प्रांटल संख्या: Difference between revisions
Line 20: | Line 20: | ||
=== विशिष्ट मान === | === विशिष्ट मान === | ||
तापमान और दबाव की एक विस्तृत श्रृंखला में अधिकांश गैसों के लिए, {{math|Pr}} लगभग स्थिर है। इसलिए, इसका उपयोग उच्च तापमान पर गैसों की तापीय चालकता निर्धारित करने के लिए किया जा सकता है, जहां संवहन धाराओं के गठन के कारण प्रयोगात्मक रूप से मापना | तापमान और दबाव की एक विस्तृत श्रृंखला में अधिकांश गैसों के लिए, {{math|Pr}} लगभग स्थिर है। इसलिए, इसका उपयोग उच्च तापमान पर गैसों की तापीय चालकता निर्धारित करने के लिए किया जा सकता है, जहां संवहन धाराओं के गठन के कारण प्रयोगात्मक रूप से मापना कठिन होता है।<ref name="C&R" /> | ||
{{math|Pr}}के लिए विशिष्ट मान हैं: | |||
* 0.003 975 K पर पिघले हुए पोटेशियम के लिए<ref name="C&R" />* [[पारा (तत्व)]] के लिए लगभग 0.015 | * 0.003 975 K पर पिघले हुए पोटेशियम के लिए<ref name="C&R" />* [[पारा (तत्व)]] के लिए लगभग 0.015 | ||
* 975 K पर पिघला हुआ लिथियम के लिए 0.065<ref name="C&R" />* उत्कृष्ट गैसों या [[हाइड्रोजन]] के साथ उत्कृष्ट गैसों के मिश्रण के लिए लगभग 0.16–0.7 | * 975 K पर पिघला हुआ लिथियम के लिए 0.065<ref name="C&R" />* उत्कृष्ट गैसों या [[हाइड्रोजन]] के साथ उत्कृष्ट गैसों के मिश्रण के लिए लगभग 0.16–0.7 |
Revision as of 06:59, 30 March 2023
This article needs additional citations for verification. (August 2014) (Learn how and when to remove this template message) |
प्रांटल संख्या (Pr) या प्रांटल समूह एक विमाहीन संख्या है, जिसका नाम जर्मन भौतिकविज्ञानी लुडविग प्रांटल के नाम पर रखा गया है, जिसे ऊष्मीय विसरणशीलता के लिए संवेग विसरणशीलता के अनुपात के रूप में परिभाषित किया गया है।[1] प्रांटल संख्या इस प्रकार दी गई है:
कहाँ:
- : संवेग विसरणशीलता (शुद्धगतिक श्यानता), , (SI मात्रक: m2/s)
- : ऊष्मीय विसरणशीलता, , (SI मात्रक: m2/s)
- : गतिज श्यानता, (SI मात्रक: Pa s = N s/m2)
- : तापीय चालकता, (SI इकाई: W/(m·K))
- : विशिष्ट ऊष्मा, (SI मात्रक: J/(kg·K))
- : घनत्व, (SI मात्रक: kg/m3).
ध्यान दें कि जबकि रेनॉल्ड्स संख्या और ग्राशोफ़ संख्या एक मापनी चर के साथ पादांकित हैं, प्रांटल संख्या में ऐसा कोई लंबाई पैमाना नहीं है और यह केवल द्रव और द्रव अवस्था पर निर्भर है। प्रांटल संख्या अक्सर संपत्ति तालिकाओं में अन्य गुणों जैसे कि श्यानता और तापीय चालकता के साथ पाई जाती है।
प्रांटल संख्या के द्रव्यमान अंतरण के अनुरूप श्मिट संख्या है, प्रांटल संख्या और श्मिट संख्या का अनुपात लूइस संख्या है।
प्रायोगिक मान
विशिष्ट मान
तापमान और दबाव की एक विस्तृत श्रृंखला में अधिकांश गैसों के लिए, Pr लगभग स्थिर है। इसलिए, इसका उपयोग उच्च तापमान पर गैसों की तापीय चालकता निर्धारित करने के लिए किया जा सकता है, जहां संवहन धाराओं के गठन के कारण प्रयोगात्मक रूप से मापना कठिन होता है।[1]
Prके लिए विशिष्ट मान हैं:
- 0.003 975 K पर पिघले हुए पोटेशियम के लिए[1]* पारा (तत्व) के लिए लगभग 0.015
- 975 K पर पिघला हुआ लिथियम के लिए 0.065[1]* उत्कृष्ट गैसों या हाइड्रोजन के साथ उत्कृष्ट गैसों के मिश्रण के लिए लगभग 0.16–0.7
- 0.63 ऑक्सीजन के लिए[1]* हवा और कई अन्य गैसों के लिए लगभग 0.71
- 1.38 गैसीय अमोनिया के लिए[1]* Dichlorodifluoromethane|R-12 रेफ्रिजरेंट के लिए 4 से 5 के बीच
- पानी के लिए लगभग 7.56 (18 डिग्री सेल्सियस| डिग्री सेल्सियस पर)
- समुद्री जल के लिए 13.4 और 7.2 (क्रमशः 0 डिग्री सेल्सियस और 20 डिग्री सेल्सियस पर)
- एन-ब्यूटेनॉल के लिए 50[1]* इंजन ऑयल के लिए 100 से 40,000 के बीच
- ग्लिसरॉल के लिए 1000[1]* पॉलिमर मेल्ट्स के लिए 10,000[1]* लगभग 1×1025 पृथ्वी के मेंटल (भूविज्ञान) के लिए।
हवा और पानी की प्रान्तल संख्या की गणना का सूत्र
1 बार के दबाव वाली हवा के लिए, -100 डिग्री सेल्सियस और +500 डिग्री सेल्सियस के बीच तापमान रेंज में प्रांड्टल संख्या की गणना नीचे दिए गए सूत्र का उपयोग करके की जा सकती है।[2] तापमान का उपयोग इकाई डिग्री सेल्सियस में किया जाना है। विचलन साहित्य मूल्यों से अधिकतम 0.1% हैं।
नीचे दिए गए सूत्र का उपयोग करके 0 डिग्री सेल्सियस और 90 डिग्री सेल्सियस के बीच तापमान सीमा में पानी (1 बार) के लिए प्रांड्टल संख्या निर्धारित की जा सकती है।[3] तापमान का उपयोग इकाई डिग्री सेल्सियस में किया जाना है। विचलन साहित्य मूल्यों से अधिकतम 1% हैं।
शारीरिक व्याख्या
प्रान्तल संख्या के छोटे मान, Pr ≪ 1, इसका मतलब है कि थर्मल डिफ्यूसिविटी हावी है। जबकि बड़े मूल्यों के साथ, Pr ≫ 1, संवेग विसारकता व्यवहार पर हावी है। उदाहरण के लिए, तरल पारा के लिए सूचीबद्ध मूल्य इंगित करता है कि संवहन की तुलना में ऊष्मा चालन अधिक महत्वपूर्ण है, इसलिए तापीय विसारकता प्रमुख है। हालांकि, इंजन तेल के लिए, शुद्ध चालन की तुलना में एक क्षेत्र से ऊर्जा स्थानांतरित करने में संवहन बहुत प्रभावी होता है, इसलिए संवेग प्रसार प्रबल होता है।[4] गैसों की प्रान्त संख्या लगभग 1 है, जो इंगित करता है कि संवेग और ऊष्मा दोनों द्रव के माध्यम से लगभग समान दर से विलुप्त होते हैं। तरल धातुओं में ऊष्मा बहुत जल्दी फैलती है (Pr ≪ 1) और बहुत धीरे-धीरे तेलों में (Pr ≫ 1) संवेग के सापेक्ष। नतीजतन थर्मल सीमा परत की मोटाई और आकार तरल धातुओं के लिए बहुत मोटा होता है और सीमा परत की मोटाई के सापेक्ष तेलों के लिए बहुत पतला होता है।
गर्मी हस्तांतरण की समस्याओं में, प्रांटल संख्या गति और थर्मल सीमा परतों की सापेक्ष मोटाई को नियंत्रित करती है। कब Pr छोटा है, इसका मतलब है कि वेग (गति) की तुलना में गर्मी जल्दी फैलती है। इसका अर्थ है कि तरल धातुओं के लिए तापीय सीमा परत वेग सीमा परत की तुलना में बहुत अधिक मोटी होती है।
लैमिनार बाउंड्री लेयर्स में, एक फ्लैट प्लेट पर थर्मल से मोमेंटम बाउंड्री लेयर मोटाई का अनुपात किसके द्वारा अच्छी तरह से अनुमानित है[5]
कहाँ थर्मल सीमा परत मोटाई है और संवेग सीमा परत मोटाई है।
एक फ्लैट प्लेट पर असंपीड्य प्रवाह के लिए, दो न्यूसेल्ट संख्या सहसंबंध असम्बद्ध रूप से सही हैं:[6]
कहाँ रेनॉल्ड्स संख्या है। नॉर्म (गणित) की अवधारणा का उपयोग करके इन दो स्पर्शोन्मुख समाधानों को एक साथ मिश्रित किया जा सकता है:[7]
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Coulson, J. M.; Richardson, J. F. (1999). केमिकल इंजीनियरिंग वॉल्यूम 1 (6th ed.). Elsevier. ISBN 978-0-7506-4444-0.
- ↑ tec-science (2020-05-10). "प्रान्तल संख्या". tec-science (in English). Retrieved 2020-06-25.
- ↑ tec-science (2020-05-10). "प्रान्तल संख्या". tec-science (in English). Retrieved 2020-06-25.
- ↑ Çengel, Yunus A. (2003). Heat transfer : a practical approach (2nd ed.). Boston: McGraw-Hill. ISBN 0072458933. OCLC 50192222.
- ↑ Lienhard IV, John Henry; Lienhard V, John Henry (2017). एक हीट ट्रांसफर टेक्स्टबुक (4th ed.). Cambridge, MA: Phlogiston Press.
- ↑ Lienhard IV, John Henry; Lienhard V, John Henry (2017). एक हीट ट्रांसफर टेक्स्टबुक (4th ed.). Cambridge, MA: Phlogiston Press.
- ↑ Lienhard IV, John Henry; Lienhard V, John Henry (2017). एक हीट ट्रांसफर टेक्स्टबुक (4th ed.). Cambridge, MA: Phlogiston Press.
सामान्य संदर्भ
- White, F. M. (2006). चिपचिपा द्रव प्रवाह (3rd. ed.). New York: McGraw-Hill. ISBN 0-07-240231-8.
श्रेणी: संवहन श्रेणी:द्रव यांत्रिकी की आयाम रहित संख्या श्रेणी:ऊष्मागतिकी की आयाम रहित संख्या श्रेणी:द्रव गतिकी