प्रांटल संख्या: Difference between revisions
m (added Category:Vi using HotCat) |
m (removed Category:Vi using HotCat) |
||
Line 72: | Line 72: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 23/03/2023]] | [[Category:Created On 23/03/2023]] | ||
Revision as of 16:02, 11 April 2023
प्रांड्टल संख्या (Pr) या प्रांड्टल समूह एक विमाहीन संख्या है, जिसका नाम जर्मन भौतिकविज्ञानी लुडविग प्रांटल के नाम पर रखा गया है, जिसे ऊष्मीय विसरणशीलता के लिए संवेग विसरणशीलता के अनुपात के रूप में परिभाषित किया गया है।[1] प्रांटल संख्या इस प्रकार दी गई है:
कहाँ:
- : संवेग विसरणशीलता (शुद्धगतिक श्यानता), , (SI मात्रक: m2/s)
- : ऊष्मीय विसरणशीलता, , (SI मात्रक: m2/s)
- : गतिज श्यानता, (SI मात्रक: Pa s = N s/m2)
- : तापीय चालकता, (SI इकाई: W/(m·K))
- : विशिष्ट ऊष्मा, (SI मात्रक: J/(kg·K))
- : घनत्व, (SI मात्रक: kg/m3).
ध्यान दें कि जबकि रेनॉल्ड्स संख्या और ग्राशोफ़ संख्या एक मापनी चर के साथ पादांकित हैं, प्रांटल संख्या में ऐसा कोई लंबाई पैमाना नहीं है और यह केवल द्रव और द्रव अवस्था पर निर्भर है। प्रांटल संख्या अक्सर गुण तालिकाओं में अन्य गुणों जैसे कि श्यानता और तापीय चालकता के साथ पाई जाती है।
प्रांटल संख्या के द्रव्यमान अंतरण के अनुरूप श्मिट संख्या है, प्रांटल संख्या और श्मिट संख्या का अनुपात लूइस संख्या है।
प्रायोगिक मान
विशिष्ट मान
तापमान और दबाव की एक विस्तृत श्रृंखला में अधिकांश गैसों के लिए, Pr लगभग स्थिर है। इसलिए, इसका उपयोग उच्च तापमान पर गैसों की तापीय चालकता निर्धारित करने के लिए किया जा सकता है, जहां संवहन धाराओं के गठन के कारण प्रयोगात्मक रूप से मापना कठिन होता है।[1]
Prके लिए विशिष्ट मान हैं:
- 975 K पर पिघले हुए पोटेशियम के लिए 0.003[1]* पारा के लिए लगभग 0.015
- 975 K पर पिघले हुए लिथियम के लिए 0.065[1]* उत्कृष्ट गैसों या हाइड्रोजन के साथ उत्कृष्ट गैसों के मिश्रण के लिए लगभग 0.16–0.7
- ऑक्सीजन के लिए 0.63 [1]* हवा और कई अन्य गैसों के लिए लगभग 0.71
- 1.38 गैसीय अमोनिया के लिए[1]*R-12 प्रशीतक के लिए 4 से 5 के बीच
- जल के लिए लगभग 7.56 (18 °C पर)
- समुद्री जल के लिए 13.4 और 7.2 (क्रमशः 0 °C और 20 °C पर)
- एन-ब्यूटेनॉल के लिए 50[1]* इंजन तेल के लिए 100 से 40,000 के बीच
- ग्लिसरॉल के लिए 1000[1]* बहुलक पिघलने के लिए 10,000[1]* पृथ्वी के आवरण के लिए लगभग 1×1025।
वायु और जल की प्रांड्टल संख्या की गणना का सूत्र
1 बार के दबाव वाली वायु के लिए, −100°C और +500°C के बीच तापमान परास में प्रांड्टल संख्या की गणना नीचे दिए गए सूत्र का उपयोग करके की जा सकती है।[2] तापमान का उपयोग इकाई डिग्री सेल्सियस में किया जाना है। विचलन रचना मानो से अधिकतम 0.1% हैं।
नीचे दिए गए सूत्र का उपयोग करके 0 डिग्री सेल्सियस और 90 डिग्री सेल्सियस के बीच तापमान परास में जल (1 बार) के लिए प्रांड्टल संख्या निर्धारित की जा सकती है।[3] तापमान का उपयोग इकाई डिग्री सेल्सियस में किया जाना है। विचलन रचना मानो से अधिकतम 1% हैं।
भौतिक व्याख्या
प्रांड्टल संख्या के छोटे मान, Pr ≪ 1, का अर्थ है कि तापीय विसरणशीलता प्रमुख है। जबकि बड़े मानो के साथ, Pr ≫ 1, संवेग विसरणशीलता व्यवहार पर प्रमुख है। उदाहरण के लिए, तरल पारा के लिए सूचीबद्ध मान संकेत करता है कि संवहन की तुलना में ऊष्मा चालन अधिक महत्वपूर्ण है, इसलिए ऊष्मीय विसरणशीलता प्रमुख है। हालांकि, इंजन तेल के लिए, शुद्ध चालन की तुलना में एक क्षेत्र से ऊर्जा स्थानांतरित करने में संवहन बहुत प्रभावी होता है, इसलिए संवेग विसरणशीलता प्रबल होती है।[4] गैसों की प्रांड्टल संख्या लगभग 1 है, जो संकेत करता है कि संवेग और ऊष्मा दोनों द्रव के माध्यम से लगभग समान दर से विलुप्त होते हैं। संवेग के सापेक्ष तरल धातुओं (Pr ≪ 1) में ऊष्मा बहुत तीव्र और तेलों में (Pr ≫ 1) बहुत धीमी गति से विसरित होती है। इसलिये तापीय सीमा परत तरल धातुओं के लिए बहुत मोटी होती है और वेग सीमा परत के सापेक्ष तेलों के लिए बहुत पतली होती है।
ऊष्मांतरण की समस्याओं में, प्रांड्टल संख्या गति और तापीय सीमा परतों की सापेक्ष मोटाई को नियंत्रित करती है। जब Pr छोटा होता है, इसका मतलब है कि वेग (गति) की तुलना में ऊष्मा तीव्र फैलती है। इसका अर्थ है कि तरल धातुओं के लिए तापीय सीमा परत वेग सीमा परत की तुलना में बहुत अधिक मोटी होती है।
पटलीय सीमा परत में, एक सपाट प्लेट पर ऊष्मा से संवेग सीमा परत मोटाई का अनुपात किसके द्वारा अच्छी तरह से अनुमानित है[5]
जहाँ तापीय सीमा परत मोटाई है और संवेग सीमा परत मोटाई है।
एक सपाट प्लेट पर असंपीड्य प्रवाह के लिए, दो न्यूसेल्ट संख्या सहसंबंध असम्बद्ध रूप से सही हैं:[6]
जहाँ रेनॉल्ड्स संख्या है। मानक (गणित) की अवधारणा का उपयोग करके इन दो उपगामी विलयन को एक साथ मिश्रित किया जा सकता है:[7]
यह भी देखें
संदर्भ
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Coulson, J. M.; Richardson, J. F. (1999). केमिकल इंजीनियरिंग वॉल्यूम 1 (6th ed.). Elsevier. ISBN 978-0-7506-4444-0.
- ↑ tec-science (2020-05-10). "प्रान्तल संख्या". tec-science (in English). Retrieved 2020-06-25.
- ↑ tec-science (2020-05-10). "प्रान्तल संख्या". tec-science (in English). Retrieved 2020-06-25.
- ↑ Çengel, Yunus A. (2003). Heat transfer : a practical approach (2nd ed.). Boston: McGraw-Hill. ISBN 0072458933. OCLC 50192222.
- ↑ Lienhard IV, John Henry; Lienhard V, John Henry (2017). एक हीट ट्रांसफर टेक्स्टबुक (4th ed.). Cambridge, MA: Phlogiston Press.
- ↑ Lienhard IV, John Henry; Lienhard V, John Henry (2017). एक हीट ट्रांसफर टेक्स्टबुक (4th ed.). Cambridge, MA: Phlogiston Press.
- ↑ Lienhard IV, John Henry; Lienhard V, John Henry (2017). एक हीट ट्रांसफर टेक्स्टबुक (4th ed.). Cambridge, MA: Phlogiston Press.
सामान्य संदर्भ
- White, F. M. (2006). चिपचिपा द्रव प्रवाह (3rd. ed.). New York: McGraw-Hill. ISBN 0-07-240231-8.