एकल इंटीग्रल: Difference between revisions

From Vigyanwiki
(Created page with "गणित में, एकवचन अभिन्न हार्मोनिक विश्लेषण के लिए केंद्रीय हैं और...")
 
No edit summary
Line 1: Line 1:
गणित में, एकवचन अभिन्न [[हार्मोनिक विश्लेषण]] के लिए केंद्रीय हैं और आंशिक अंतर समीकरणों के अध्ययन से घनिष्ठ रूप से जुड़े हुए हैं। मोटे तौर पर एकवचन अभिन्न बोलना एक अभिन्न संकारक है
गणित में, एकवचन अभिन्न [[हार्मोनिक विश्लेषण]] के लिए केंद्रीय होते हैं, और आंशिक अंतर समीकरणों के अध्ययन से घनिष्ठ रूप से जुड़े हुए होते हैं। सामान्यतः एकवचन अभिन्न प्राकृतिक संकारक होते है I


: <math>T(f)(x) = \int K(x,y)f(y) \, dy, </math>
: <math>T(f)(x) = \int K(x,y)f(y) \, dy, </math>
जिसका कर्नेल कार्य K : 'R' है<sup>n</sup>×'आर'<sup>n</sup> → 'R' विकर्ण x = y के साथ [[गणितीय विलक्षणता]] है। विशेष रूप से, विलक्षणता ऐसी है कि |K(x, y)| आकार का है |x − y|<sup>−n</sup> असमान रूप से |x − y| के रूप में → 0. चूंकि इस तरह के इंटीग्रल सामान्य रूप से पूरी तरह से इंटेग्रेबल नहीं हो सकते हैं, इसलिए एक कठोर परिभाषा को उन्हें |y − x| पर इंटीग्रल की सीमा के रूप में परिभाषित करना चाहिए। > ε ε → 0 के रूप में, लेकिन व्यवहार में यह एक तकनीकी है। आम तौर पर एल पर उनकी बाध्यता जैसे परिणाम प्राप्त करने के लिए आगे की धारणाओं की आवश्यकता होती है<sup>पी</sup>('आर'<sup>एन</sup>).
जिसका कर्नेल कार्य ''K'' : '''R'''<sup>''n''</sup>×'''R'''<sup>''n''</sup> → '''R''' विकर्ण x = y के साथ [[गणितीय विलक्षणता]] है। विशेष रूप से, विलक्षणता ऐसी है कि |K(x, y)| आकार का है |x − y|<sup>−n</sup> असमान रूप से |x − y| के रूप में → 0. चूंकि इस तरह के इंटीग्रल सामान्य रूप से पूरी तरह से इंटेग्रेबल नहीं हो सकते हैं, इसलिए एक कठोर परिभाषा को उन्हें |y − x| पर इंटीग्रल की सीमा के रूप में परिभाषित करना चाहिए। > ε ε → 0 के रूप में, लेकिन व्यवहार में यह एक तकनीकी है। आम तौर पर एल पर उनकी बाध्यता जैसे परिणाम प्राप्त करने के लिए आगे की धारणाओं की आवश्यकता होती है<sup>पी</sup>('आर'<sup>एन</sup>).


== हिल्बर्ट ट्रांसफॉर्म ==
== हिल्बर्ट ट्रांसफॉर्म ==
Line 92: Line 92:
टी (बी) प्रमेय में कहा गया है कि एक काल्डेरन-ज़िग्मंड कर्नेल से जुड़ा एक विलक्षण अभिन्न संचालिका टी एल पर बंधा हुआ है<sup>2</sup> यदि यह कुछ परिबद्ध अभिवृद्धि कार्यों के लिए निम्नलिखित तीन शर्तों को पूरा करता है b<sub>1</sub> और बी<sub>2</sub>:<ref>{{cite news | last = David |author3=Journé |author2=Semmes | title = Opérateurs de Calderón&ndash;Zygmund, fonctions para-accrétives et interpolation | publisher = Revista Matemática Iberoamericana | volume = 1 | pages = 1&ndash;56| language = fr | year = 1985 }}</ref>
टी (बी) प्रमेय में कहा गया है कि एक काल्डेरन-ज़िग्मंड कर्नेल से जुड़ा एक विलक्षण अभिन्न संचालिका टी एल पर बंधा हुआ है<sup>2</sup> यदि यह कुछ परिबद्ध अभिवृद्धि कार्यों के लिए निम्नलिखित तीन शर्तों को पूरा करता है b<sub>1</sub> और बी<sub>2</sub>:<ref>{{cite news | last = David |author3=Journé |author2=Semmes | title = Opérateurs de Calderón&ndash;Zygmund, fonctions para-accrétives et interpolation | publisher = Revista Matemática Iberoamericana | volume = 1 | pages = 1&ndash;56| language = fr | year = 1985 }}</ref>
<ओल प्रकार = ए>
<ओल प्रकार = ए>
<ली><math>M_{b_2}TM_{b_1}</math> कमजोर रूप से घिरा हुआ है;</li>
<ली><math>M_{b_2}TM_{b_1}</math> कमजोर रूप से घिरा हुआ है;
<ली><math>T(b_1)</math> [[परिबद्ध माध्य दोलन]] में है;</li>
<ली><math>T(b_1)</math> [[परिबद्ध माध्य दोलन]] में है;
<ली><math>T^t(b_2),</math> परिबद्ध माध्य दोलन में है, जहाँ T<sup>t</sup> T का ट्रांसपोज़ ऑपरेटर है।</li>
<ली><math>T^t(b_2),</math> परिबद्ध माध्य दोलन में है, जहाँ T<sup>t</sup> T का ट्रांसपोज़ ऑपरेटर है।
</ओल>
</ओल>



Revision as of 12:17, 24 March 2023

गणित में, एकवचन अभिन्न हार्मोनिक विश्लेषण के लिए केंद्रीय होते हैं, और आंशिक अंतर समीकरणों के अध्ययन से घनिष्ठ रूप से जुड़े हुए होते हैं। सामान्यतः एकवचन अभिन्न प्राकृतिक संकारक होते है I

जिसका कर्नेल कार्य K : Rn×RnR विकर्ण x = y के साथ गणितीय विलक्षणता है। विशेष रूप से, विलक्षणता ऐसी है कि |K(x, y)| आकार का है |x − y|−n असमान रूप से |x − y| के रूप में → 0. चूंकि इस तरह के इंटीग्रल सामान्य रूप से पूरी तरह से इंटेग्रेबल नहीं हो सकते हैं, इसलिए एक कठोर परिभाषा को उन्हें |y − x| पर इंटीग्रल की सीमा के रूप में परिभाषित करना चाहिए। > ε ε → 0 के रूप में, लेकिन व्यवहार में यह एक तकनीकी है। आम तौर पर एल पर उनकी बाध्यता जैसे परिणाम प्राप्त करने के लिए आगे की धारणाओं की आवश्यकता होती हैपी('आर'एन).

हिल्बर्ट ट्रांसफॉर्म

मूलप्ररूपी एकवचन अभिन्न संचालिका हिल्बर्ट रूपांतरण एच है। यह 'R' में x के लिए कर्नेल K(x) = 1/(πx) के विरुद्ध कनवल्शन द्वारा दिया गया है। ज्यादा ठीक,

इनमें से सबसे सीधा उच्च आयाम एनालॉग्स रिज्ज़ ट्रांसफॉर्म हैं, जो K(x) = 1/x को प्रतिस्थापित करते हैं

जहां मैं = 1, …, एन और 'R' में x का i-वाँ घटक हैएन. ये सभी ऑपरेटर L पर बंधे हैंp और कमजोर-प्रकार (1, 1) अनुमानों को संतुष्ट करें।[1]


कनवल्शन टाइप का एकवचन इंटीग्रल

कनवल्शन टाइप का एक सिंगुलर इंटीग्रल एक ऑपरेटर T है जिसे कर्नेल K के साथ कनवल्शन द्वारा परिभाषित किया गया है जो कि 'R' पर स्थानीय रूप स्थानीय रूप से एकीकृत समारोह है।n\{0}, इस अर्थ में कि

 

 

 

 

(1)

मान लीजिए कि कर्नेल संतुष्ट करता है:

  1. K के फूरियर रूपांतरण पर आकार की स्थिति
  2. चिकनाई की स्थिति: कुछ C > 0 के लिए,

तब यह दिखाया जा सकता है कि T, L पर परिबद्ध हैपी('आर'n) और कमजोर-प्रकार (1, 1) अनुमान को संतुष्ट करता है।

संपत्ति 1. यह सुनिश्चित करने के लिए आवश्यक है कि कनवल्शन (1) वितरण के साथ (गणित) # टेम्पर्ड वितरण और फूरियर ट्रांसफॉर्म पी.वी. K कॉची प्रिंसिपल वैल्यू द्वारा दिया गया

एल पर एक अच्छी तरह से परिभाषित फूरियर गुणक है2</उप>। गुणों में से कोई भी 1. या 2. आवश्यक रूप से सत्यापित करना आसान नहीं है, और विभिन्न प्रकार की पर्याप्त शर्तें मौजूद हैं। आम तौर पर अनुप्रयोगों में, रद्द करने की स्थिति भी होती है

जिसे चेक करना काफी आसान है। यह स्वचालित है, उदाहरण के लिए, यदि K एक विषम फलन है। यदि, इसके अलावा, कोई 2. और निम्न आकार की स्थिति मानता है

तो यह दिखाया जा सकता है कि 1. अनुसरण करता है।

चिकनाई की स्थिति 2. सिद्धांत रूप में जांचना भी अक्सर मुश्किल होता है, कर्नेल K की निम्नलिखित पर्याप्त स्थिति का उपयोग किया जा सकता है:

ध्यान दें कि ये शर्तें हिल्बर्ट और रिज़ ट्रांसफ़ॉर्म के लिए पूरी होती हैं, इसलिए यह परिणाम उन परिणामों का विस्तार है।[2]


== गैर-संकल्प प्रकार == के एकवचन अभिन्न

ये और भी सामान्य ऑपरेटर हैं। हालांकि, चूंकि हमारी धारणाएं इतनी कमजोर हैं, इसलिए यह जरूरी नहीं है कि ये ऑपरेटर एल पर बंधे होंपी</सुप>.

काल्डेरन-ज़िगमंड गुठली

एक समारोह K : Rn×RnR को अल्बर्टो काल्डेरन | काल्डेरोन-एंटोनी ज़िगमंड कर्नेल कहा जाता है यदि यह कुछ स्थिरांक C > 0 और δ > के लिए निम्नलिखित शर्तों को पूरा करता है[2]<ओल प्रकार = ए> <ली>

</ली> <ली>

</ली> <ली>

</ली> </ अल>

गैर-संक्रमण प्रकार के एकवचन अभिन्न

T को Calderón–Zygmund Kernel K से संबंधित गैर-कनवल्शन प्रकार का एकवचन इंटीग्रल ऑपरेटर कहा जाता है यदि

जब भी f और g चिकने होते हैं और उनका समर्थन अलग होता है।[2]ऐसे ऑपरेटरों को एल पर बाध्य होने की आवश्यकता नहीं हैपी</सुप>

काल्डेरन-ज़िगमंड ऑपरेटर्स

एक Calderón-Zygmund कर्नेल K से जुड़े गैर-संक्रमण प्रकार T का एक विलक्षण अभिन्न अंग एक Calderón-Zygmund ऑपरेटर कहलाता है जब यह L पर घिरा होता है।2, यानी एक C > 0 ऐसा है

सभी सुचारू रूप से समर्थित ƒ के लिए।

यह साबित किया जा सकता है कि ऐसे ऑपरेटर वास्तव में सभी एल पर भी बंधे हुए हैंp 1 < p < ∞ के साथ।

टी (बी) प्रमेय

टी (बी) प्रमेय एक एकल इंटीग्रल ऑपरेटर के लिए काल्डेरॉन-ज़िग्मंड ऑपरेटर होने के लिए पर्याप्त शर्तें प्रदान करता है, जो कि एल पर बंधे होने के लिए काल्डेरॉन-ज़िग्मंड कर्नेल से जुड़े एकवचन इंटीग्रल ऑपरेटर के लिए है।2</उप>। परिणाम बताने के लिए हमें पहले कुछ शब्दों को परिभाषित करना होगा।

सामान्यीकृत टक्कर 'R' पर एक सहज कार्य φ हैn त्रिज्या 10 की एक गेंद में समर्थित है और मूल बिंदु पर केंद्रित है जैसे कि |∂α φ(x)| ≤ 1, सभी बहु-सूचकांकों के लिए |α| ≤ n + 2. τ द्वारा निरूपित करेंx(φ)(y) = φ(y - x) और φr(एक्स) = आर−nφ(x/r) 'R' में सभी x के लिएn और r > 0। एक ऑपरेटर को कमजोर रूप से बाध्य कहा जाता है यदि एक स्थिर सी ऐसा है कि

सभी सामान्यीकृत धक्कों के लिए φ और ψ। किसी फ़ंक्शन को अभिवृद्धि कहा जाता है यदि कोई स्थिरांक c > 0 ऐसा हो कि 'R' में सभी x के लिए Re(b)(x) ≥ c हो। एम द्वारा निरूपित करेंb एक फ़ंक्शन बी द्वारा गुणन द्वारा दिया गया संकारक।

टी (बी) प्रमेय में कहा गया है कि एक काल्डेरन-ज़िग्मंड कर्नेल से जुड़ा एक विलक्षण अभिन्न संचालिका टी एल पर बंधा हुआ है2 यदि यह कुछ परिबद्ध अभिवृद्धि कार्यों के लिए निम्नलिखित तीन शर्तों को पूरा करता है b1 और बी2:[3] <ओल प्रकार = ए> <ली> कमजोर रूप से घिरा हुआ है; <ली> परिबद्ध माध्य दोलन में है; <ली> परिबद्ध माध्य दोलन में है, जहाँ Tt T का ट्रांसपोज़ ऑपरेटर है। </ओल>

यह भी देखें

  • बंद घटता पर एकवचन अभिन्न ऑपरेटर

टिप्पणियाँ

  1. Stein, Elias (1993). "हार्मोनिक विश्लेषण". Princeton University Press.
  2. 2.0 2.1 2.2 Grafakos, Loukas (2004), "7", Classical and Modern Fourier Analysis, New Jersey: Pearson Education, Inc.
  3. David; Semmes; Journé (1985). "Opérateurs de Calderón–Zygmund, fonctions para-accrétives et interpolation" (in français). Vol. 1. Revista Matemática Iberoamericana. pp. 1–56.


संदर्भ


बाहरी संबंध