर्वाग्रह वोल्टेज लागू होने के साथ थर्मल संतुलन में एक पी-एन जंक्शन। इलेक्ट्रॉन और | [[File:Pn-junction-equilibrium.png|400px|left|thumb|चित्रा ए। शून्य-पूर्वाग्रह वोल्टेज लागू होने के साथ थर्मल संतुलन में एक पी-एन जंक्शन। इलेक्ट्रॉन और छिद्र की सघनता क्रमशः नीली और लाल रेखाओं के साथ रिपोर्ट की जाती है। ग्रे क्षेत्र चार्ज-न्यूट्रल हैं। लाइट-रेड ज़ोन सकारात्मक रूप से चार्ज होता है। हल्का नीला क्षेत्र ऋणात्मक रूप से आवेशित होता है। विद्युत क्षेत्र नीचे दिखाया गया है, इलेक्ट्रॉनों और छिद्रों पर इलेक्ट्रोस्टैटिक बल और जिस दिशा में प्रसार इलेक्ट्रॉनों और छिद्रों को स्थानांतरित करता है। (लॉग सघनता वक्र वास्तव में क्षेत्र की ताकत के साथ अलग-अलग ढलान के साथ चिकना होना चाहिए।)]]विद्युत क्षेत्र स्पेस चार्ज क्षेत्र द्वारा निर्मित इलेक्ट्रॉनों और छिद्रों दोनों के लिए प्रसार प्रक्रिया का विरोध करता है। दो समवर्ती घटनाएं हैं: प्रसार प्रक्रिया जो अधिक स्थान आवेश उत्पन्न करती है, और विद्युत क्षेत्र जो अंतरिक्ष आवेश द्वारा उत्पन्न होता है जो प्रसार का प्रतिकार करता है। संतुलन पर वाहक एकाग्रता प्रोफ़ाइल में दिखाया गया है [[:Image:Pn-junction-equilibrium.png|चित्र A ]]में नीली और लाल रेखाएँ हैं। यह भी दिखाया गया है कि संतुलन स्थापित करने वाली दो प्रतिसंतुलन घटनाएं हैं। | ||
[[File:Pn-junction-equilibrium-graphs.png|400px|right|thumb|चित्रा बी। शून्य-पूर्वाग्रह वोल्टेज लागू होने के साथ थर्मल संतुलन में एक पी-एन जंक्शन। जंक्शन के तहत, चार्ज घनत्व, विद्युत क्षेत्र और वोल्टेज के लिए भूखंडों की सूचना दी जाती है। (लॉग एकाग्रता घटता वास्तव में वोल्टेज की तरह चिकना होना चाहिए।)]]स्पेस चार्ज क्षेत्र निश्चित आयनों (दाता (अर्धचालक) या स्वीकर्ता (अर्धचालक)) द्वारा प्रदान किए गए शुद्ध आवेश वाला एक क्षेत्र है जिसे बहुसंख्यक वाहक द्वारा खुला छोड़ दिया गया है diffusion. When equilibrium is reached, the charge density is approximated by the displayed step function. In fact, since the y-axis of figure A is log-scale, the region is almost completely depleted of majority carriers (leaving a charge density equal to the net doping level), and the edge between the space charge region and the neutral region is quite sharp (see [[:Image:Pn-junction-equilibrium-graphs.png|आकृति बी, क्यू (एक्स) ग्राफ)। स्पेस चार्ज क्षेत्र में पी-एन इंटरफेस के दोनों किनारों पर चार्ज का समान परिमाण होता है, इस प्रकार यह इस उदाहरण में कम डॉप्ड पक्ष पर आगे बढ़ता है (आंकड़े ए और बी में एन पक्ष)। | [[File:Pn-junction-equilibrium-graphs.png|400px|right|thumb|चित्रा बी। शून्य-पूर्वाग्रह वोल्टेज लागू होने के साथ थर्मल संतुलन में एक पी-एन जंक्शन। जंक्शन के तहत, चार्ज घनत्व, विद्युत क्षेत्र और वोल्टेज के लिए भूखंडों की सूचना दी जाती है। (लॉग एकाग्रता घटता वास्तव में वोल्टेज की तरह चिकना होना चाहिए।)]]स्पेस चार्ज क्षेत्र निश्चित आयनों (दाता (अर्धचालक) या स्वीकर्ता (अर्धचालक)) द्वारा प्रदान किए गए शुद्ध आवेश वाला एक क्षेत्र है जिसे बहुसंख्यक वाहक द्वारा खुला छोड़ दिया गया है diffusion. When equilibrium is reached, the charge density is approximated by the displayed step function. In fact, since the y-axis of figure A is log-scale, the region is almost completely depleted of majority carriers (leaving a charge density equal to the net doping level), and the edge between the space charge region and the neutral region is quite sharp (see [[:Image:Pn-junction-equilibrium-graphs.png|आकृति बी, क्यू (एक्स) ग्राफ)। स्पेस चार्ज क्षेत्र में पी-एन इंटरफेस के दोनों किनारों पर चार्ज का समान परिमाण होता है, इस प्रकार यह इस उदाहरण में कम डॉप्ड पक्ष पर आगे बढ़ता है (आंकड़े ए और बी में एन पक्ष)। | ||
Line 38: | Line 38: | ||
=== फॉरवर्ड बायस === | === फॉरवर्ड बायस === | ||
{{See also|p–n diode#Forward bias}} | {{See also|p–n diode#Forward bias}} | ||
In forward bias, the p-type is connected with the positive terminal and the n-type is connected with the negative terminal.[[File:PN band.gif|thumb|400px|right|पीएन जंक्शन ऑपरेशन आगे-पूर्वाग्रह मोड में, घटती चौड़ाई दिखा रहा है।]]पैनल ऊर्जा बैंड आरेख, विद्युत क्षेत्र और शुद्ध आवेश घनत्व दिखाते हैं। पी और एन दोनों जंक्शनों को 1e15 सेमी पर डोप किया गया है<sup>-3</sup> (160 µC/सेमी<sup>3</sup>) डोपिंग स्तर, जिसके कारण ~0.59 V की अंतर्निहित क्षमता होती है। कमी की चौड़ाई को p–n जंक्शन पर सिकुड़ते वाहक गति से अनुमान लगाया जा सकता है, जिसके परिणामस्वरूप विद्युत प्रतिरोध कम हो जाता है। इलेक्ट्रॉन जो पी-एन जंक्शन को पी-टाइप सामग्री (या | In forward bias, the p-type is connected with the positive terminal and the n-type is connected with the negative terminal.[[File:PN band.gif|thumb|400px|right|पीएन जंक्शन ऑपरेशन आगे-पूर्वाग्रह मोड में, घटती चौड़ाई दिखा रहा है।]]पैनल ऊर्जा बैंड आरेख, विद्युत क्षेत्र और शुद्ध आवेश घनत्व दिखाते हैं। पी और एन दोनों जंक्शनों को 1e15 सेमी पर डोप किया गया है<sup>-3</sup> (160 µC/सेमी<sup>3</sup>) डोपिंग स्तर, जिसके कारण ~0.59 V की अंतर्निहित क्षमता होती है। कमी की चौड़ाई को p–n जंक्शन पर सिकुड़ते वाहक गति से अनुमान लगाया जा सकता है, जिसके परिणामस्वरूप विद्युत प्रतिरोध कम हो जाता है। इलेक्ट्रॉन जो पी-एन जंक्शन को पी-टाइप सामग्री (या छिद्र जो एन-टाइप सामग्री में पार करते हैं) में पास के तटस्थ क्षेत्र में फैल जाते हैं। निकट-तटस्थ क्षेत्रों में अल्पसंख्यक प्रसार की मात्रा वर्तमान की मात्रा निर्धारित करती है जो डायोड के माध्यम से प्रवाहित हो सकती है। | ||
केवल बहुसंख्यक वाहक (एन-टाइप सामग्री में इलेक्ट्रॉन या पी-टाइप में | केवल बहुसंख्यक वाहक (एन-टाइप सामग्री में इलेक्ट्रॉन या पी-टाइप में छिद्र) मैक्रोस्कोपिक लंबाई के लिए अर्धचालक के माध्यम से प्रवाह कर सकते हैं। इसे ध्यान में रखते हुए, जंक्शन पर इलेक्ट्रॉनों के प्रवाह पर विचार करें। आगे का पूर्वाग्रह इलेक्ट्रॉनों पर एक बल का कारण बनता है जो उन्हें N की ओर से P की ओर धकेलता है। आगे के पूर्वाग्रह के साथ, कमी क्षेत्र काफी संकीर्ण है कि इलेक्ट्रॉन जंक्शन को पार कर सकते हैं और पी-टाइप सामग्री में इंजेक्ट कर सकते हैं। हालांकि, वे पी-टाइप सामग्री के माध्यम से अनिश्चित काल तक प्रवाह जारी नहीं रखते हैं, क्योंकि यह उनके लिए छिद्रों के साथ पुनर्संयोजन करने के लिए ऊर्जावान रूप से अनुकूल है। पुनर्संयोजन से पहले पी-टाइप सामग्री के माध्यम से एक इलेक्ट्रॉन की औसत लंबाई को प्रसार लंबाई कहा जाता है, और यह आमतौर पर माइक्रोमीटर के क्रम में होता है।<ref>{{cite book |title=भौतिक विज्ञान की ठोस अवस्था|last=Hook |first=J. R. |author2=H. E. Hall |year=2001 |publisher=John Wiley & Sons |isbn=978-0-471-92805-8}}</ref> | ||
यद्यपि इलेक्ट्रॉन पी-प्रकार की सामग्री में केवल थोड़ी दूरी पर प्रवेश करते हैं, विद्युत प्रवाह निर्बाध रूप से जारी रहता है, क्योंकि छिद्र (बहुसंख्यक वाहक) विपरीत दिशा में प्रवाहित होने लगते हैं। कुल | यद्यपि इलेक्ट्रॉन पी-प्रकार की सामग्री में केवल थोड़ी दूरी पर प्रवेश करते हैं, विद्युत प्रवाह निर्बाध रूप से जारी रहता है, क्योंकि छिद्र (बहुसंख्यक वाहक) विपरीत दिशा में प्रवाहित होने लगते हैं। कुल धारा (इलेक्ट्रॉन और होल धारा का योग) अंतरिक्ष में स्थिर है, क्योंकि किसी भी बदलाव से समय के साथ चार्ज बिल्डअप होगा (यह किरचॉफ का वर्तमान नियम है)। पी-टाइप क्षेत्र से एन-टाइप क्षेत्र में छिद्रों का प्रवाह एन से पी तक इलेक्ट्रॉनों के प्रवाह के समान है (इलेक्ट्रॉनों और छिद्रों की अदला-बदली भूमिकाएं और सभी धाराओं और वोल्टेज के संकेत उलट जाते हैं)। | ||
इसलिए, डायोड के माध्यम से वर्तमान प्रवाह की मैक्रोस्कोपिक तस्वीर में एन-टाइप क्षेत्र के माध्यम से जंक्शन की ओर बहने वाले इलेक्ट्रॉन शामिल होते हैं, पी-टाइप क्षेत्र के माध्यम से जंक्शन की ओर विपरीत दिशा में बहने वाले | इसलिए, डायोड के माध्यम से वर्तमान प्रवाह की मैक्रोस्कोपिक तस्वीर में एन-टाइप क्षेत्र के माध्यम से जंक्शन की ओर बहने वाले इलेक्ट्रॉन शामिल होते हैं, पी-टाइप क्षेत्र के माध्यम से जंक्शन की ओर विपरीत दिशा में बहने वाले छिद्र, और वाहक की दो प्रजातियां लगातार पुनर्संयोजन करती हैं जंक्शन के आसपास। इलेक्ट्रॉन और छिद्र विपरीत दिशाओं में यात्रा करते हैं, लेकिन उनके पास विपरीत चार्ज भी होते हैं, इसलिए समग्र धारा डायोड के दोनों किनारों पर एक ही दिशा में होती है, जैसा कि आवश्यक है। | ||
शॉकली डायोड समीकरण हिमस्खलन ( | शॉकली डायोड समीकरण हिमस्खलन (विपरीत-बायस्ड कंडक्टिंग) क्षेत्र के बाहर एक पी-एन जंक्शन के आगे-पूर्वाग्रह परिचालन विशेषताओं को मॉडल करता है। | ||
[[Category:All articles with unsourced statements|P-N Junction]] | [[Category:All articles with unsourced statements|P-N Junction]] | ||
Line 58: | Line 58: | ||
[[Category:Template documentation pages|Short description/doc]] | [[Category:Template documentation pages|Short description/doc]] | ||
=== | === विपरीत बायस === | ||
[[File:PN Junction in Reverse Bias.png|thumb|right| | [[File:PN Junction in Reverse Bias.png|thumb|right| विपरीत बायस में एक सिलिकॉन पी-एन जंक्शन।]]पी-टाइप क्षेत्र को वोल्टेज आपूर्ति के नकारात्मक टर्मिनल से और एन-टाइप क्षेत्र को पॉजिटिव टर्मिनल से जोड़ना विपरीत बायस से मेल खाता है। यदि डायोड विपरीत-बायस्ड है, तो कैथोड पर वोल्टेज एनोड की तुलना में तुलनात्मक रूप से अधिक होता है। इसलिए, डायोड के टूटने तक बहुत निम्न धारा प्रवाहित होती है। कनेक्शन आसन्न आरेख में चित्रित किए गए हैं। | ||
क्योंकि पी-प्रकार की सामग्री अब | क्योंकि पी-प्रकार की सामग्री अब विद्युत् आपूर्ति के नकारात्मक टर्मिनल से जुड़ी हुई है, पी-प्रकार की सामग्री में 'इलेक्ट्रॉन छिद्र' को जंक्शन से दूर कर लिया जाता है, चार्ज किए गए आयनों को पीछे छोड़ दिया जाता है, और निम्न क्षेत्र की चौड़ाई बढ़ जाती है I इस प्रकार, एन-टाइप क्षेत्र सकारात्मक टर्मिनल से जुड़ा हुआ है, इलेक्ट्रॉनों को समान प्रभाव से जंक्शन से दूर कर लिया जाता है। यह वोल्टेज बाधा को बढ़ाता है जिससे आवेश वाहकों के प्रवाह के लिए उच्च प्रतिरोध उत्पन्न होता है, इस प्रकार न्यूनतम विद्युत प्रवाह को पी-एन जंक्शन को पार करने की अनुमति मिलती है। पी-एन जंक्शन के प्रतिरोध में वृद्धि के परिणामस्वरूप जंक्शन इन्सुलेटर के रूप में व्यवहार करता है। | ||
जैसे-जैसे | जैसे-जैसे विपरीत-बायस वोल्टेज बढ़ता है, डिप्लेशन ज़ोन इलेक्ट्रिक स्थान की ताकत बढ़ती जाती है। जब विद्युत क्षेत्र की तीव्रता महत्वपूर्ण स्तर से अधिक बढ़ जाती है, तो पी-एन जंक्शन रिक्तीकरण क्षेत्र टूट जाता है, और धारा प्रवाहित होने लगती है, सामान्यतः जेनर ब्रेकडाउन या हिमस्खलन ब्रेकडाउन प्रक्रियाओं द्वारा। ये दोनों ब्रेकडाउन प्रक्रियाएं गैर-विनाशकारी हैं और प्रतिवर्ती हैं, जब तक कि वर्तमान प्रवाह की मात्रा उस स्तर तक नहीं पहुंचती है जो अर्धचालक सामग्री को ज़्यादा गरम करती है और थर्मल क्षति का कारण बनती है। | ||
जेनर डायोड रेगुलेटर सर्किट में लाभ के लिए इस प्रभाव का उपयोग किया जाता है। जेनर डायोड में कम ब्रेकडाउन वोल्टेज होता है। ब्रेकडाउन वोल्टेज के लिए एक मानक मान उदाहरण के लिए 5.6 वी है। इसका मतलब है कि कैथोड पर वोल्टेज एनोड पर वोल्टेज से लगभग 5.6 वी अधिक नहीं हो सकता है (हालांकि वर्तमान के साथ थोड़ी वृद्धि होती है), क्योंकि डायोड टूट जाता है , और इसलिए आचरण करें, यदि वोल्टेज अधिक हो जाता है। यह वास्तव में डायोड पर वोल्टेज को सीमित करता है। | जेनर डायोड रेगुलेटर सर्किट में लाभ के लिए इस प्रभाव का उपयोग किया जाता है। जेनर डायोड में कम ब्रेकडाउन वोल्टेज होता है। ब्रेकडाउन वोल्टेज के लिए एक मानक मान उदाहरण के लिए 5.6 वी है। इसका मतलब है कि कैथोड पर वोल्टेज एनोड पर वोल्टेज से लगभग 5.6 वी अधिक नहीं हो सकता है (हालांकि वर्तमान के साथ थोड़ी वृद्धि होती है), क्योंकि डायोड टूट जाता है , और इसलिए आचरण करें, यदि वोल्टेज अधिक हो जाता है। यह वास्तव में डायोड पर वोल्टेज को सीमित करता है। | ||
विपरीत बायसिंग का एक अन्य अनुप्रयोग वैरेक्टर डायोड है, जहां कमी क्षेत्र की चौड़ाई (विपरीत बायस वोल्टेज के साथ नियंत्रित) डायोड की समाई को बदल देती है। | |||
== शासी समीकरण == | == शासी समीकरण == | ||
=== | === निम्न क्षेत्र का आकार === | ||
{{see also| | {{see also|बैंड झुकाव }} | ||
पी-एन जंक्शन के लिए, मान लीजिए <math> C_A(x) </math> नकारात्मक रूप से आवेशित स्वीकर्ता परमाणुओं की सांद्रता हो और <math> C_D(x) </math> सकारात्मक रूप से आवेशित दाता परमाणुओं की सांद्रता हो। | पी-एन जंक्शन के लिए, मान लीजिए <math> C_A(x) </math> नकारात्मक रूप से आवेशित स्वीकर्ता परमाणुओं की सांद्रता हो और <math> C_D(x) </math> सकारात्मक रूप से आवेशित दाता परमाणुओं की सांद्रता हो। <math>N_0(x) </math> और <math>P_0(x) </math> क्रमशः इलेक्ट्रॉनों और छिद्रों की संतुलन सांद्रता हो। इस प्रकार, प्वासों के समीकरण द्वारा: | ||
<math display="block">-\frac{\mathrm{d}^2 V}{\mathrm{d}x^2}=\frac{\rho }{\varepsilon }=\frac{q}{\varepsilon }\left[ (P_0-N_0)+(C_D-C_A)\right]</math> | <math display="block">-\frac{\mathrm{d}^2 V}{\mathrm{d}x^2}=\frac{\rho }{\varepsilon }=\frac{q}{\varepsilon }\left[ (P_0-N_0)+(C_D-C_A)\right]</math> | ||
जहाँ <math>V</math> विद्युत क्षमता, <math>\rho </math> आवेश घनत्व, <math>\varepsilon </math> अनुमति, और <math>q</math> इलेक्ट्रॉन आवेश का परिमाण है। | |||
<math>q</math> इलेक्ट्रॉन आवेश का परिमाण है। | |||
सामान्य विषय के लिए, डोपेंट की एकाग्रता प्रोफ़ाइल होती है, जो गहराई x के साथ परिवर्तित होती है, किन्तु जंक्शन के साधारण विषय के लिए, <math> C_A </math> जंक्शन के पी पक्ष पर स्थिर और एन पक्ष पर शून्य माना जा सकता है, और <math>C_D </math> जंक्शन के एन पक्ष पर स्थिर और पी पक्ष पर शून्य माना जा सकता है। <math>d_p</math> पी-साइड पर निम्न क्षेत्र की चौड़ाई हो और <math>d_n </math> एन-साइड पर निम्न क्षेत्र की चौड़ाई तब से <math>P_0=N_0=0</math> निम्न क्षेत्र के अन्य, यह होना चाहिए:- | |||
<math display="block">d_pC_A=d_nC_D</math> | <math display="block">d_pC_A=d_nC_D</math> | ||
Line 85: | Line 84: | ||
<math display="block">\Delta V=\int_D \int\frac{q}{\varepsilon }\left[ (P_0-N_0)+ (C_D-C_A)\right]\,\mathrm{d} x \,\mathrm{d}x | <math display="block">\Delta V=\int_D \int\frac{q}{\varepsilon }\left[ (P_0-N_0)+ (C_D-C_A)\right]\,\mathrm{d} x \,\mathrm{d}x | ||
=\frac{C_A C_D}{C_A+C_D}\frac{q}{2\varepsilon}(d_p+d_n)^2</math> | =\frac{C_A C_D}{C_A+C_D}\frac{q}{2\varepsilon}(d_p+d_n)^2</math> | ||
और इस प्रकार, दे <math>d</math> | और इस प्रकार, दे <math>d</math> निम्न क्षेत्र की कुल चौड़ाई हो: | ||
<math display="block">d=\sqrt{\frac{2\varepsilon }{q}\frac{C_A+C_D}{C_AC_D}\Delta V}</math> | <math display="block">d=\sqrt{\frac{2\varepsilon }{q}\frac{C_A+C_D}{C_AC_D}\Delta V}</math> | ||
<math>\Delta V</math> रूप में लिखा जा सकता है <math>\Delta V_0+\Delta V_\text{ext}</math>, जहां हमने वोल्टेज अंतर को संतुलन और बाहरी घटकों में विभाजित किया है। संतुलन क्षमता प्रसार बलों से उत्पन्न होती है, और इस प्रकार हम गणना कर सकते हैं <math>\Delta V_0</math> आइंस्टीन संबंध (काइनेटिक थ्योरी) को | <math>\Delta V</math> रूप में लिखा जा सकता है I <math>\Delta V_0+\Delta V_\text{ext}</math>, जहां हमने वोल्टेज अंतर को संतुलन और बाहरी घटकों में विभाजित किया है। संतुलन क्षमता प्रसार बलों से उत्पन्न होती है, और इस प्रकार हम गणना कर सकते हैं, <math>\Delta V_0</math> आइंस्टीन संबंध (काइनेटिक थ्योरी) को प्रारम्भ करके और अर्धचालक को नॉनडिजेनरेट मानकर <math>{P}_0 {N}_{0}= {n}_{i}^2</math> फर्मी ऊर्जा से स्वतंत्र है): | ||
<math display="block">\Delta V_0 = \frac{kT}{q} \ln \left( \frac{C_A C_D}{P_0 N_0} \right) = \frac{kT}{q}\ln \left( \frac{C_A C_D}{n_i^2} \right)</math> | <math display="block">\Delta V_0 = \frac{kT}{q} \ln \left( \frac{C_A C_D}{P_0 N_0} \right) = \frac{kT}{q}\ln \left( \frac{C_A C_D}{n_i^2} \right)</math> | ||
जहाँ T अर्धचालक का तापमान है और k बोल्ट्जमैन स्थिरांक है।<ref name="LuqueHegedus2011">{{cite book |first1=Antonio |last1=Luque | author2=Steven Hegedus | title=फोटोवोल्टिक विज्ञान और इंजीनियरिंग की पुस्तिका|url=https://books.google.com/books?id=sLMkCsde1u4C |date=29 March 2011 |publisher=John Wiley & Sons |isbn=978-0-470-97612-8}}</ref> | जहाँ T अर्धचालक का तापमान है और k बोल्ट्जमैन स्थिरांक है।<ref name="LuqueHegedus2011">{{cite book |first1=Antonio |last1=Luque | author2=Steven Hegedus | title=फोटोवोल्टिक विज्ञान और इंजीनियरिंग की पुस्तिका|url=https://books.google.com/books?id=sLMkCsde1u4C |date=29 March 2011 |publisher=John Wiley & Sons |isbn=978-0-470-97612-8}}</ref> | ||
=== रिक्तीकरण क्षेत्र में वर्तमान === | === रिक्तीकरण क्षेत्र में वर्तमान === | ||
शॉकली आदर्श डायोड समीकरण बाहरी वोल्टेज और परिवेश स्थितियों (तापमान, अर्धचालक की पसंद, आदि) | शॉकली आदर्श डायोड समीकरण बाहरी वोल्टेज और परिवेश स्थितियों (तापमान, अर्धचालक की पसंद, आदि) में फंक्शन के रूप में पी-एन जंक्शन के वर्तमान को दर्शाता है। यह देखने के लिए कि इसे कैसे प्राप्त किया जा सकता है, हमें धारा के विभिन्न कारणों की जांच करनी चाहिए। सम्मेलन यह है कि आगे (+) दिशा डायोड के अंतर्निर्मित संभावित ढाल के संतुलन के विरुद्ध प्रदर्शित की जानी चाहिए। | ||
*अग्र धारा (<math>\mathbf{J}_F</math>) | *अग्र धारा (<math>\mathbf{J}_F</math>) | ||
**डिफ्यूजन | **डिफ्यूजन धारा: कैरियर कंसंट्रेशन में स्थानीय असंतुलन के कारण धारा <math>n</math>, समीकरण के माध्यम से <math>\mathbf{J}_D\propto-q\nabla n</math> | ||
* | *विपरीत प्रवाह (<math>\mathbf{J}_R</math>) | ||
** | ** स्थानीय धारा | ||
** पीढ़ी | ** वर्तमान पीढ़ी | ||
== | == अन्य-सुधारात्मक जंक्शन == | ||
उपरोक्त आरेखों में, धातु के तारों और अर्धचालक सामग्री के मध्य संपर्क भी धातु-अर्धचालक जंक्शन बनाता है जिसे स्कॉटकी डायोड कहा जाता है। एक सरलीकृत आदर्श स्थिति में एक अर्धचालक डायोड कभी काम नहीं करेगा, क्योंकि यह श्रृंखला में आगे-पीछे जुड़े कई डायोड से बना होगा। लेकिन, व्यवहार में, धातु टर्मिनलों को छूने वाले अर्धचालक के हिस्से के भीतर सतह की अशुद्धियाँ उन कमी परतों की चौड़ाई को बहुत कम कर देती हैं, इस हद तक कि धातु-अर्धचालक जंक्शन डायोड के रूप में कार्य नहीं करते हैं। ये गैर-संशोधक जंक्शन लागू वोल्टेज ध्रुवीयता के बावजूद ओमिक संपर्कों के रूप में व्यवहार करते हैं। | उपरोक्त आरेखों में, धातु के तारों और अर्धचालक सामग्री के मध्य संपर्क भी धातु-अर्धचालक जंक्शन बनाता है जिसे स्कॉटकी डायोड कहा जाता है। एक सरलीकृत आदर्श स्थिति में एक अर्धचालक डायोड कभी काम नहीं करेगा, क्योंकि यह श्रृंखला में आगे-पीछे जुड़े कई डायोड से बना होगा। लेकिन, व्यवहार में, धातु टर्मिनलों को छूने वाले अर्धचालक के हिस्से के भीतर सतह की अशुद्धियाँ उन कमी परतों की चौड़ाई को बहुत कम कर देती हैं, इस हद तक कि धातु-अर्धचालक जंक्शन डायोड के रूप में कार्य नहीं करते हैं। ये गैर-संशोधक जंक्शन लागू वोल्टेज ध्रुवीयता के बावजूद ओमिक संपर्कों के रूप में व्यवहार करते हैं। | ||
== निर्माण == | == निर्माण == | ||
पी-एन जंक्शन डोपिंग द्वारा निर्मित किया गया है, उदाहरण के लिए आयन आरोपण, डोपेंट का प्रसार, या एपिटॉक्सी द्वारा (क्रिस्टल की सतह को डोपेंट के साथ अन्य प्रकार के डोपेंट के साथ क्रिस्टल की सतह के ऊपर बढ़ाना है) I यदि सामग्री के दो भिन्न-भिन्न टुकड़ों का प्रयोग किया जाता है, तो यह अर्धचालक के मध्य अनाज की सीमा का परिचय देता है, जो इलेक्ट्रॉनों और इलेक्ट्रॉन | पी-एन जंक्शन डोपिंग द्वारा निर्मित किया गया है, उदाहरण के लिए आयन आरोपण, डोपेंट का प्रसार, या एपिटॉक्सी द्वारा (क्रिस्टल की सतह को डोपेंट के साथ अन्य प्रकार के डोपेंट के साथ क्रिस्टल की सतह के ऊपर बढ़ाना है) I यदि सामग्री के दो भिन्न-भिन्न टुकड़ों का प्रयोग किया जाता है, तो यह अर्धचालक के मध्य अनाज की सीमा का परिचय देता है, जो इलेक्ट्रॉनों और इलेक्ट्रॉन छिद्र को विभक्त करके इसकी उपयोगिता को गंभीर रूप से बाधित करता है।{{Citation needed|date=April 2010}} | ||
== इतिहास == | == इतिहास == | ||
Revision as of 22:54, 20 March 2023
पी-एन जंक्शन अर्धचालक में क्रिस्टल के अंदर दो प्रकार की अर्धचालक सामग्री, पी-टाइप और एन-टाइप अर्धचालक के मध्य सीमा या इंटरफ़ेस है। पी (सकारात्मक) पक्ष में इलेक्ट्रॉन छिद्र की अधिकता होती है, जबकि एन (नकारात्मक) पक्ष में विद्युत रूप से तटस्थ परमाणुओं के बाहरी गोले में इलेक्ट्रॉनों की अधिकता होती है। यह विद्युत प्रवाह को केवल एक दिशा में जंक्शन से गुजरने की अनुमति देता है। पी-एन जंक्शन डोपिंग (अर्धचालक) द्वारा निर्मित किया गया है, उदाहरण के लिए आयन आरोपण, डोपेंट का प्रसार, या एपिटॉक्सी द्वारा निर्मित किया गया है I यदि सामग्री के दो अलग-अलग टुकड़ों का उपयोग किया जाता है, तो यह अर्धचालक के मध्य अनाज की सीमा का परिचय देता है, जो इलेक्ट्रॉनों और इलेक्ट्रॉन छिद्र को विभक्त करके इसकी उपयोगिता को गंभीर रूप से बाधित करता है।[citation needed]
पी-एन जंक्शन अर्धचालक डिवाइस जैसे डायोड, ट्रांजिस्टर, सौर सेल, प्रकाश उत्सर्जक डायोड (एलईडी), और एकीकृत सर्किट के प्राथमिक निर्माण खंड हैं; वे सक्रिय साइट हैं, जहां डिवाइस की इलेक्ट्रॉनिक क्रिया होती है। उदाहरण के लिए, सामान्य प्रकार का ट्रांजिस्टर, बाइपोलर जंक्शन ट्रांजिस्टर, एन-पी-एन या पी-एन-पी के रूप में श्रृंखला में दो पी-एन जंक्शन होते हैं; जबकि डायोड को पी-एन जंक्शन से निर्मित किया जा सकता है। स्कॉटटकी जंक्शन पी-एन जंक्शन का विशेष विषय है, जहाँ धातु एन-टाइप के अर्धचालक की भूमिका निभाते है।
गुण
पी-एन जंक्शन में आधुनिक अर्धचालक इलेक्ट्रॉनिक्स के लिए उपयोगी गुण होते है। पी-डॉप्ड अर्धचालक अपेक्षाकृत विद्युत चालक होते है। एन-डोप्ड अर्धचालक के विषय में भी यही सच है, लेकिन उनके मध्य जंक्शन, आवेश वाहकों के निम्न क्षेत्र बन सकते है, और इसलिए अन्य-प्रवाहकीय, दो अर्धचालक क्षेत्रों के सापेक्ष वोल्टेज पर निर्भर करते है। इस अन्य-प्रवाहकीय सतह में हेरफेर करके, पी-एन जंक्शनों को सामान्यतः डायोड के रूप में उपयोग किया जाता है: सर्किट तत्व जो एक दिशा में विद्युत् के प्रवाह की अनुमति देते हैं, लेकिन दूसरी (विपरीत) दिशा में नहीं अनुमति देते हैं।
बायस पी-एन जंक्शन क्षेत्र के सापेक्ष वोल्टेज के अनुप्रयोग है:
- अग्रिम बायस सरल धारा प्रवाह की दिशा में है I
- प्रतिलोम बायस निम्न या धारा प्रवाह की दिशा में नहीं है।
पी-एन जंक्शन के अग्र-पूर्वाग्रह और पश्च-पूर्वाग्रह गुणों का अर्थ है कि इसका उपयोग डायोड के रूप में किया जा सकता है। पी-एन जंक्शन डायोड विद्युत आवेशों को दिशा में प्रवाहित होने देता है, लेकिन विपरीत दिशा में नहीं; ऋणात्मक आवेश (इलेक्ट्रॉन) सरलता से जंक्शन में एन से पी तक प्रवाहित हो सकते हैं, लेकिन पी से एन तक नहीं प्रवाहित हो सकते हैं, और छिद्रों के लिए विपरीत सत्य है। जब पी-एन जंक्शन अग्र-अभिनत होता है, तो पी-एन जंक्शन के निम्न प्रतिरोध के कारण विद्युत आवेश स्वतंत्र रूप से प्रवाहित होते है। जब पी-एन जंक्शन विपरीत-बायस्ड होता है I चूँकि, जंक्शन बाधा अधिक हो जाते है, और आवेश प्रवाह न्यूनतम होता है।
संतुलन (शून्य पूर्वाग्रह)
पी-एन जंक्शन में, बाहरी लागू वोल्टेज के बिना, संतुलन स्थिति तक पहुंच जाती है जिसमें जंक्शन के पार संभावित अंतर बनता है। इस संभावित अंतर को बिल्ट-इन पोटेंशियल कहा जाता है .
जंक्शन पर, यादृच्छिक थर्मल माइग्रेशन के कारण एन-टाइप में कुछ मुक्त इलेक्ट्रॉन पी-टाइप में भटकते हैं। जैसे ही वे पी-टाइप में फैलते हैं, वे छिद्रों के साथ जुड़ जाते हैं, और एक दूसरे को रद्द कर देते हैं। इसी तरह से p-प्रकार के कुछ धनात्मक छिद्र n-प्रकार में घूमते हैं और मुक्त इलेक्ट्रॉनों के साथ जुड़ते हैं, और एक दूसरे को रद्द कर देते हैं। एन-टाइप में सकारात्मक रूप से चार्ज किए गए, दाता, डोपेंट परमाणु क्रिस्टल का हिस्सा हैं, और स्थानांतरित नहीं हो सकते हैं। इस प्रकार, n-प्रकार में, जंक्शन के निकट का क्षेत्र धनावेशित हो जाता है। पी-प्रकार में नकारात्मक रूप से आवेशित, स्वीकर्ता, डोपेंट परमाणु क्रिस्टल का हिस्सा हैं, और गति नहीं कर सकते। इस प्रकार, पी-प्रकार में, जंक्शन के पास का क्षेत्र ऋणात्मक रूप से आवेशित हो जाता है। नतीजा जंक्शन के पास एक क्षेत्र है जो इन चार्ज किए गए क्षेत्रों को बनाने वाले विद्युत क्षेत्र के माध्यम से जंक्शन से मोबाइल चार्ज को दूर करने के लिए कार्य करता है। पी-एन इंटरफ़ेस के पास के क्षेत्र अपनी तटस्थता खो देते हैं और उनके अधिकांश मोबाइल वाहक, स्पेस चार्ज क्षेत्र या कमी परत बनाते हैं (see चित्रा ए)
विद्युत क्षेत्र स्पेस चार्ज क्षेत्र द्वारा निर्मित इलेक्ट्रॉनों और छिद्रों दोनों के लिए प्रसार प्रक्रिया का विरोध करता है। दो समवर्ती घटनाएं हैं: प्रसार प्रक्रिया जो अधिक स्थान आवेश उत्पन्न करती है, और विद्युत क्षेत्र जो अंतरिक्ष आवेश द्वारा उत्पन्न होता है जो प्रसार का प्रतिकार करता है। संतुलन पर वाहक एकाग्रता प्रोफ़ाइल में दिखाया गया है चित्र A में नीली और लाल रेखाएँ हैं। यह भी दिखाया गया है कि संतुलन स्थापित करने वाली दो प्रतिसंतुलन घटनाएं हैं।
स्पेस चार्ज क्षेत्र निश्चित आयनों (दाता (अर्धचालक) या स्वीकर्ता (अर्धचालक)) द्वारा प्रदान किए गए शुद्ध आवेश वाला एक क्षेत्र है जिसे बहुसंख्यक वाहक द्वारा खुला छोड़ दिया गया है diffusion. When equilibrium is reached, the charge density is approximated by the displayed step function. In fact, since the y-axis of figure A is log-scale, the region is almost completely depleted of majority carriers (leaving a charge density equal to the net doping level), and the edge between the space charge region and the neutral region is quite sharp (see [[:Image:Pn-junction-equilibrium-graphs.png|आकृति बी, क्यू (एक्स) ग्राफ)। स्पेस चार्ज क्षेत्र में पी-एन इंटरफेस के दोनों किनारों पर चार्ज का समान परिमाण होता है, इस प्रकार यह इस उदाहरण में कम डॉप्ड पक्ष पर आगे बढ़ता है (आंकड़े ए और बी में एन पक्ष)।
फॉरवर्ड बायस
In forward bias, the p-type is connected with the positive terminal and the n-type is connected with the negative terminal.
पैनल ऊर्जा बैंड आरेख, विद्युत क्षेत्र और शुद्ध आवेश घनत्व दिखाते हैं। पी और एन दोनों जंक्शनों को 1e15 सेमी पर डोप किया गया है-3 (160 µC/सेमी3) डोपिंग स्तर, जिसके कारण ~0.59 V की अंतर्निहित क्षमता होती है। कमी की चौड़ाई को p–n जंक्शन पर सिकुड़ते वाहक गति से अनुमान लगाया जा सकता है, जिसके परिणामस्वरूप विद्युत प्रतिरोध कम हो जाता है। इलेक्ट्रॉन जो पी-एन जंक्शन को पी-टाइप सामग्री (या छिद्र जो एन-टाइप सामग्री में पार करते हैं) में पास के तटस्थ क्षेत्र में फैल जाते हैं। निकट-तटस्थ क्षेत्रों में अल्पसंख्यक प्रसार की मात्रा वर्तमान की मात्रा निर्धारित करती है जो डायोड के माध्यम से प्रवाहित हो सकती है।
केवल बहुसंख्यक वाहक (एन-टाइप सामग्री में इलेक्ट्रॉन या पी-टाइप में छिद्र) मैक्रोस्कोपिक लंबाई के लिए अर्धचालक के माध्यम से प्रवाह कर सकते हैं। इसे ध्यान में रखते हुए, जंक्शन पर इलेक्ट्रॉनों के प्रवाह पर विचार करें। आगे का पूर्वाग्रह इलेक्ट्रॉनों पर एक बल का कारण बनता है जो उन्हें N की ओर से P की ओर धकेलता है। आगे के पूर्वाग्रह के साथ, कमी क्षेत्र काफी संकीर्ण है कि इलेक्ट्रॉन जंक्शन को पार कर सकते हैं और पी-टाइप सामग्री में इंजेक्ट कर सकते हैं। हालांकि, वे पी-टाइप सामग्री के माध्यम से अनिश्चित काल तक प्रवाह जारी नहीं रखते हैं, क्योंकि यह उनके लिए छिद्रों के साथ पुनर्संयोजन करने के लिए ऊर्जावान रूप से अनुकूल है। पुनर्संयोजन से पहले पी-टाइप सामग्री के माध्यम से एक इलेक्ट्रॉन की औसत लंबाई को प्रसार लंबाई कहा जाता है, और यह आमतौर पर माइक्रोमीटर के क्रम में होता है।[1] यद्यपि इलेक्ट्रॉन पी-प्रकार की सामग्री में केवल थोड़ी दूरी पर प्रवेश करते हैं, विद्युत प्रवाह निर्बाध रूप से जारी रहता है, क्योंकि छिद्र (बहुसंख्यक वाहक) विपरीत दिशा में प्रवाहित होने लगते हैं। कुल धारा (इलेक्ट्रॉन और होल धारा का योग) अंतरिक्ष में स्थिर है, क्योंकि किसी भी बदलाव से समय के साथ चार्ज बिल्डअप होगा (यह किरचॉफ का वर्तमान नियम है)। पी-टाइप क्षेत्र से एन-टाइप क्षेत्र में छिद्रों का प्रवाह एन से पी तक इलेक्ट्रॉनों के प्रवाह के समान है (इलेक्ट्रॉनों और छिद्रों की अदला-बदली भूमिकाएं और सभी धाराओं और वोल्टेज के संकेत उलट जाते हैं)।
इसलिए, डायोड के माध्यम से वर्तमान प्रवाह की मैक्रोस्कोपिक तस्वीर में एन-टाइप क्षेत्र के माध्यम से जंक्शन की ओर बहने वाले इलेक्ट्रॉन शामिल होते हैं, पी-टाइप क्षेत्र के माध्यम से जंक्शन की ओर विपरीत दिशा में बहने वाले छिद्र, और वाहक की दो प्रजातियां लगातार पुनर्संयोजन करती हैं जंक्शन के आसपास। इलेक्ट्रॉन और छिद्र विपरीत दिशाओं में यात्रा करते हैं, लेकिन उनके पास विपरीत चार्ज भी होते हैं, इसलिए समग्र धारा डायोड के दोनों किनारों पर एक ही दिशा में होती है, जैसा कि आवश्यक है।
शॉकली डायोड समीकरण हिमस्खलन (विपरीत-बायस्ड कंडक्टिंग) क्षेत्र के बाहर एक पी-एन जंक्शन के आगे-पूर्वाग्रह परिचालन विशेषताओं को मॉडल करता है।
विपरीत बायस
पी-टाइप क्षेत्र को वोल्टेज आपूर्ति के नकारात्मक टर्मिनल से और एन-टाइप क्षेत्र को पॉजिटिव टर्मिनल से जोड़ना विपरीत बायस से मेल खाता है। यदि डायोड विपरीत-बायस्ड है, तो कैथोड पर वोल्टेज एनोड की तुलना में तुलनात्मक रूप से अधिक होता है। इसलिए, डायोड के टूटने तक बहुत निम्न धारा प्रवाहित होती है। कनेक्शन आसन्न आरेख में चित्रित किए गए हैं।
क्योंकि पी-प्रकार की सामग्री अब विद्युत् आपूर्ति के नकारात्मक टर्मिनल से जुड़ी हुई है, पी-प्रकार की सामग्री में 'इलेक्ट्रॉन छिद्र' को जंक्शन से दूर कर लिया जाता है, चार्ज किए गए आयनों को पीछे छोड़ दिया जाता है, और निम्न क्षेत्र की चौड़ाई बढ़ जाती है I इस प्रकार, एन-टाइप क्षेत्र सकारात्मक टर्मिनल से जुड़ा हुआ है, इलेक्ट्रॉनों को समान प्रभाव से जंक्शन से दूर कर लिया जाता है। यह वोल्टेज बाधा को बढ़ाता है जिससे आवेश वाहकों के प्रवाह के लिए उच्च प्रतिरोध उत्पन्न होता है, इस प्रकार न्यूनतम विद्युत प्रवाह को पी-एन जंक्शन को पार करने की अनुमति मिलती है। पी-एन जंक्शन के प्रतिरोध में वृद्धि के परिणामस्वरूप जंक्शन इन्सुलेटर के रूप में व्यवहार करता है।
जैसे-जैसे विपरीत-बायस वोल्टेज बढ़ता है, डिप्लेशन ज़ोन इलेक्ट्रिक स्थान की ताकत बढ़ती जाती है। जब विद्युत क्षेत्र की तीव्रता महत्वपूर्ण स्तर से अधिक बढ़ जाती है, तो पी-एन जंक्शन रिक्तीकरण क्षेत्र टूट जाता है, और धारा प्रवाहित होने लगती है, सामान्यतः जेनर ब्रेकडाउन या हिमस्खलन ब्रेकडाउन प्रक्रियाओं द्वारा। ये दोनों ब्रेकडाउन प्रक्रियाएं गैर-विनाशकारी हैं और प्रतिवर्ती हैं, जब तक कि वर्तमान प्रवाह की मात्रा उस स्तर तक नहीं पहुंचती है जो अर्धचालक सामग्री को ज़्यादा गरम करती है और थर्मल क्षति का कारण बनती है।
जेनर डायोड रेगुलेटर सर्किट में लाभ के लिए इस प्रभाव का उपयोग किया जाता है। जेनर डायोड में कम ब्रेकडाउन वोल्टेज होता है। ब्रेकडाउन वोल्टेज के लिए एक मानक मान उदाहरण के लिए 5.6 वी है। इसका मतलब है कि कैथोड पर वोल्टेज एनोड पर वोल्टेज से लगभग 5.6 वी अधिक नहीं हो सकता है (हालांकि वर्तमान के साथ थोड़ी वृद्धि होती है), क्योंकि डायोड टूट जाता है , और इसलिए आचरण करें, यदि वोल्टेज अधिक हो जाता है। यह वास्तव में डायोड पर वोल्टेज को सीमित करता है।
विपरीत बायसिंग का एक अन्य अनुप्रयोग वैरेक्टर डायोड है, जहां कमी क्षेत्र की चौड़ाई (विपरीत बायस वोल्टेज के साथ नियंत्रित) डायोड की समाई को बदल देती है।
शासी समीकरण
निम्न क्षेत्र का आकार
पी-एन जंक्शन के लिए, मान लीजिए नकारात्मक रूप से आवेशित स्वीकर्ता परमाणुओं की सांद्रता हो और सकारात्मक रूप से आवेशित दाता परमाणुओं की सांद्रता हो। और क्रमशः इलेक्ट्रॉनों और छिद्रों की संतुलन सांद्रता हो। इस प्रकार, प्वासों के समीकरण द्वारा:
सामान्य विषय के लिए, डोपेंट की एकाग्रता प्रोफ़ाइल होती है, जो गहराई x के साथ परिवर्तित होती है, किन्तु जंक्शन के साधारण विषय के लिए, जंक्शन के पी पक्ष पर स्थिर और एन पक्ष पर शून्य माना जा सकता है, और जंक्शन के एन पक्ष पर स्थिर और पी पक्ष पर शून्य माना जा सकता है। पी-साइड पर निम्न क्षेत्र की चौड़ाई हो और एन-साइड पर निम्न क्षेत्र की चौड़ाई तब से निम्न क्षेत्र के अन्य, यह होना चाहिए:-
रूप में लिखा जा सकता है I , जहां हमने वोल्टेज अंतर को संतुलन और बाहरी घटकों में विभाजित किया है। संतुलन क्षमता प्रसार बलों से उत्पन्न होती है, और इस प्रकार हम गणना कर सकते हैं, आइंस्टीन संबंध (काइनेटिक थ्योरी) को प्रारम्भ करके और अर्धचालक को नॉनडिजेनरेट मानकर फर्मी ऊर्जा से स्वतंत्र है):
रिक्तीकरण क्षेत्र में वर्तमान
शॉकली आदर्श डायोड समीकरण बाहरी वोल्टेज और परिवेश स्थितियों (तापमान, अर्धचालक की पसंद, आदि) में फंक्शन के रूप में पी-एन जंक्शन के वर्तमान को दर्शाता है। यह देखने के लिए कि इसे कैसे प्राप्त किया जा सकता है, हमें धारा के विभिन्न कारणों की जांच करनी चाहिए। सम्मेलन यह है कि आगे (+) दिशा डायोड के अंतर्निर्मित संभावित ढाल के संतुलन के विरुद्ध प्रदर्शित की जानी चाहिए।
- अग्र धारा ()
- डिफ्यूजन धारा: कैरियर कंसंट्रेशन में स्थानीय असंतुलन के कारण धारा , समीकरण के माध्यम से
- विपरीत प्रवाह ()
- स्थानीय धारा
- वर्तमान पीढ़ी
अन्य-सुधारात्मक जंक्शन
उपरोक्त आरेखों में, धातु के तारों और अर्धचालक सामग्री के मध्य संपर्क भी धातु-अर्धचालक जंक्शन बनाता है जिसे स्कॉटकी डायोड कहा जाता है। एक सरलीकृत आदर्श स्थिति में एक अर्धचालक डायोड कभी काम नहीं करेगा, क्योंकि यह श्रृंखला में आगे-पीछे जुड़े कई डायोड से बना होगा। लेकिन, व्यवहार में, धातु टर्मिनलों को छूने वाले अर्धचालक के हिस्से के भीतर सतह की अशुद्धियाँ उन कमी परतों की चौड़ाई को बहुत कम कर देती हैं, इस हद तक कि धातु-अर्धचालक जंक्शन डायोड के रूप में कार्य नहीं करते हैं। ये गैर-संशोधक जंक्शन लागू वोल्टेज ध्रुवीयता के बावजूद ओमिक संपर्कों के रूप में व्यवहार करते हैं।
निर्माण
पी-एन जंक्शन डोपिंग द्वारा निर्मित किया गया है, उदाहरण के लिए आयन आरोपण, डोपेंट का प्रसार, या एपिटॉक्सी द्वारा (क्रिस्टल की सतह को डोपेंट के साथ अन्य प्रकार के डोपेंट के साथ क्रिस्टल की सतह के ऊपर बढ़ाना है) I यदि सामग्री के दो भिन्न-भिन्न टुकड़ों का प्रयोग किया जाता है, तो यह अर्धचालक के मध्य अनाज की सीमा का परिचय देता है, जो इलेक्ट्रॉनों और इलेक्ट्रॉन छिद्र को विभक्त करके इसकी उपयोगिता को गंभीर रूप से बाधित करता है।[citation needed]
इतिहास
पी-एन जंक्शन के आविष्कार का श्रेय सामान्यतः 1939 में बेल लैब्स के अमेरिकी भौतिक विज्ञानी रसेल ओहल को दिया जाता है।[3] दो साल पच्छात 1941, वादिम लश्कर्योव ने Cu2O और सिल्वर सल्फाइड फोटोकल्स और सेलेनियम रेक्टीफायर्स क्यू में पी-एन जंक्शनों की के परिक्षण की सूचना दी।[4]
यह भी देखें
- मिश्र धातु जंक्शन ट्रांजिस्टर
- समाई-वोल्टेज प्रोफाइलिंग
- गहन स्तर की क्षणिक स्पेक्ट्रोस्कोपी
- डेलोकलाइज्ड इलेक्ट्रॉन
- डायोड मॉडलिंग
- फील्ड इफ़ेक्ट ट्रांजिस्टर
- एन-पी-एन ट्रांजिस्टर
- पी-एन-पी ट्रांजिस्टर
- सेमीकंडक्टर डिटेक्टर
- सेमीकंडक्टर डिवाइस
- ट्रांजिस्टर-ट्रांजिस्टर तर्क
संदर्भ
- ↑ Hook, J. R.; H. E. Hall (2001). भौतिक विज्ञान की ठोस अवस्था. John Wiley & Sons. ISBN 978-0-471-92805-8.
- ↑ Luque, Antonio; Steven Hegedus (29 March 2011). फोटोवोल्टिक विज्ञान और इंजीनियरिंग की पुस्तिका. John Wiley & Sons. ISBN 978-0-470-97612-8.
- ↑ Riordan, Michael; Hoddeson, Lillian (1988). क्रिस्टल फायर: ट्रांजिस्टर का आविष्कार और सूचना युग का जन्म. USA: W. W. Norton & Company. pp. 88–97. ISBN 978-0-393-31851-7.
- ↑ Lashkaryov, V. E. (2008) [1941]. "थर्मोप्रोब विधि द्वारा बाधा परत की जांच" (PDF). Ukr. J. Phys. (in English). 53 (special edition): 53–56. ISSN 2071-0194. Archived from the original (PDF) on 2015-09-28.
आगे की पढाई
- Shockley, William (1949). "The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors". Bell System Technical Journal. 28 (3): 435–489. doi:10.1002/j.1538-7305.1949.tb03645.x.
इस पेज में लापता आंतरिक लिंक की सूची
बाहरी कड़ियाँ
- The PN Junction. How Diodes Work? (English version) Educational video on the पी-एन junction.
- "पी-एन Junction" – PowerGuru, August, 2012.
- Olav Torheim, Elementary Physics of पी-एन Junctions, 2007.
- PN Junction Properties Calculator
- PN Junction Lab free to use on nanoHUB.org allows simulation and study of a p–n junction diode with different doping and materials. Users can calculate current-voltage (I-V) & capacitance-voltage (C-V) outputs, as well.