चर्पी प्रभाव परीक्षण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Method of measuring the amount of energy absorbed by a material during fracture}}
{{Short description|Method of measuring the amount of energy absorbed by a material during fracture}}
{{Mechanical_failure modes}}
{{Mechanical_failure modes}}
[[File:Péndulo de Charpy Moderno.png|thumb|एक आधुनिक प्रभाव परीक्षण मशीन।]]सामग्री विज्ञान में, चरपी प्रभाव परीक्षण, जिसे चरपी वी-नॉच परीक्षण के रूप में भी जाना जाता है, एक [[मानकीकृत]] उच्च [[तनाव दर]] परीक्षण है जो [[ भंग ]] के समय सामग्री द्वारा अवशोषित [[ऊर्जा]] की मात्रा निर्धारित करता है। अवशोषित ऊर्जा सामग्री की [[पायदान (इंजीनियरिंग)]] की कठोरता का एक उपाय है। यह उद्योग में व्यापक रूप से उपयोग किया जाता है, क्योंकि इसे तैयार करना और संचालन करना सरल है और परिणाम जल्दी और सस्ते में प्राप्त किए जा सकते हैं। एक हानि यह है कि कुछ परिणाम केवल तुलनात्मक होते हैं।<ref name="Meyers">
[[File:Péndulo de Charpy Moderno.png|thumb|आधुनिक प्रभाव परीक्षण मशीन।]]सामग्री विज्ञान में, चरपी प्रभाव परीक्षण, जिसे चरपी वी-नॉच परीक्षण के रूप में भी जाना जाता है, [[मानकीकृत]] उच्च [[तनाव दर]] परीक्षण है जो [[ भंग ]] के समय सामग्री द्वारा अवशोषित [[ऊर्जा]] की मात्रा निर्धारित करता है। अवशोषित ऊर्जा सामग्री की [[पायदान (इंजीनियरिंग)]] की कठोरता का उपाय है। यह उद्योग में व्यापक रूप से उपयोग किया जाता है, क्योंकि इसे तैयार करना और संचालन करना सरल है और परिणाम जल्दी और सस्ते में प्राप्त किए जा सकते हैं। हानि यह है कि कुछ परिणाम केवल तुलनात्मक होते हैं।<ref name="Meyers">
{{cite book
{{cite book
  |author=Meyers Marc A
  |author=Meyers Marc A
Line 10: Line 10:
  |isbn=978-0-13-262817-4
  |isbn=978-0-13-262817-4
}}</ref> द्वितीय विश्व युद्ध के समय जहाजों की फ्रैक्चर समस्याओं को समझने में परीक्षण महत्वपूर्ण था।<ref name="Jacobs">{{cite journal |author=The Design and Methods of Construction Of Welded Steel Merchant Vessels: Final Report of a (U.S. Navy) Board of Investigation |title=वेल्डिंग जर्नल|volume=26 |issue=7 |publisher=वेल्डिंग जर्नल|pages=569 |date=July 1947}}</ref><ref name="Williams">{{Cite book |author=Williams, M. L. |author2=Ellinger, G. A |name-list-style=amp |title=वेल्डेड जहाजों से हटाए गए खंडित स्टील प्लेटों की जांच|publisher=National Bureau of Standards Rep |year=1948 }}</ref>
}}</ref> द्वितीय विश्व युद्ध के समय जहाजों की फ्रैक्चर समस्याओं को समझने में परीक्षण महत्वपूर्ण था।<ref name="Jacobs">{{cite journal |author=The Design and Methods of Construction Of Welded Steel Merchant Vessels: Final Report of a (U.S. Navy) Board of Investigation |title=वेल्डिंग जर्नल|volume=26 |issue=7 |publisher=वेल्डिंग जर्नल|pages=569 |date=July 1947}}</ref><ref name="Williams">{{Cite book |author=Williams, M. L. |author2=Ellinger, G. A |name-list-style=amp |title=वेल्डेड जहाजों से हटाए गए खंडित स्टील प्लेटों की जांच|publisher=National Bureau of Standards Rep |year=1948 }}</ref>
परीक्षण 1900 के आसपास एस.बी. रसेल (1898, अमेरिकी) और [[जॉर्जेस चरपी]] (1901, फ्रेंच) द्वारा विकसित किया गया था।<ref name=":0">Siewert</ref> चार्ली द्वारा तकनीकी योगदान और मानकीकरण के प्रयासों के कारण परीक्षण को 1900 के प्रारंभ में चरपी परीक्षण के रूप में जाना जाने लगा। '''परीक्षण 1900 के आसपास एस.बी. रसेल (1898, अमेरिकी) और [[जॉर्जेस चरपी]] (1901, फ्रेंच) द्वारा विकसित किया गया था।<ref name=":0" /> चार्ली द्वारा तकनीकी योगदान और मानकीकरण के प्रयासों के कारण परीक्षण को 1900 के प्रारंभ में चरपी परीक्षण के रूप में जाना जाने लगा।'''
परीक्षण 1900 के आसपास एस.बी. रसेल (1898, अमेरिकी) और [[जॉर्जेस चरपी]] (1901, फ्रेंच) द्वारा विकसित किया गया था।<ref name=":0">Siewert</ref> चार्ली द्वारा तकनीकी योगदान और मानकीकरण के प्रयासों के कारण परीक्षण को 1900 के प्रारंभ में चरपी परीक्षण के रूप में जाना जाने लगा। '''<ref name=":0" /> चार्ली द्वारा तकनीकी योगदान और मानकीकरण के प्रयासों के कारण परीक्षण को 1900 के प्रारंभ में चरपी परीक्षण के रूप में जाना जाने लगा।'''


== इतिहास ==
== इतिहास ==


1896 में, एस.बी. रसेल ने अवशिष्ट अस्थिभंग ऊर्जा का विचार प्रस्तुत किया और एक पेंडुलम फ्रैक्चर परीक्षण तैयार किया। रसेल के प्रारंभिक परीक्षणों ने बिना नोक वाले नमूनों को मापा। 1897 में, फ्रेमोंट ने स्प्रिंग-लोडेड मशीन का उपयोग करके समान घटना को मापने के लिए एक परीक्षण प्रारंभ किया। 1901 में, जार्ज चार्पी ने सही विनिर्देश देते हुए एक पुन: डिज़ाइन किए गए पेंडुलम और नोकदार नमूने को पेश करके रसेल के सुधार में एक मानकीकृत विधि का प्रस्ताव रखा।<ref name = "Richards">{{Cite book |author=Cedric W. Richards |title=इंजीनियरिंग सामग्री विज्ञान|publisher=Wadsworth Publishing Company, Inc. |year=1968 }}</ref>
1896 में, एस.बी. रसेल ने अवशिष्ट अस्थिभंग ऊर्जा का विचार प्रस्तुत किया और पेंडुलम फ्रैक्चर परीक्षण तैयार किया। रसेल के प्रारंभिक परीक्षणों ने बिना नोक वाले नमूनों को मापा। 1897 में, फ्रेमोंट ने स्प्रिंग-लोडेड मशीन का उपयोग करके समान घटना को मापने के लिए परीक्षण प्रारंभ किया। 1901 में, जार्ज चार्पी ने सही विनिर्देश देते हुए पुन: डिज़ाइन किए गए पेंडुलम और नोकदार नमूने को पेश करके रसेल के सुधार में मानकीकृत विधि का प्रस्ताव रखा।<ref name = "Richards">{{Cite book |author=Cedric W. Richards |title=इंजीनियरिंग सामग्री विज्ञान|publisher=Wadsworth Publishing Company, Inc. |year=1968 }}</ref>




== परिभाषा ==
== परिभाषा ==
[[File:Kerbschlagbiegeversuch Maschine.jpg|thumb|left|200px|एक पुरानी प्रभाव परीक्षण मशीन। बाईं ओर पीला पिंजरा पेंडुलम झूलने के समय दुर्घटनाओं को रोकने के लिए होता है, पेंडुलम तल पर आराम से देखा जाता है]]उपकरण में ज्ञात द्रव्यमान और लंबाई का एक [[ लंगर | पेंडुलम]] होता है जिसे सामग्री के एक पायदान (इंजीनियरिंग) नमूने को प्रभावित करने के लिए ज्ञात ऊंचाई से गिराया जाता है। फ्रैक्चर से पहले और बाद में हथौड़े की ऊंचाई में अंतर (फ्रैक्चर घटना द्वारा अवशोषित ऊर्जा) की तुलना करके सामग्री को हस्तांतरित ऊर्जा का अनुमान लगाया जा सकता है।
[[File:Kerbschlagbiegeversuch Maschine.jpg|thumb|left|200px|पुरानी प्रभाव परीक्षण मशीन। बाईं ओर पीला पिंजरा पेंडुलम झूलने के समय दुर्घटनाओं को रोकने के लिए होता है, पेंडुलम तल पर आराम से देखा जाता है]]उपकरण में ज्ञात द्रव्यमान और लंबाई का [[ लंगर | पेंडुलम]] होता है जिसे सामग्री के पायदान (इंजीनियरिंग) नमूने को प्रभावित करने के लिए ज्ञात ऊंचाई से गिराया जाता है। फ्रैक्चर से पहले और बाद में हथौड़े की ऊंचाई में अंतर (फ्रैक्चर घटना द्वारा अवशोषित ऊर्जा) की तुलना करके सामग्री को हस्तांतरित ऊर्जा का अनुमान लगाया जा सकता है।


नमूने में पायदान (इंजीनियरिंग) प्रभाव परीक्षण के परिणामों को प्रभावित करता है,<ref name=notch>
नमूने में पायदान (इंजीनियरिंग) प्रभाव परीक्षण के परिणामों को प्रभावित करता है,<ref name=notch>
Line 49: Line 49:


== मात्रात्मक परिणाम ==
== मात्रात्मक परिणाम ==
प्रभाव का मात्रात्मक परिणाम एक सामग्री को फ्रैक्चर करने के लिए आवश्यक ऊर्जा का परीक्षण करता है और इसका उपयोग सामग्री की कठोरता को मापने के लिए किया जा सकता है। यील्ड (इंजीनियरिंग) से एक संबंध है लेकिन इसे किसी मानक सूत्र द्वारा व्यक्त नहीं किया जा सकता है। साथ ही, फ्रैक्चर पर इसके प्रभाव के लिए तनाव दर का अध्ययन और विश्लेषण किया जा सकता है।
प्रभाव का मात्रात्मक परिणाम सामग्री को फ्रैक्चर करने के लिए आवश्यक ऊर्जा का परीक्षण करता है और इसका उपयोग सामग्री की कठोरता को मापने के लिए किया जा सकता है। यील्ड (इंजीनियरिंग) से संबंध है लेकिन इसे किसी मानक सूत्र द्वारा व्यक्त नहीं किया जा सकता है। साथ ही, फ्रैक्चर पर इसके प्रभाव के लिए तनाव दर का अध्ययन और विश्लेषण किया जा सकता है।


[[नमनीय-भंगुर संक्रमण तापमान]] (डीबीटीटी) उस तापमान से प्राप्त किया जा सकता है जहां सामग्री को फ्रैक्चर करने के लिए आवश्यक ऊर्जा में भारी परिवर्तन होता है। चूंकि, व्यवहार में कोई तेज संक्रमण नहीं होता है और एक सही संक्रमण तापमान प्राप्त करना कठिन होता है (यह वास्तव में एक संक्रमण क्षेत्र है)। एक सही डीबीटीटी अनुभवजन्य रूप से कई विधियों से प्राप्त किया जा सकता है: एक विशिष्ट अवशोषित ऊर्जा, फ्रैक्चर के पहलू में परिवर्तन (जैसे कि 50% क्षेत्र दरार है), '''आदि'''।<ref name=Meyers/>
[[नमनीय-भंगुर संक्रमण तापमान]] (डीबीटीटी) उस तापमान से प्राप्त किया जा सकता है जहां सामग्री को फ्रैक्चर करने के लिए आवश्यक ऊर्जा में भारी परिवर्तन होता है। चूंकि, व्यवहार में कोई तेज संक्रमण नहीं होता है और सही संक्रमण तापमान प्राप्त करना कठिन होता है (यह वास्तव में संक्रमण क्षेत्र है)। सही डीबीटीटी अनुभवजन्य रूप से कई विधियों से प्राप्त किया जा सकता है: विशिष्ट अवशोषित ऊर्जा, फ्रैक्चर के पहलू में परिवर्तन (जैसे कि 50% क्षेत्र दरार है)<ref name=Meyers/>




Line 66: Line 66:
  |doi=10.1088/0965-0393/2/3A/014  
  |doi=10.1088/0965-0393/2/3A/014  
|bibcode = 1994MSMSE...2..617M |s2cid=250853994
|bibcode = 1994MSMSE...2..617M |s2cid=250853994
  }}</ref> यदि सामग्री समतल तल पर टूटती है, तो फ्रैक्चर भंगुर होता है, और यदि सामग्री दांतेदार किनारों या कतरनी होंठों से टूटती है, तो फ्रैक्चर नमनीय था। सामान्यतः, एक सामग्री केवल एक या दूसरे तरीके से नहीं टूटती है और इस प्रकार फ्रैक्चर के दांतेदार सतह क्षेत्रों की तुलना करने से नमनीय और भंगुर फ्रैक्चर के प्रतिशत का अनुमान लगाया जा सकता है।<ref name=Meyers/>
  }}</ref> यदि सामग्री समतल तल पर टूटती है, तो फ्रैक्चर भंगुर होता है, और यदि सामग्री दांतेदार किनारों या कतरनी होंठों से टूटती है, तो फ्रैक्चर नमनीय था। सामान्यतः, सामग्री केवल एक या दूसरे तरीके से नहीं टूटती है और इस प्रकार फ्रैक्चर के दांतेदार सतह क्षेत्रों की तुलना करने से नमनीय और भंगुर फ्रैक्चर के प्रतिशत का अनुमान लगाया जा सकता है।<ref name=Meyers/>




Line 79: Line 79:


=== == कम और उच्च शक्ति सामग्री == पर प्रभाव परीक्षण के परिणाम ===
=== == कम और उच्च शक्ति सामग्री == पर प्रभाव परीक्षण के परिणाम ===
कम शक्ति वाली धातुओं की प्रभाव ऊर्जा जो तापमान के साथ फ्रैक्चर मोड में परिवर्तन नहीं दिखाती है, सामान्यतः उच्च और तापमान के प्रति असंवेदनशील होती है। इन कारणों से, कम शक्ति वाली सामग्री के फ्रैक्चर-प्रतिरोध का आकलन करने के लिए प्रभाव परीक्षणों का व्यापक रूप से उपयोग नहीं किया जाता है, जिनके फ्रैक्चर मोड तापमान के साथ अपरिवर्तित रहते हैं। प्रभाव परीक्षण सामान्यतः कम-शक्ति वाली सामग्री के लिए एक नमनीय-भंगुर संक्रमण दिखाते हैं जो [[ घन क्रिस्टल प्रणाली | घन क्रिस्टल प्रणाली]] | शरीर-केंद्रित क्यूबिक (बीसीसी) संक्रमण धातुओं जैसे तापमान के साथ फ्रैक्चर मोड में परिवर्तन प्रदर्शित करते हैं।
कम शक्ति वाली धातुओं की प्रभाव ऊर्जा जो तापमान के साथ फ्रैक्चर मोड में परिवर्तन नहीं दिखाती है, सामान्यतः उच्च और तापमान के प्रति असंवेदनशील होती है। इन कारणों से, कम शक्ति वाली सामग्री के फ्रैक्चर-प्रतिरोध का आकलन करने के लिए प्रभाव परीक्षणों का व्यापक रूप से उपयोग नहीं किया जाता है, जिनके फ्रैक्चर मोड तापमान के साथ अपरिवर्तित रहते हैं। प्रभाव परीक्षण सामान्यतः कम-शक्ति वाली सामग्री के लिए नमनीय-भंगुर संक्रमण दिखाते हैं जो [[ घन क्रिस्टल प्रणाली | घन क्रिस्टल प्रणाली]] | शरीर-केंद्रित क्यूबिक (बीसीसी) संक्रमण धातुओं जैसे तापमान के साथ फ्रैक्चर मोड में परिवर्तन प्रदर्शित करते हैं।


सामान्यतः, उच्च-शक्ति वाली सामग्रियों में कम प्रभाव वाली ऊर्जा होती है जो इस तथ्य की पुष्टि करती है कि फ्रैक्चर सरलता से प्रारंभ हो जाते हैं और उच्च-शक्ति सामग्री में फैल जाते हैं। स्टील्स या बीसीसी संक्रमण धातुओं के अतिरिक्त अन्य उच्च शक्ति सामग्री की प्रभाव ऊर्जा सामान्यतः तापमान के प्रति असंवेदनशील होती है। उच्च शक्ति वाले बीसीसी स्टील्स उच्च शक्ति वाली धातु की तुलना में प्रभाव ऊर्जा की एक व्यापक विविधता प्रदर्शित करते हैं, जिसमें बीसीसी संरचना नहीं होती है क्योंकि स्टील सूक्ष्म तन्य-भंगुर संक्रमण से गुजरते हैं। भले ही, उच्च शक्ति वाले स्टील्स की अधिकतम प्रभाव ऊर्जा उनकी भंगुरता के कारण अभी भी कम है।<ref name="Courtney">
सामान्यतः, उच्च-शक्ति वाली सामग्रियों में कम प्रभाव वाली ऊर्जा होती है जो इस तथ्य की पुष्टि करती है कि फ्रैक्चर सरलता से प्रारंभ हो जाते हैं और उच्च-शक्ति सामग्री में फैल जाते हैं। स्टील्स या बीसीसी संक्रमण धातुओं के अतिरिक्त अन्य उच्च शक्ति सामग्री की प्रभाव ऊर्जा सामान्यतः तापमान के प्रति असंवेदनशील होती है। उच्च शक्ति वाले बीसीसी स्टील्स उच्च शक्ति वाली धातु की तुलना में प्रभाव ऊर्जा की व्यापक विविधता प्रदर्शित करते हैं, जिसमें बीसीसी संरचना नहीं होती है क्योंकि स्टील सूक्ष्म तन्य-भंगुर संक्रमण से गुजरते हैं। भले ही, उच्च शक्ति वाले स्टील्स की अधिकतम प्रभाव ऊर्जा उनकी भंगुरता के कारण अभी भी कम है।<ref name="Courtney">
{{cite book
{{cite book
  |author=Courtney, Thomas H.
  |author=Courtney, Thomas H.

Revision as of 23:17, 27 March 2023

आधुनिक प्रभाव परीक्षण मशीन।

सामग्री विज्ञान में, चरपी प्रभाव परीक्षण, जिसे चरपी वी-नॉच परीक्षण के रूप में भी जाना जाता है, मानकीकृत उच्च तनाव दर परीक्षण है जो भंग के समय सामग्री द्वारा अवशोषित ऊर्जा की मात्रा निर्धारित करता है। अवशोषित ऊर्जा सामग्री की पायदान (इंजीनियरिंग) की कठोरता का उपाय है। यह उद्योग में व्यापक रूप से उपयोग किया जाता है, क्योंकि इसे तैयार करना और संचालन करना सरल है और परिणाम जल्दी और सस्ते में प्राप्त किए जा सकते हैं। हानि यह है कि कुछ परिणाम केवल तुलनात्मक होते हैं।[1] द्वितीय विश्व युद्ध के समय जहाजों की फ्रैक्चर समस्याओं को समझने में परीक्षण महत्वपूर्ण था।[2][3]

परीक्षण 1900 के आसपास एस.बी. रसेल (1898, अमेरिकी) और जॉर्जेस चरपी (1901, फ्रेंच) द्वारा विकसित किया गया था।[4] चार्ली द्वारा तकनीकी योगदान और मानकीकरण के प्रयासों के कारण परीक्षण को 1900 के प्रारंभ में चरपी परीक्षण के रूप में जाना जाने लगा। [4] चार्ली द्वारा तकनीकी योगदान और मानकीकरण के प्रयासों के कारण परीक्षण को 1900 के प्रारंभ में चरपी परीक्षण के रूप में जाना जाने लगा।

इतिहास

1896 में, एस.बी. रसेल ने अवशिष्ट अस्थिभंग ऊर्जा का विचार प्रस्तुत किया और पेंडुलम फ्रैक्चर परीक्षण तैयार किया। रसेल के प्रारंभिक परीक्षणों ने बिना नोक वाले नमूनों को मापा। 1897 में, फ्रेमोंट ने स्प्रिंग-लोडेड मशीन का उपयोग करके समान घटना को मापने के लिए परीक्षण प्रारंभ किया। 1901 में, जार्ज चार्पी ने सही विनिर्देश देते हुए पुन: डिज़ाइन किए गए पेंडुलम और नोकदार नमूने को पेश करके रसेल के सुधार में मानकीकृत विधि का प्रस्ताव रखा।[5]


परिभाषा

पुरानी प्रभाव परीक्षण मशीन। बाईं ओर पीला पिंजरा पेंडुलम झूलने के समय दुर्घटनाओं को रोकने के लिए होता है, पेंडुलम तल पर आराम से देखा जाता है

उपकरण में ज्ञात द्रव्यमान और लंबाई का पेंडुलम होता है जिसे सामग्री के पायदान (इंजीनियरिंग) नमूने को प्रभावित करने के लिए ज्ञात ऊंचाई से गिराया जाता है। फ्रैक्चर से पहले और बाद में हथौड़े की ऊंचाई में अंतर (फ्रैक्चर घटना द्वारा अवशोषित ऊर्जा) की तुलना करके सामग्री को हस्तांतरित ऊर्जा का अनुमान लगाया जा सकता है।

नमूने में पायदान (इंजीनियरिंग) प्रभाव परीक्षण के परिणामों को प्रभावित करता है,[6] इस प्रकार पायदान के लिए नियमित आयाम और ज्यामिति होना आवश्यक है। नमूने का आकार भी परिणामों को प्रभावित कर सकता है, क्योंकि आयाम निर्धारित करते हैं कि सामग्री समतल तनाव में है या नहीं। यह अंतर किए गए निष्कर्षों को बहुत प्रभावित कर सकता है।[7]

धात्विक सामग्री के नोकदार बार प्रभाव परीक्षण के लिए मानक विधियाँ एएसटीएम इंटरनेशनल E23 में पाई जा सकती हैं,[8] मानकीकरण के लिए अंतर्राष्ट्रीय संगठन 148-1[9] या EN 10045-1 (सेवानिवृत्त और आईएसओ 148-1 से प्रतिस्थापित),[10] जहां परीक्षण और उपयोग किए गए उपकरणों के सभी पहलुओं का विस्तार से वर्णन किया गया है।

मात्रात्मक परिणाम

प्रभाव का मात्रात्मक परिणाम सामग्री को फ्रैक्चर करने के लिए आवश्यक ऊर्जा का परीक्षण करता है और इसका उपयोग सामग्री की कठोरता को मापने के लिए किया जा सकता है। यील्ड (इंजीनियरिंग) से संबंध है लेकिन इसे किसी मानक सूत्र द्वारा व्यक्त नहीं किया जा सकता है। साथ ही, फ्रैक्चर पर इसके प्रभाव के लिए तनाव दर का अध्ययन और विश्लेषण किया जा सकता है।

नमनीय-भंगुर संक्रमण तापमान (डीबीटीटी) उस तापमान से प्राप्त किया जा सकता है जहां सामग्री को फ्रैक्चर करने के लिए आवश्यक ऊर्जा में भारी परिवर्तन होता है। चूंकि, व्यवहार में कोई तेज संक्रमण नहीं होता है और सही संक्रमण तापमान प्राप्त करना कठिन होता है (यह वास्तव में संक्रमण क्षेत्र है)। सही डीबीटीटी अनुभवजन्य रूप से कई विधियों से प्राप्त किया जा सकता है: विशिष्ट अवशोषित ऊर्जा, फ्रैक्चर के पहलू में परिवर्तन (जैसे कि 50% क्षेत्र दरार है)[1]


गुणात्मक परिणाम

सामग्री की लचीलापन निर्धारित करने के लिए प्रभाव परीक्षण के गुणात्मक परिणामों का उपयोग किया जा सकता है।[11] यदि सामग्री समतल तल पर टूटती है, तो फ्रैक्चर भंगुर होता है, और यदि सामग्री दांतेदार किनारों या कतरनी होंठों से टूटती है, तो फ्रैक्चर नमनीय था। सामान्यतः, सामग्री केवल एक या दूसरे तरीके से नहीं टूटती है और इस प्रकार फ्रैक्चर के दांतेदार सतह क्षेत्रों की तुलना करने से नमनीय और भंगुर फ्रैक्चर के प्रतिशत का अनुमान लगाया जा सकता है।[1]


नमूना आकार

एएसटीएम A370 के अनुसार,[12] चरपी प्रभाव परीक्षण के लिए मानक नमूना आकार 10 मिमी × 10 मिमी × 55 मिमी है। सबसाइज़ नमूना आकार हैं: 10 मिमी × 7.5 मिमी × 55 मिमी, 10 मिमी × 6.7 मिमी × 55 मिमी, 10 मिमी × 5 मिमी × 55 मिमी, 10 मिमी × 3.3 मिमी × 55 मिमी, 10 मिमी × 2.5 मिमी × 55 मिमी। एएसटीएम A370 (स्टील उत्पादों के यांत्रिक परीक्षण के लिए मानक परीक्षण विधि और परिभाषाएँ) के अनुसार नमूनों का विवरण।

एन 10045-1 (सेवानिवृत्त और आईएसओ 148 के साथ प्रतिस्थापित) के अनुसार,[10] मानक नमूना आकार 10 मिमी × 10 मिमी × 55 मिमी हैं। सबसाइज़ के नमूने हैं: 10 मिमी × 7.5 मिमी × 55 मिमी और 10 मिमी × 5 मिमी × 55 मिमी।

आईएसओ 148 के अनुसार,[9] मानक नमूना आकार 10 मिमी × 10 मिमी × 55 मिमी हैं। सबसाइज़ के नमूने हैं: 10 मिमी × 7.5 मिमी × 55 मिमी, 10 मिमी × 5 मिमी × 55 मिमी और 10 मिमी × 2.5 मिमी × 55 मिमी।

एमपीआईएफ मानक 40 के अनुसार,[13] मानक अननोटेड नमूना आकार 10 मिमी (± 0.125 मिमी) x 10 मिमी (± 0.125 मिमी) x 55 मिमी (± 2.5 मिमी) है।

== कम और उच्च शक्ति सामग्री == पर प्रभाव परीक्षण के परिणाम

कम शक्ति वाली धातुओं की प्रभाव ऊर्जा जो तापमान के साथ फ्रैक्चर मोड में परिवर्तन नहीं दिखाती है, सामान्यतः उच्च और तापमान के प्रति असंवेदनशील होती है। इन कारणों से, कम शक्ति वाली सामग्री के फ्रैक्चर-प्रतिरोध का आकलन करने के लिए प्रभाव परीक्षणों का व्यापक रूप से उपयोग नहीं किया जाता है, जिनके फ्रैक्चर मोड तापमान के साथ अपरिवर्तित रहते हैं। प्रभाव परीक्षण सामान्यतः कम-शक्ति वाली सामग्री के लिए नमनीय-भंगुर संक्रमण दिखाते हैं जो घन क्रिस्टल प्रणाली | शरीर-केंद्रित क्यूबिक (बीसीसी) संक्रमण धातुओं जैसे तापमान के साथ फ्रैक्चर मोड में परिवर्तन प्रदर्शित करते हैं।

सामान्यतः, उच्च-शक्ति वाली सामग्रियों में कम प्रभाव वाली ऊर्जा होती है जो इस तथ्य की पुष्टि करती है कि फ्रैक्चर सरलता से प्रारंभ हो जाते हैं और उच्च-शक्ति सामग्री में फैल जाते हैं। स्टील्स या बीसीसी संक्रमण धातुओं के अतिरिक्त अन्य उच्च शक्ति सामग्री की प्रभाव ऊर्जा सामान्यतः तापमान के प्रति असंवेदनशील होती है। उच्च शक्ति वाले बीसीसी स्टील्स उच्च शक्ति वाली धातु की तुलना में प्रभाव ऊर्जा की व्यापक विविधता प्रदर्शित करते हैं, जिसमें बीसीसी संरचना नहीं होती है क्योंकि स्टील सूक्ष्म तन्य-भंगुर संक्रमण से गुजरते हैं। भले ही, उच्च शक्ति वाले स्टील्स की अधिकतम प्रभाव ऊर्जा उनकी भंगुरता के कारण अभी भी कम है।[14]


यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 1.2 Meyers Marc A; Chawla Krishan Kumar (1998). Mechanical Behaviors of Materials. Prentice Hall. ISBN 978-0-13-262817-4.
  2. The Design and Methods of Construction Of Welded Steel Merchant Vessels: Final Report of a (U.S. Navy) Board of Investigation (July 1947). "वेल्डिंग जर्नल". 26 (7). वेल्डिंग जर्नल: 569. {{cite journal}}: Cite journal requires |journal= (help)
  3. Williams, M. L. & Ellinger, G. A (1948). वेल्डेड जहाजों से हटाए गए खंडित स्टील प्लेटों की जांच. National Bureau of Standards Rep.
  4. 4.0 4.1 Siewert
  5. Cedric W. Richards (1968). इंजीनियरिंग सामग्री विज्ञान. Wadsworth Publishing Company, Inc.
  6. Kurishita H, Kayano H, Narui M, Yamazaki M, Kano Y, Shibahara I (1993). "Effects of V-notch dimensions on Charpy impact test results for differently sized miniature specimens of ferritic steel". Materials Transactions - JIM. Japan Institute of Metals. 34 (11): 1042–52. doi:10.2320/matertrans1989.34.1042. ISSN 0916-1821.
  7. Mills NJ (February 1976). "The mechanism of brittle fracture in notched impact tests on polycarbonate". Journal of Materials Science. 11 (2): 363–75. Bibcode:1976JMatS..11..363M. doi:10.1007/BF00551448. S2CID 136720443.
  8. ASTM E23 Standard Test Methods for Notched Bar Impact Testing of Metallic Materials
  9. 9.0 9.1 ISO 148-1 Metallic materials - Charpy pendulum impact test - Part 1: Test method
  10. 10.0 10.1 EN 10045-1 Charpy impact test on metallic materials. Test method (V- and U-notches)
  11. Mathurt KK, Needleman A, Tvergaard V (May 1994). "3D analysis of failure modes in the Charpy impact test". Modelling and Simulation in Materials Science and Engineering. 2 (3A): 617–35. Bibcode:1994MSMSE...2..617M. doi:10.1088/0965-0393/2/3A/014. S2CID 250853994.
  12. ASTM A370 Standard Test Methods and Definitions for Mechanical Testing of Steel Products
  13. धातु पाउडर और पाउडर धातुकर्म उत्पादों के लिए मानक परीक्षण के तरीके. Princeton, New Jersey: Metal Powder Industries Federation. 2006. pp. 53–54. ISBN 0-9762057-3-4.
  14. Courtney, Thomas H. (2000). Mechanical Behavior of Materials. Waveland Press, Inc. ISBN 978-1-57766-425-3.


बाहरी संबंध