संयुग्मी स्थानान्तरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 52: Line 52:


== प्रेरणा ==
== प्रेरणा ==
संयुग्म संक्रमण को यह ध्यान देकर प्रेरित किया जा सकता है कि जटिल संख्याओं को उपयोगी रूप से प्रदर्शित किया जा सकता है <math>2 \times 2</math> वास्तविक मैट्रिसेस, आव्यूह जोड़ और गुणन का पालन करना:
संयुग्म संक्रमण को यह ध्यान देकर प्रेरित किया जा सकता है। कि जटिल संख्याओं को उपयोगी रूप से प्रदर्शित किया जा सकता है और  <math>2 \times 2</math> वास्तविक मैट्रिसेस, आव्यूह जोड़ और गुणन का पालन करना।
:<math>a + ib \equiv \begin{bmatrix} a & -b \\ b & a \end{bmatrix}.</math>
:<math>a + ib \equiv \begin{bmatrix} a & -b \\ b & a \end{bmatrix}.</math>
यही है, प्रत्येक जटिल संख्या को निरूपित करना <math>z</math> असली द्वारा <math>2 \times 2</math> Argand आरेख पर रैखिक परिवर्तन का आव्यूह (वास्तविक वेक्टर अंतरिक्ष के रूप में देखा गया <math>\mathbb{R}^2</math>), जटिल से प्रभावित<math>z</math>-गुणन पर <math>\mathbb{C}</math>.
यही है, प्रत्येक जटिल संख्या को <math>z</math> निरूपित करना और वास्तविक द्वारा अरगंड आरेख पर  <math>2 \times 2</math> रैखिक परिवर्तन का आव्यूह वास्तविक वेक्टर अंतरिक्ष के रूप में <math>\mathbb{R}^2</math> देखा गया। जटिल से प्रभावित<math>z</math>-गुणन पर <math>\mathbb{C}</math>.


इस प्रकार, <math>m \times n</math> सम्मिश्र संख्याओं के आव्यूह को a द्वारा अच्छी तरह प्रदर्शित किया जा सकता है <math>2m \times 2n</math> वास्तविक संख्याओं का आव्यूह। संयुग्म पारगमन, इसलिए, इस तरह के आव्यूह को आसानी से स्थानांतरित करने के परिणाम के रूप में बहुत स्वाभाविक रूप से उत्पन्न होता है - जब के रूप में फिर से देखा जाता है <math>n \times m</math> आव्यूह जटिल संख्याओं से बना है।
इस प्रकार, a <math>m \times n</math> सम्मिश्र संख्याओं के आव्यूह को a द्वारा अच्छी प्रकार प्रदर्शित किया जा सकता है। <math>2m \times 2n</math> वास्तविक संख्याओं का आव्यूह संयुग्म पारगमन है इसलिए, इस प्रकार के आव्यूह को आसानी से स्थानांतरित करने के परिणाम के रूप में बहुत स्वाभाविक रूप से उत्पन्न होता है। जब एक के रूप में फिर से देखा जाता है <math>n \times m</math> आव्यूह जटिल संख्याओं से बना है।


== संयुग्म संक्रमण के गुण ==
== संयुग्म संक्रमण के गुण ==
Line 66: Line 66:
* <math>\boldsymbol{A}</math> [[उलटा मैट्रिक्स|उलटा]] आव्यूह है [[अगर और केवल अगर|यदि और केवल]] यदि <math>\boldsymbol{A}^\mathrm{H}</math> उलटा है, और उस मामले में <math>\left(\boldsymbol{A}^\mathrm{H}\right)^{-1} = \left(\boldsymbol{A}^{-1}\right)^{\mathrm{H}}</math>.
* <math>\boldsymbol{A}</math> [[उलटा मैट्रिक्स|उलटा]] आव्यूह है [[अगर और केवल अगर|यदि और केवल]] यदि <math>\boldsymbol{A}^\mathrm{H}</math> उलटा है, और उस मामले में <math>\left(\boldsymbol{A}^\mathrm{H}\right)^{-1} = \left(\boldsymbol{A}^{-1}\right)^{\mathrm{H}}</math>.
* के [[eigenvalue|आइगेनवैल्यूज़]] <math>\boldsymbol{A}^\mathrm{H}</math> के आइगेनवैल्यूज़ ​​​​के जटिल संयुग्म हैं <math>\boldsymbol{A}</math>.
* के [[eigenvalue|आइगेनवैल्यूज़]] <math>\boldsymbol{A}^\mathrm{H}</math> के आइगेनवैल्यूज़ ​​​​के जटिल संयुग्म हैं <math>\boldsymbol{A}</math>.
* <math>\left\langle \boldsymbol{A} x,y \right\rangle_m = \left\langle x, \boldsymbol{A}^\mathrm{H} y\right\rangle_n </math> किसी के लिए <math>m \times n</math> आव्यूह <math>\boldsymbol{A}</math>, कोई भी सदिश <math>x \in \mathbb{C}^n </math> और कोई वेक्टर <math>y \in \mathbb{C}^m </math>. यहाँ, <math>\langle\cdot,\cdot\rangle_m</math> मानक जटिल आंतरिक उत्पाद को दर्शाता है <math> \mathbb{C}^m </math>, और इसी तरह के लिए <math>\langle\cdot,\cdot\rangle_n</math>.
* <math>\left\langle \boldsymbol{A} x,y \right\rangle_m = \left\langle x, \boldsymbol{A}^\mathrm{H} y\right\rangle_n </math> किसी के लिए <math>m \times n</math> आव्यूह <math>\boldsymbol{A}</math>, कोई भी सदिश <math>x \in \mathbb{C}^n </math> और कोई वेक्टर <math>y \in \mathbb{C}^m </math>. यहाँ, <math>\langle\cdot,\cdot\rangle_m</math> मानक जटिल आंतरिक उत्पाद को दर्शाता है <math> \mathbb{C}^m </math>, और इसी प्रकार के लिए <math>\langle\cdot,\cdot\rangle_n</math>.


== सामान्यीकरण ==
== सामान्यीकरण ==
ऊपर दी गई अंतिम विशेषता यह दर्शाती है कि यदि कोई देखे <math>\boldsymbol{A}</math> [[हिल्बर्ट अंतरिक्ष]] से [[रैखिक परिवर्तन]] के रूप में <math> \mathbb{C}^n </math> को <math> \mathbb{C}^m ,</math> फिर आव्यूह <math>\boldsymbol{A}^\mathrm{H}</math> के हर्मिटियन सन्निकट से मेल खाता है <math>\boldsymbol A</math>. इस प्रकार हिल्बर्ट रिक्त स्थान के बीच आसन्न ऑपरेटरों की अवधारणा को ऑर्थोनॉर्मल आधार के संबंध में आव्यूहों के संयुग्मित स्थानान्तरण के सामान्यीकरण के रूप में देखा जा सकता है।
ऊपर दी गई अंतिम विशेषता यह दर्शाती है कि यदि कोई देखे <math>\boldsymbol{A}</math> [[हिल्बर्ट अंतरिक्ष]] से [[रैखिक परिवर्तन]] के रूप में <math> \mathbb{C}^n </math> को <math> \mathbb{C}^m ,</math> फिर आव्यूह <math>\boldsymbol{A}^\mathrm{H}</math> के हर्मिटियन सन्निकट से मेल खाता है <math>\boldsymbol A</math>. इस प्रकार हिल्बर्ट रिक्त स्थान के बीच आसन्न ऑपरेटरों की अवधारणा को ऑर्थोनॉर्मल आधार के संबंध में आव्यूहों के संयुग्मित स्थानान्तरण के सामान्यीकरण के रूप में देखा जा सकता है।


और सामान्यीकरण उपलब्ध है: मान लीजिए <math>A</math> जटिल सदिश स्थान से रेखीय नक्शा है <math>V</math> दूसरे करने के लिए, <math>W</math>, तब जटिल संयुग्म रैखिक मानचित्र के साथ-साथ रैखिक मानचित्र के स्थानान्तरण को परिभाषित किया जाता है, और हम इस प्रकार के संयुग्म स्थानान्तरण को ले सकते हैं <math>A</math> के पारगमन का जटिल संयुग्म होना <math>A</math>. यह संयुग्मित दोहरे स्थान को मैप करता है <math>W</math> के संयुग्मी द्वैत के लिए <math>V</math>.
और सामान्यीकरण उपलब्ध है। मान लीजिए <math>A</math> जटिल सदिश स्थान से रेखीय नक्शा है <math>V</math> दूसरे करने के लिए, <math>W</math>, तब जटिल संयुग्म रैखिक मानचित्र के साथ-साथ रैखिक मानचित्र के स्थानान्तरण को परिभाषित किया जाता है, और हम इस प्रकार के संयुग्म स्थानान्तरण को ले सकते हैं <math>A</math> के पारगमन का जटिल संयुग्म होना <math>A</math>. यह संयुग्मित दोहरे स्थान को मैप करता है <math>W</math> के संयुग्मी द्वैत के लिए <math>V</math>.


== यह भी देखें ==
== यह भी देखें ==

Revision as of 23:20, 23 March 2023

गणित में संयुग्मी स्थानांतरण, जिसे हर्मिटियन ट्रांज़ोज़ के रूप में भी जाना जाता है जटिल संख्या आव्यूह (गणित) खिसकाना द्वारा प्राप्त आव्यूह और जटिल संयुग्म प्राणी , वास्तविक संख्या के लिए और प्रत्येक प्रविष्टि पर जटिल संयुग्म लागू करना। इसे अधिकांशतः के रूप में दर्शाया जाता है और [1][2] और ,[3] और सामान्यतः भौतिकी के रूप में

वास्तविक संख्या आव्यूहों के लिए, संयुग्म स्थानान्तरण केवल स्थानान्तरण है,

परिभाषा

गणित में संयुग्मी स्थानांतरण आव्यूह द्वारा औपचारिक रूप से परिभाषित किया गया है।

 

 

 

 

(Eq.1)

जहां सबस्क्रिप्ट दर्शाता है -V प्रविष्टि के लिए और और बार के ऊपर अदिश जटिल संयुग्म को दर्शाता है।

इस परिभाषा को इस रूप में भी लिखा जा सकता है।[2] ज़हाँ स्थानान्तरण को दर्शाता है और आव्यूह को जटिल संयुग्मित प्रविष्टियों के साथ दर्शाता है।

आव्यूह के संयुग्मित संक्रमण के अन्य नाम हर्मिटियन संयुग्म, आसन्न आव्यूह ट्रांसजुगेट हैं। आव्यूह का संयुग्मी स्थानांतरण इनमें से किसी भी प्रतीक द्वारा निरूपित किया जा सकता है।

  • , सामान्यतः रैखिक बीजगणित में उपयोग किया जाता है[2] , सामान्यतः रैखिक बीजगणित में उपयोग किया जाता है।
  • कभी-कभी ए कटार (टाइपोग्राफी) के रूप में उच्चारित, सामान्यतः क्वांटम यांत्रिकी में उपयोग किया जाता है।
  • , चूंकि यह प्रतीक सामान्यतः मूर-पेनरोज़ छद्मविपरीत के लिए उपयोग किया जाता है।

कुछ संदर्भों में, आव्यूह को केवल जटिल संयुग्मित प्रविष्टियों और कोई पारदर्शिता के साथ दर्शाता है।

उदाहरण

मान लीजिए कि हम निम्नलिखित आव्यूह के संयुग्म स्थानान्तरण की गणना करना चाहते हैं।

हम पहले आव्यूह को स्थानांतरित करते हैं,

फिर हम आव्यूह की प्रत्येक प्रविष्टि को संयुग्मित करते हैं,


मूल टिप्पणी

वर्ग आव्यूह प्रविष्टियों के साथ कहा जाता है।

  • हर्मिटियन आव्यूह और स्वयं संलग्न ऑपरेटर यदि ; अर्थात।, .
  • तिरछा-हर्मिटियन आव्यूह और एंटीहर्मिटियन यदि ; अर्थात।, .
  • सामान्य आव्यूह यदि .
  • एकात्मक आव्यूह यदि , समकक्ष , समकक्ष .

भले ही वर्गाकार नहीं है, दो आव्यूह और दोनों हर्मिटियन हैं और वास्तव में सकारात्मक-निश्चित आव्यूह | सकारात्मक अर्ध-निश्चित आव्यूह हैं।

संयुग्म स्थानान्तरण आसन्न आव्यूह सहायक के साथ भ्रमित नहीं होना चाहिए, , जिसे कभी-कभी सहायक भी कहा जाता है।

आव्यूह का संयुग्मी स्थानांतरण वास्तविक संख्या प्रविष्टियों के साथ का स्थानान्तरण करने के लिए कम कर देता है , क्योंकि वास्तविक संख्या का संयुग्मी स्वयं संख्या होती है।

प्रेरणा

संयुग्म संक्रमण को यह ध्यान देकर प्रेरित किया जा सकता है। कि जटिल संख्याओं को उपयोगी रूप से प्रदर्शित किया जा सकता है और वास्तविक मैट्रिसेस, आव्यूह जोड़ और गुणन का पालन करना।

यही है, प्रत्येक जटिल संख्या को निरूपित करना और वास्तविक द्वारा अरगंड आरेख पर रैखिक परिवर्तन का आव्यूह वास्तविक वेक्टर अंतरिक्ष के रूप में देखा गया। जटिल से प्रभावित-गुणन पर .

इस प्रकार, a सम्मिश्र संख्याओं के आव्यूह को a द्वारा अच्छी प्रकार प्रदर्शित किया जा सकता है। वास्तविक संख्याओं का आव्यूह संयुग्म पारगमन है इसलिए, इस प्रकार के आव्यूह को आसानी से स्थानांतरित करने के परिणाम के रूप में बहुत स्वाभाविक रूप से उत्पन्न होता है। जब एक के रूप में फिर से देखा जाता है आव्यूह जटिल संख्याओं से बना है।

संयुग्म संक्रमण के गुण

  • किसी भी दो आव्यूहों के लिए और समान आयामों का।
  • किसी भी जटिल संख्या के लिए और कोई भी आव्यूह .
  • किसी के लिए आव्यूह और कोई भी आव्यूह . ध्यान दें कि कारकों का क्रम उलटा है।[1]* किसी के लिए आव्यूह , यानी हर्मिटियन ट्रांसपोजिशन इनवोल्यूशन (गणित) है।
  • यदि वर्ग आव्यूह है, तो ज़हाँ के निर्धारक को दर्शाता है .
  • यदि वर्ग आव्यूह है, तो ज़हाँ के ट्रेस (आव्यूह) को दर्शाता है .
  • उलटा आव्यूह है यदि और केवल यदि उलटा है, और उस मामले में .
  • के आइगेनवैल्यूज़ के आइगेनवैल्यूज़ ​​​​के जटिल संयुग्म हैं .
  • किसी के लिए आव्यूह , कोई भी सदिश और कोई वेक्टर . यहाँ, मानक जटिल आंतरिक उत्पाद को दर्शाता है , और इसी प्रकार के लिए .

सामान्यीकरण

ऊपर दी गई अंतिम विशेषता यह दर्शाती है कि यदि कोई देखे हिल्बर्ट अंतरिक्ष से रैखिक परिवर्तन के रूप में को फिर आव्यूह के हर्मिटियन सन्निकट से मेल खाता है . इस प्रकार हिल्बर्ट रिक्त स्थान के बीच आसन्न ऑपरेटरों की अवधारणा को ऑर्थोनॉर्मल आधार के संबंध में आव्यूहों के संयुग्मित स्थानान्तरण के सामान्यीकरण के रूप में देखा जा सकता है।

और सामान्यीकरण उपलब्ध है। मान लीजिए जटिल सदिश स्थान से रेखीय नक्शा है दूसरे करने के लिए, , तब जटिल संयुग्म रैखिक मानचित्र के साथ-साथ रैखिक मानचित्र के स्थानान्तरण को परिभाषित किया जाता है, और हम इस प्रकार के संयुग्म स्थानान्तरण को ले सकते हैं के पारगमन का जटिल संयुग्म होना . यह संयुग्मित दोहरे स्थान को मैप करता है के संयुग्मी द्वैत के लिए .

यह भी देखें

संदर्भ

  1. 1.0 1.1 Weisstein, Eric W. "संयुग्मी स्थानांतरण". mathworld.wolfram.com (in English). Retrieved 2020-09-08.
  2. 2.0 2.1 2.2 "संयुग्मी स्थानान्तरण". planetmath.org. Retrieved 2020-09-08.
  3. H. W. Turnbull, A. C. Aitken, "An Introduction to the Theory of Canonical Matrices," 1932.


बाहरी संबंध