एकल इंटीग्रल: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
गणित में, एकवचन अभिन्न [[हार्मोनिक विश्लेषण]] के लिए केंद्रीय होते हैं, और आंशिक अंतर समीकरणों के अध्ययन से घनिष्ठ रूप से | गणित में, एकवचन अभिन्न [[हार्मोनिक विश्लेषण]] के लिए केंद्रीय होते हैं, और आंशिक अंतर समीकरणों के अध्ययन से घनिष्ठ रूप से संयुक्त होते हैं। सामान्यतः एकवचन अभिन्न प्राकृतिक संकारक होते है I | ||
: <math>T(f)(x) = \int K(x,y)f(y) \, dy, </math> | : <math>T(f)(x) = \int K(x,y)f(y) \, dy, </math> | ||
Line 8: | Line 8: | ||
{{main|हिल्बर्ट रूपांतरण}} | {{main|हिल्बर्ट रूपांतरण}} | ||
मूल प्ररूपी एकवचन अभिन्न संचालिका का हिल्बर्ट रूपांतरण H है। यह 'R' में x के लिए कर्नेल K(x) = 1/(πx) के विरुद्ध कनवल्शन द्वारा दिया गया है। | |||
: <math>H(f)(x) = \frac{1}{\pi}\lim_{\varepsilon \to 0} \int_{|x-y|>\varepsilon} \frac{1}{x-y}f(y) \, dy. </math> | : <math>H(f)(x) = \frac{1}{\pi}\lim_{\varepsilon \to 0} \int_{|x-y|>\varepsilon} \frac{1}{x-y}f(y) \, dy. </math> | ||
Line 14: | Line 14: | ||
: <math>K_i(x) = \frac{x_i}{|x|^{n+1}}</math> | : <math>K_i(x) = \frac{x_i}{|x|^{n+1}}</math> | ||
जहां i = 1, …, n और <math>x_i</math> ''''R'''<sup>''n''</sup>' में x का i-वाँ घटक है I ये सभी ऑपरेटर ''L<sup>p</sup>'' पर | जहां i = 1, …, n और <math>x_i</math> ''''R'''<sup>''n''</sup>' में x का i-वाँ घटक है I ये सभी ऑपरेटर ''L<sup>p</sup>'' पर जुड़े होते हैं, और (1, 1) अनुमानों को संतुष्ट करते हैं।<ref name=bible>{{cite news | last = Stein | first = Elias | title = हार्मोनिक विश्लेषण| publisher = Princeton University Press| year = 1993 }}</ref> | ||
== कनवल्शन प्ररूप का एकवचन अभिन्न == | == कनवल्शन प्ररूप का एकवचन अभिन्न == | ||
{{Main| कनवल्शन प्ररूप का एकवचन अभिन्न ऑपरेटर्स}} | {{Main| कनवल्शन प्ररूप का एकवचन अभिन्न ऑपरेटर्स}} | ||
कनवल्शन प्ररूप का एकवचन अभिन्न ऑपरेटर T है, जिसे कर्नेल K के साथ कनवल्शन द्वारा परिभाषित किया गया है, जो कि '''R'''<sup>''n''</sup>\{0} पर [[स्थानीय रूप से एकीकृत समारोह|स्थानीय रूप से एकीकृत फंक्शन]] है। इस प्रकार | कनवल्शन प्ररूप का एकवचन अभिन्न ऑपरेटर T है, जिसे कर्नेल K के साथ कनवल्शन द्वारा परिभाषित किया गया है, जो कि '''R'''<sup>''n''</sup>\{0} पर [[स्थानीय रूप से एकीकृत समारोह|स्थानीय रूप से एकीकृत फंक्शन]] है। इस प्रकार हैं:- | ||
{{NumBlk|:|<math>T(f)(x) = \lim_{\varepsilon \to 0} \int_{|y-x|>\varepsilon} K(x-y)f(y) \, dy. </math>|{{EquationRef|1}}}} | {{NumBlk|:|<math>T(f)(x) = \lim_{\varepsilon \to 0} \int_{|y-x|>\varepsilon} K(x-y)f(y) \, dy. </math>|{{EquationRef|1}}}} |
Revision as of 16:15, 24 March 2023
गणित में, एकवचन अभिन्न हार्मोनिक विश्लेषण के लिए केंद्रीय होते हैं, और आंशिक अंतर समीकरणों के अध्ययन से घनिष्ठ रूप से संयुक्त होते हैं। सामान्यतः एकवचन अभिन्न प्राकृतिक संकारक होते है I
जिसका कर्नेल कार्य K : Rn×Rn → R विकर्ण x = y के साथ गणितीय विलक्षणता है। विशेष रूप से, विलक्षणता ऐसी है कि |K(x, y)| आकार का है I |x − y|−n असमान रूप से |x − y| के रूप में → 0 होते है I चूंकि इस प्रकार के अभिन्न सामान्य रूप से पूर्णरूपेण समाकलनीय नहीं हो सकते हैं, इसलिए कठोर परिभाषा को उन्हें |y − x| पर अभिन्न की सीमा के रूप में परिभाषित करना चाहिए। > ε ε → 0 के रूप में, किन्तु व्यवहार में यह तकनीकी है। सामान्यतः Lp(Rn) पर उनकी बाध्यता से परिणाम प्राप्त करने के लिए आगे की धारणाओं की आवश्यकता होती है I
हिल्बर्ट रूपांतरण
मूल प्ररूपी एकवचन अभिन्न संचालिका का हिल्बर्ट रूपांतरण H है। यह 'R' में x के लिए कर्नेल K(x) = 1/(πx) के विरुद्ध कनवल्शन द्वारा दिया गया है।
इनमें से सीधा उच्च आयाम एनालॉग्स रिज्ज़ ट्रांसफॉर्म हैं, जो K(x) = 1/x को प्रतिस्थापित करते हैं:-
जहां i = 1, …, n और 'Rn' में x का i-वाँ घटक है I ये सभी ऑपरेटर Lp पर जुड़े होते हैं, और (1, 1) अनुमानों को संतुष्ट करते हैं।[1]
कनवल्शन प्ररूप का एकवचन अभिन्न
कनवल्शन प्ररूप का एकवचन अभिन्न ऑपरेटर T है, जिसे कर्नेल K के साथ कनवल्शन द्वारा परिभाषित किया गया है, जो कि Rn\{0} पर स्थानीय रूप से एकीकृत फंक्शन है। इस प्रकार हैं:-
-
(1)
मान लीजिए कि कर्नेल संतुष्ट करता है:
- K के फूरियर रूपांतरण पर आकार की स्थिति इस प्रकार है:-
- समतलता की स्थिति: कुछ C > 0 के लिए,
यह दिखाया जा सकता है कि T, Lp(Rn) पर परिबद्ध है, और 1, 1) अनुमान को संतुष्ट करते है।
संपत्ति 1 यह सुनिश्चित करने के लिए आवश्यक है कि, कनवल्शन (1) वितरण के साथ टेम्पर्ड वितरण और फूरियर ट्रांसफॉर्म p.v. K कॉची प्रिंसिपल वैल्यू द्वारा दिया गया है:-
L2 पर उत्तम प्रकार से परिभाषित फूरियर गुणक है I गुणों में से कोई भी 1 या 2 आवश्यक रूप से सत्यापित करना सरल नहीं है, और विभिन्न प्रकार की पर्याप्त स्थितियाँ उपस्थित होती हैं। सामान्यतः अनुप्रयोगों में, रद्द करने की स्थिति भी होती है I
जिसका परिक्षण करना सरल होता है। यह स्वचालित है, उदाहरण के लिए, यदि K विषम फलन है। यदि, इसके अतिरिक्त, कोई 2 और निम्न आकार की स्थिति मानता है:-
तो यह दिखाया जा सकता है कि 1 अनुसरण करता है।
समतलता की स्थिति 2 सिद्धांत रूप में परिक्षण करना प्रायः कठिन होता है I कर्नेल K की निम्नलिखित पर्याप्त स्थिति का उपयोग किया जा सकता है:
ध्यान दें कि ये स्थिति हिल्बर्ट और रिज़ रूपांतरण के लिए पूर्ण होती हैं, इसलिए यह परिणाम उन परिणामों का विस्तार होता है।[2]
अन्य-संकल्प प्ररूप के एकवचन अभिन्न
ये सामान्य ऑपरेटर होते हैं। चूँकि, धारणाएं इतनी अशक्त हैं, इसलिए यह जरूरी नहीं है कि, ये ऑपरेटर Lp पर बंधे हों I
काल्डेरन-ज़िगमंड गुठली
फंक्शन K : Rn×Rn → R को अल्बर्टो काल्डेरोन-एंटोनी ज़िगमंड कर्नेल कहा जाता है I यदि यह कुछ स्थिरांक C > 0 और δ > के लिए निम्नलिखित स्थितियों C > 0 और δ > 0 को पूर्ण करते है I[2]
अन्य-संक्रमण प्ररूप के एकवचन अभिन्न
T को काल्डेरन-ज़िगमंड कर्नेल K से संबंधित अन्य-कनवल्शन प्ररूप का एकवचन अभिन्न ऑपरेटर कहा जाता है I यदि,
जब भी f और g समतल होते हैं, तब उनका समर्थन भिन्न होता है।[2] ऐसे ऑपरेटरों को Lp पर बाध्य होने की आवश्यकता नहीं होती है I
काल्डेरन-ज़िगमंड ऑपरेटर्स
काल्डेरन-ज़िगमंड कर्नेल K से जुड़े अन्य-संक्रमण प्ररूप T का विलक्षण अभिन्न अंग काल्डेरन-ज़िगमंड ऑपरेटर कहलाता है, जब यह Lp द्वारा घिरा होता है। यदि C > 0 ऐसा है:-
सुचारू रूप से समर्थित ƒ के लिए:-
यह सिद्ध किया जा सकता है कि ऐसे ऑपरेटर वास्तव में सभी Lp पर 1 < p < ∞ के साथ बंधे हुए हैं ।
टी (बी) प्रमेय
टी (बी) प्रमेय एकल अभिन्न ऑपरेटर पर काल्डेरॉन-ज़िग्मंड ऑपरेटर होने के लिए पर्याप्त स्थिति प्रदान करती है, जो कि L2 पर बंधे होने के लिए काल्डेरॉन-ज़िग्मंड कर्नेल से जुड़े एकवचन इंटीग्रल ऑपरेटर के लिए है। परिणाम के लिए हमें पहले कुछ शब्दों को परिभाषित करना होगा।
सामान्यीकृत उभार Rn पर सहज कार्य φ है, जो त्रिज्या 10 की गेंद में समर्थित है, और मूल बिंदु पर केंद्रित है I जैसे कि |∂α φ(x)| ≤ 1, सभी बहु-सूचकांकों के लिए |α| ≤ n + 2. τ, Rn और r > 0 में सभी x के लिए (φ)(y) = φ(y - x) और φr(x) = r−nφ(x/r) द्वारा निरूपित करें I ऑपरेटर को अशक्त रूप से बाध्य कहा जाता है, यदि स्थिर C ऐसा है कि,
सभी सामान्यीकृत उभार के लिए φ और ψ। किसी फ़ंक्शन को अभिवृद्धि कहा जाता है I यदि कोई स्थिरांक c > 0 ऐसा हो कि 'R' में सभी x के लिए Re(b)(x) ≥ c हो। फलन b गुणन द्वारा दिए गए संकारक को Mb से निरूपित करें।
टी (बी) प्रमेय में कहा गया है कि काल्डेरोन-ज़िग्मंड कर्नेल से जुड़ा विलक्षण अभिन्न संचालिका T, L2 पर परिबद्ध है I यदि यह कुछ परिबद्ध माध्य दोलन कार्यों b1 और b2 के लिए निम्नलिखित तीन स्थितियों को पूरा करता है:[3]
अशक्त रूप से घिरा हुआ है;
बीएमओ में है;
बीएमओ में है, जहाँ Tt, T का ट्रांसपोज़ ऑपरेटर है।
यह भी देखें
- क्लोज्ड कर्व्स पर एकवचन अभिन्न ऑपरेटर्स
टिप्पणियाँ
- ↑ Stein, Elias (1993). "हार्मोनिक विश्लेषण". Princeton University Press.
- ↑ 2.0 2.1 2.2 Grafakos, Loukas (2004), "7", Classical and Modern Fourier Analysis, New Jersey: Pearson Education, Inc.
- ↑ David; Semmes; Journé (1985). "Opérateurs de Calderón–Zygmund, fonctions para-accrétives et interpolation" (in français). Vol. 1. Revista Matemática Iberoamericana. pp. 1–56.
संदर्भ
- Calderon, A. P.; Zygmund, A. (1952), "On the existence of certain singular integrals", Acta Mathematica, 88 (1): 85–139, doi:10.1007/BF02392130, ISSN 0001-5962, MR 0052553, Zbl 0047.10201.
- Calderon, A. P.; Zygmund, A. (1956), "On singular integrals", American Journal of Mathematics, The Johns Hopkins University Press, 78 (2): 289–309, doi:10.2307/2372517, ISSN 0002-9327, JSTOR 2372517, MR 0084633, Zbl 0072.11501.
- Coifman, Ronald; Meyer, Yves (1997), Wavelets: Calderón-Zygmund and multilinear operators, Cambridge Studies in Advanced Mathematics, vol. 48, Cambridge University Press, pp. xx+315, ISBN 0-521-42001-6, MR 1456993, Zbl 0916.42023.
- Mikhlin, Solomon G. (1948), "Singular integral equations", UMN, 3 (25): 29–112, MR 0027429 (in Russian).
- Mikhlin, Solomon G. (1965), Multidimensional singular integrals and integral equations, International Series of Monographs in Pure and Applied Mathematics, vol. 83, Oxford–London–Edinburgh–New York City–Paris–Frankfurt: Pergamon Press, pp. XII+255, MR 0185399, Zbl 0129.07701.
- Mikhlin, Solomon G.; Prössdorf, Siegfried (1986), Singular Integral Operators, Berlin–Heidelberg–New York City: Springer Verlag, p. 528, ISBN 0-387-15967-3, MR 0867687, Zbl 0612.47024, (European edition: ISBN 3-540-15967-3).
- Stein, Elias (1970), Singular integrals and differentiability properties of functions, Princeton Mathematical Series, vol. 30, Princeton, NJ: Princeton University Press, pp. XIV+287, ISBN 0-691-08079-8, MR 0290095, Zbl 0207.13501
बाहरी संबंध
- Stein, Elias M. (October 1998). "Singular Integrals: The Roles of Calderón and Zygmund" (PDF). Notices of the American Mathematical Society. 45 (9): 1130–1140.