सभी सदिशों <math>x, y \in V</math> और प्रत्येक सम्मिश्र संख्या <math>s</math> के लिए होता है जहाँ, <math>\overline{s}</math> के समिश्र संयुग्मन <math>s</math> को दर्शाता है।
सभी सदिशों <math>x, y \in V</math> और प्रत्येक सम्मिश्र संख्या <math>s</math> के लिए होता है जहाँ, <math>\overline{s}</math> के समिश्र संयुग्मन <math>s</math> को दर्शाता है।
मैप्स रैखिक ऑपरेटरों के विपरीत खड़े होते हैं, जो [[ योगात्मक नक्शा | योगात्मक नक्शा]] ्स होते हैं जो कॉन्जुगेट एकरूपता के बजाय सजातीय मानचित्र होते हैं। यदि सदिश समष्टि वास्तविक सदिश समष्टि है तो प्रतिरैखिकता रैखिकता के समान है।
प्रतिरेखीय प्रतिचित्रण, रेखीय प्रतिचित्रण का विरोध करता है, जो [[Index.php?title=योगात्मक प्रतिचित्र|योगात्मक प्रतिचित्र]] होते हैं जो संयुग्मी एकरूपता के बदले में सजातीय मानचित्र होते हैं। यदि सदिश समष्टि वास्तविक है तो प्रतिरैखिकता, रैखिकता के समान होता है।
टी-समरूपता और [[स्पिनर कैलकुलस]] के अध्ययन में क्वांटम यांत्रिकी में एंटीलीनियर मैप्स होते हैं, जहां सूचकांकों के ऊपर लगाए गए डॉट्स द्वारा बेस वैक्टर और ज्यामितीय वस्तुओं के घटकों पर बार को बदलने की प्रथा है। जटिल संख्या आंतरिक उत्पाद रिक्त स्थान और हिल्बर्ट रिक्त स्थान के साथ व्यवहार करते समय स्केलर-मूल्यवान एंटीलाइनर मानचित्र अक्सर उत्पन्न होते हैं।
काल-विपर्यय और [[Index.php?title=स्पिनर अवकलन|स्पिनर अवकलन]] के अध्ययन में क्वांटम यांत्रिकी में प्रतिरेखीय प्रतिचित्रण का प्रयोग होता है, जहां सूचकांकों के ऊपर लगाए गए बिन्दुओ द्वारा आधारभूत सदिश और ज्यामितीय वस्तुओं के घटकों पर बार को बदला जाता हैं। समिश्र संख्या आंतरिक उत्पाद रिक्त स्थान और हिल्बर्ट रिक्त स्थान के साथ कार्य करते समय अदिश प्रतिरैखिक प्रतिचित्रण मान प्रायः उत्पन्न होते हैं।
गणित में, फलन दो समिश्र सदिश स्पेस के बीच प्रतिरैखिक या संयुग्म-रैखिक कहा जाता है यदि
सभी सदिशों और प्रत्येक सम्मिश्र संख्या के लिए होता है जहाँ, के समिश्र संयुग्मन को दर्शाता है।
प्रतिरेखीय प्रतिचित्रण, रेखीय प्रतिचित्रण का विरोध करता है, जो योगात्मक प्रतिचित्र होते हैं जो संयुग्मी एकरूपता के बदले में सजातीय मानचित्र होते हैं। यदि सदिश समष्टि वास्तविक है तो प्रतिरैखिकता, रैखिकता के समान होता है।
काल-विपर्यय और स्पिनर अवकलन के अध्ययन में क्वांटम यांत्रिकी में प्रतिरेखीय प्रतिचित्रण का प्रयोग होता है, जहां सूचकांकों के ऊपर लगाए गए बिन्दुओ द्वारा आधारभूत सदिश और ज्यामितीय वस्तुओं के घटकों पर बार को बदला जाता हैं। समिश्र संख्या आंतरिक उत्पाद रिक्त स्थान और हिल्बर्ट रिक्त स्थान के साथ कार्य करते समय अदिश प्रतिरैखिक प्रतिचित्रण मान प्रायः उत्पन्न होते हैं।
एक समारोह कहा जाता है antilinear या conjugate linear यदि यह योगात्मक नक्शा है और सजातीय संयुग्मित है।
एक antilinear functional सदिश स्थान पर एक अदिश-मूल्यवान प्रतिरेखीय मानचित्र है।
इसके विपरीत, एक रेखीय मानचित्र एक ऐसा कार्य है जो योगात्मक और सजातीय है, जहाँ कहा जाता है homogeneous अगर
एक एंटीलाइनर नक्शा रैखिक मानचित्र के संदर्भ में समान रूप से वर्णित किया जा सकता है से जटिल संयुग्म वेक्टर अंतरिक्ष के लिए
उदाहरण
एंटी-लीनियर डुअल मैप
एक जटिल सदिश स्थान दिया गया है रैंक 1 का, हम एक एंटी-लीनियर डुअल मैप बना सकते हैं जो एक एंटी-लीनियर मैप है
एक तत्व भेज रहा है के लिए को
कुछ निश्चित वास्तविक संख्याओं के लिए हम इसे किसी भी परिमित आयामी जटिल सदिश स्थान तक बढ़ा सकते हैं, जहाँ यदि हम मानक आधार लिखते हैं और प्रत्येक मानक आधार तत्व के रूप में
फिर एक विरोधी रेखीय जटिल नक्शा स्वरूप का होगा
के लिए
वास्तविक दोहरे के साथ रैखिक-विरोधी दोहरे का समरूपता
विरोधी रेखीय दोहरी[1]पृष्ठ 36 एक जटिल सदिश स्थान का
एक विशेष उदाहरण है क्योंकि यह अंतर्निहित वास्तविक सदिश स्थान के वास्तविक दोहरे के लिए समरूप है यह एक एंटी-लीनियर मैप भेजने वाले मैप द्वारा दिया गया है
को
दूसरी दिशा में, उलटा नक्शा है जो एक वास्तविक दोहरे वेक्टर को भेजता है
को
वांछित नक्शा दे रहा है।
गुण
दो प्रतिरेखीय मानचित्रों के संबंधों की संरचना एक रेखीय मानचित्र है। अर्धरेखीय मानचित्रों का वर्ग प्रतिरेखीय मानचित्रों के वर्ग का सामान्यीकरण करता है।
एंटी-डुअल स्पेस
सदिश समष्टि पर सभी प्रतिरेखीय रूपों का सदिश स्थान कहा जाता है algebraic anti-dual space का अगर एक टोपोलॉजिकल वेक्टर स्पेस है, फिर सभी का वेक्टर स्पेस continuous एंटीलाइनर फंक्शंस ऑन द्वारा चिह्नित कहा जाता है continuous anti-dual space या बस anti-dual space का [2] अगर कोई भ्रम पैदा नहीं हो सकता।
कब एक आदर्श स्थान है तो (निरंतर) विरोधी दोहरे स्थान पर विहित मानदंड द्वारा चिह्नित इसी समीकरण का उपयोग करके परिभाषित किया गया है:[2]
यह सूत्र के सूत्र के समान है dual norm निरंतर दोहरे स्थान पर का जिसके द्वारा परिभाषित किया गया है[2]
दोहरे और विरोधी दोहरे के बीच कैननिकल आइसोमेट्री
जटिल संयुग्म एक कार्यात्मक का भेजकर परिभाषित किया गया है को यह संतुष्ट करता है
हरएक के लिए और हर यह ठीक यही कहता है कि कैनोनिकल एंटीलीनियर विशेषण नक्शा द्वारा परिभाषित किया गया है
अगर तब और यह विहित नक्शा पहचान मानचित्र तक कम हो जाता है।
आंतरिक उत्पाद रिक्त स्थान
अगर एक आंतरिक उत्पाद स्थान है तो दोनों विहित मानदंड और पर समांतरोग्राम कानून को संतुष्ट करता है, जिसका अर्थ है कि ध्रुवीकरण पहचान का उपयोग परिभाषित करने के लिए किया जा सकता है canonical inner product on और आगे भी जिसे यह लेख अंकन द्वारा दर्शाएगा
जहां यह आंतरिक उत्पाद बनाता है और हिल्बर्ट रिक्त स्थान में।
आंतरिक उत्पाद और अपने दूसरे तर्कों में एंटीलीनियर हैं। इसके अलावा, इस आंतरिक उत्पाद द्वारा प्रेरित विहित मानदंड (अर्थात, द्वारा परिभाषित मानदंड ) दोहरे मानदंड के अनुरूप है (अर्थात, जैसा कि यूनिट बॉल पर सुप्रीमम द्वारा ऊपर परिभाषित किया गया है); स्पष्ट रूप से, इसका अर्थ है कि निम्नलिखित प्रत्येक के लिए है
अगर एक आंतरिक उत्पाद स्थान है तो दोहरी जगह पर आंतरिक उत्पाद और विरोधी दोहरी जगह द्वारा क्रमशः निरूपित किया गया और से संबंधित हैं