रॉन्टजेन (यूनिट): Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Measurement of radiation exposure}} {{Distinguish|roentgen equivalent man|roentgen equivalent physical}} {{Infobox unit | name = Roentgen | image = File:...")
 
No edit summary
Line 22: Line 22:
}}
}}


रेंटजेन या रेंटजेन ({{IPAc-en|ˈ|r|ɜː|n|t|g|ə|n}}; प्रतीक आर) [[एक्स-रे]] और [[गामा किरण]]ों के [[विकिरण]] जोखिम के लिए माप की एक विरासत इकाई है, और इसे उस हवा के [[द्रव्यमान]] से विभाजित हवा की एक निर्दिष्ट मात्रा में इस तरह के विकिरण द्वारा मुक्त विद्युत आवेश के रूप में परिभाषित किया गया है ([[statcoulomb]] प्रति किलोग्राम) .
रेंटजेन या रेंटजेन ({{IPAc-en|ˈ|r|ɜː|n|t|g|ə|n}}; प्रतीक आर) [[एक्स-रे]] और [[गामा किरण]]ों के [[विकिरण]] जोखिम के लिए माप की विरासत इकाई है, और इसे उस हवा के [[द्रव्यमान]] से विभाजित हवा की निर्दिष्ट मात्रा में इस तरह के विकिरण द्वारा मुक्त विद्युत आवेश के रूप में परिभाषित किया गया है ([[statcoulomb]] प्रति किलोग्राम) .
1928 में, इसे [[विकिरण सुरक्षा]] के लिए परिभाषित किए जाने वाले आयनीकरण विकिरण के लिए पहली अंतर्राष्ट्रीय माप मात्रा के रूप में अपनाया गया था, क्योंकि तब यह [[आयन कक्ष]]ों का उपयोग करके वायु आयनीकरण को मापने की सबसे आसानी से दोहराई जाने वाली विधि थी।<ref name=princetonguide>{{cite web |url=http://web.princeton.edu/sites/ehs/radsafeguide/rsg_app_e.htm |title=Princeton Radiation Safety Guide, Appendix E: Roentgens, RADs, REMs, and other Units |access-date=10 May 2012 |url-status=dead |archive-url=https://web.archive.org/web/20150222005351/http://web.princeton.edu/sites/ehs/radsafeguide/rsg_app_e.htm |archive-date=2015-02-22}}</ref> इसका नाम [[जर्मनी]] के भौतिक विज्ञानी विल्हेम रॉन्टगन के नाम पर रखा गया है, जिन्होंने एक्स-रे की खोज की थी और इस खोज के लिए उन्हें भौतिकी का पहला नोबेल पुरस्कार दिया गया था।
1928 में, इसे [[विकिरण सुरक्षा]] के लिए परिभाषित किए जाने वाले आयनीकरण विकिरण के लिए पहली अंतर्राष्ट्रीय माप मात्रा के रूप में अपनाया गया था, क्योंकि तब यह [[आयन कक्ष]]ों का उपयोग करके वायु आयनीकरण को मापने की सबसे आसानी से दोहराई जाने वाली विधि थी।<ref name=princetonguide>{{cite web |url=http://web.princeton.edu/sites/ehs/radsafeguide/rsg_app_e.htm |title=Princeton Radiation Safety Guide, Appendix E: Roentgens, RADs, REMs, and other Units |access-date=10 May 2012 |url-status=dead |archive-url=https://web.archive.org/web/20150222005351/http://web.princeton.edu/sites/ehs/radsafeguide/rsg_app_e.htm |archive-date=2015-02-22}}</ref> इसका नाम [[जर्मनी]] के भौतिक विज्ञानी विल्हेम रॉन्टगन के नाम पर रखा गया है, जिन्होंने एक्स-रे की खोज की थी और इस खोज के लिए उन्हें भौतिकी का पहला नोबेल पुरस्कार दिया गया था।


हालांकि, हालांकि यह विकिरण मापन के मानकीकरण में एक बड़ा कदम था, रेंटजेन का नुकसान यह है कि यह केवल वायु आयनीकरण का एक उपाय है, और अन्य सामग्रियों में विकिरण अवशोषण का प्रत्यक्ष उपाय नहीं है, जैसे कि मानव ऊतक के विभिन्न रूप। उदाहरण के लिए, एक रॉन्टजेन जमा {{convert|0.00877|Gy|rad|abbr=off|lk=on}} शुष्क हवा में [[अवशोषित खुराक]], या {{convert|0.0096|Gy|rad|abbr=on}} कोमल ऊतक में।<ref name=princetonguide/>एक्स-रे का एक रॉन्टजेन कहीं से भी जमा हो सकता है {{convert|0.01|to|0.04|Gy|rad|abbr=on}} बीम ऊर्जा के आधार पर हड्डी में।<ref>{{cite web|last=Sprawls|first=Perry|title=विकिरण मात्रा और इकाइयां|url=http://www.sprawls.org/ppmi2/RADQU/3RADQU08.gif|work=The Physical Principles of Medical Imaging, 2nd Ed|access-date=10 May 2012}}</ref>
हालांकि, हालांकि यह विकिरण मापन के मानकीकरण में बड़ा कदम था, रेंटजेन का नुकसान यह है कि यह केवल वायु आयनीकरण का उपाय है, और अन्य सामग्रियों में विकिरण अवशोषण का प्रत्यक्ष उपाय नहीं है, जैसे कि मानव ऊतक के विभिन्न रूप। उदाहरण के लिए, रॉन्टजेन जमा {{convert|0.00877|Gy|rad|abbr=off|lk=on}} शुष्क हवा में [[अवशोषित खुराक]], या {{convert|0.0096|Gy|rad|abbr=on}} कोमल ऊतक में।<ref name=princetonguide/>एक्स-रे का रॉन्टजेन कहीं से भी जमा हो सकता है {{convert|0.01|to|0.04|Gy|rad|abbr=on}} बीम ऊर्जा के आधार पर हड्डी में।<ref>{{cite web|last=Sprawls|first=Perry|title=विकिरण मात्रा और इकाइयां|url=http://www.sprawls.org/ppmi2/RADQU/3RADQU08.gif|work=The Physical Principles of Medical Imaging, 2nd Ed|access-date=10 May 2012}}</ref>
जैसा कि विकिरण [[मात्रामापी]] का विज्ञान विकसित हुआ, यह महसूस किया गया कि आयनीकरण प्रभाव, और इसलिए ऊतक क्षति, अवशोषित ऊर्जा से जुड़ी थी, न कि केवल विकिरण जोखिम से। नतीजतन, विकिरण सुरक्षा के लिए नई रेडियोमेट्रिक इकाइयां परिभाषित की गईं, जिन्होंने इसे ध्यान में रखा। 1953 में रेडिएशन यूनिट्स एंड मेजरमेंट्स (ICRU) पर अंतर्राष्ट्रीय आयोग ने नई विकिरण मात्रा अवशोषित खुराक के माप की इकाई के रूप में 100 erg/g के बराबर रेड की सिफारिश की। रेड को इकाइयों की सुसंगत सेंटीमीटर-ग्राम-दूसरी प्रणाली में व्यक्त किया गया था।<ref name=GM>{{cite conference
जैसा कि विकिरण [[मात्रामापी]] का विज्ञान विकसित हुआ, यह महसूस किया गया कि आयनीकरण प्रभाव, और इसलिए ऊतक क्षति, अवशोषित ऊर्जा से जुड़ी थी, न कि केवल विकिरण जोखिम से। नतीजतन, विकिरण सुरक्षा के लिए नई रेडियोमेट्रिक इकाइयां परिभाषित की गईं, जिन्होंने इसे ध्यान में रखा। 1953 में रेडिएशन यूनिट्स एंड मेजरमेंट्स (ICRU) पर अंतर्राष्ट्रीय आयोग ने नई विकिरण मात्रा अवशोषित खुराक के माप की इकाई के रूप में 100 erg/g के बराबर रेड की सिफारिश की। रेड को इकाइयों की सुसंगत सेंटीमीटर-ग्राम-दूसरी प्रणाली में व्यक्त किया गया था।<ref name=GM>{{cite conference
|title = Dosimetry in Europe and the USSR
|title = Dosimetry in Europe and the USSR
Line 40: Line 40:
|date = June 1960
|date = June 1960
|access-date = 2012-05-15}}</ref>
|access-date = 2012-05-15}}</ref>
1975 में यूनिट [[ ग्रे (इकाई) ]] को अवशोषित खुराक की एसआई इकाई के रूप में नामित किया गया था। 1 ग्रे 1 जूल/किग्रा (अर्थात 100 रेड) के बराबर है। इसके अतिरिक्त, एक नई मात्रा, केर्मा (भौतिकी), को वायु आयनीकरण के लिए उपकरण अंशांकन के लिए जोखिम के रूप में परिभाषित किया गया था, और इससे अवशोषित खुराक की गणना विशिष्ट लक्ष्य सामग्री के लिए ज्ञात गुणांक का उपयोग करके की जा सकती है। आज, विकिरण सुरक्षा के लिए, आधुनिक इकाइयां, ऊर्जा अवशोषण के लिए अवशोषित खुराक और स्टोकेस्टिक प्रभाव के लिए समतुल्य खुराक ([[सीवर्ट]]) का अत्यधिक उपयोग किया जाता है, और रेंटजेन का उपयोग शायद ही कभी किया जाता है। बाट और माप की अंतर्राष्ट्रीय समिति (CIPM) ने कभी भी रॉन्टजेन के उपयोग को स्वीकार नहीं किया है।
1975 में यूनिट [[ ग्रे (इकाई) |ग्रे (इकाई)]] को अवशोषित खुराक की एसआई इकाई के रूप में नामित किया गया था। 1 ग्रे 1 जूल/किग्रा (अर्थात 100 रेड) के बराबर है। इसके अतिरिक्त, नई मात्रा, केर्मा (भौतिकी), को वायु आयनीकरण के लिए उपकरण अंशांकन के लिए जोखिम के रूप में परिभाषित किया गया था, और इससे अवशोषित खुराक की गणना विशिष्ट लक्ष्य सामग्री के लिए ज्ञात गुणांक का उपयोग करके की जा सकती है। आज, विकिरण सुरक्षा के लिए, आधुनिक इकाइयां, ऊर्जा अवशोषण के लिए अवशोषित खुराक और स्टोकेस्टिक प्रभाव के लिए समतुल्य खुराक ([[सीवर्ट]]) का अत्यधिक उपयोग किया जाता है, और रेंटजेन का उपयोग शायद ही कभी किया जाता है। बाट और माप की अंतर्राष्ट्रीय समिति (CIPM) ने कभी भी रॉन्टजेन के उपयोग को स्वीकार नहीं किया है।


रॉन्टजेन को वर्षों से पुनर्परिभाषित किया गया है। इसे आखिरी बार 1998 में यू.एस. के राष्ट्रीय मानक और प्रौद्योगिकी संस्थान (एनआईएसटी) द्वारा परिभाषित किया गया था {{val|2.58|e=-4|ul=C|up=kg}}, इस अनुशंसा के साथ कि हर उस दस्तावेज़ में परिभाषा दी जाए जहाँ रेंटजेन का उपयोग किया जाता है।<ref name="fedreg63" />
रॉन्टजेन को वर्षों से पुनर्परिभाषित किया गया है। इसे आखिरी बार 1998 में यू.एस. के राष्ट्रीय मानक और प्रौद्योगिकी संस्थान (एनआईएसटी) द्वारा परिभाषित किया गया था {{val|2.58|e=-4|ul=C|up=kg}}, इस अनुशंसा के साथ कि हर उस दस्तावेज़ में परिभाषा दी जाए जहाँ रेंटजेन का उपयोग किया जाता है।<ref name="fedreg63" />
Line 46: Line 46:


== इतिहास ==
== इतिहास ==
रेंटजेन की जड़ें 1908 में [[अमेरिकन रॉन्टजेन रे सोसाइटी]] द्वारा परिभाषित विलार्ड इकाई में हैं, जो विकिरण की मात्रा के रूप में है, जो आयनीकरण द्वारा प्रति घन सेंटीमीटर बिजली का एक स्टेटकूलम्ब मुक्त करता है|सेमी<sup>तापमान और दबाव की सामान्य परिस्थितियों में 3 </sup> हवा।<ref name="VanLoon&VanTiggelen">Van Loon, R.; and Van Tiggelen, R., [http://www.radiology-museum.be/Pdf/RADIATIONDOSIMETRY.pdf ''Radiation Dosimetry in Medical Exposure: A Short Historical Overview''] {{webarchive|url=https://web.archive.org/web/20071024083402/http://www.radiology-museum.be/Pdf/RADIATIONDOSIMETRY.pdf |date=2007-10-24 }}, 2004></ref><ref>{{cite journal|title=Instruments de mesure à lecture directe pour les rayons x. Substitution de la méthode électrométrique aux autres méthodes de mesure en radiologie. Scleromètre et quantimètre.|journal=Archives d'électricité médicale|year=1908|volume=16|pages=692–699|location=Bordeaux}}</ref> 1 esu ≈ 3.33564 का उपयोग करना{{x10^|&minus;10}} C और हवा का घनत्व ~1.293 किग्रा/मीटर<sup>3</sup> 0 °C और 101 kPa पर, यह 2.58 × 10 में बदल जाता है<sup>−4</sup> C/kg, जो NIST द्वारा दिया गया आधुनिक मान है।
रेंटजेन की जड़ें 1908 में [[अमेरिकन रॉन्टजेन रे सोसाइटी]] द्वारा परिभाषित विलार्ड इकाई में हैं, जो विकिरण की मात्रा के रूप में है, जो आयनीकरण द्वारा प्रति घन सेंटीमीटर बिजली का स्टेटकूलम्ब मुक्त करता है|सेमी<sup>तापमान और दबाव की सामान्य परिस्थितियों में 3</sup> हवा।<ref name="VanLoon&VanTiggelen">Van Loon, R.; and Van Tiggelen, R., [http://www.radiology-museum.be/Pdf/RADIATIONDOSIMETRY.pdf ''Radiation Dosimetry in Medical Exposure: A Short Historical Overview''] {{webarchive|url=https://web.archive.org/web/20071024083402/http://www.radiology-museum.be/Pdf/RADIATIONDOSIMETRY.pdf |date=2007-10-24 }}, 2004></ref><ref>{{cite journal|title=Instruments de mesure à lecture directe pour les rayons x. Substitution de la méthode électrométrique aux autres méthodes de mesure en radiologie. Scleromètre et quantimètre.|journal=Archives d'électricité médicale|year=1908|volume=16|pages=692–699|location=Bordeaux}}</ref> 1 esu ≈ 3.33564 का उपयोग करना{{x10^|&minus;10}} C और हवा का घनत्व ~1.293 किग्रा/मीटर<sup>3</sup> 0 °C और 101 kPa पर, यह 2.58 × 10 में बदल जाता है<sup>−4</sup> C/kg, जो NIST द्वारा दिया गया आधुनिक मान है।


1{{sfrac|esu|cm<sup>3</sup>}} × 3.33564 × 10<sup>−10</sup>{{sfrac|C|esu}} × 1,000,000 {{sfrac|cm<sup>3</sup>|m<sup>3</sup>}} ÷ 1.293 {{sfrac|kg|m<sup>3</sup>}} = 2.58 × 10<sup>-4</सुप>{{sfrac|C|kg}}
1{{sfrac|esu|cm<sup>3</sup>}} × 3.33564 × 10<sup>−10</sup>{{sfrac|C|esu}} × 1,000,000 {{sfrac|cm<sup>3</sup>|m<sup>3</sup>}} ÷ 1.293 {{sfrac|kg|m<sup>3</sup>}} = 2.58 × 10<sup>-4</सुप>{{sfrac|C|kg}}


अगले 20 वर्षों के लिए इस परिभाषा का उपयोग विभिन्न नामों (ई, आर, और विकिरण की जर्मन इकाई) के तहत किया गया था। इस बीच, फ्रांसीसी रोएंटजेन को एक अलग परिभाषा दी गई, जो 0.444 जर्मन आर की राशि थी।
अगले 20 वर्षों के लिए इस परिभाषा का उपयोग विभिन्न नामों (ई, आर, और विकिरण की जर्मन इकाई) के तहत किया गया था। इस बीच, फ्रांसीसी रोएंटजेन को अलग परिभाषा दी गई, जो 0.444 जर्मन आर की राशि थी।


=== आईसीआर परिभाषाएं ===
=== आईसीआर परिभाषाएं ===
Line 56: Line 56:


=== गोस्ट परिभाषा ===
=== गोस्ट परिभाषा ===
[[ सोवियत संघ ]] [[मानकों की अखिल-संघ समिति]] (GOST) ने इस बीच 1934 में रेंटजेन की एक काफी अलग परिभाषा को अपनाया था। GOST मानक 7623 ने इसे एक्स-रे की भौतिक खुराक के रूप में परिभाषित किया है जो प्रति सेमी परिमाण में एक इलेक्ट्रोस्टैटिक इकाई के प्रत्येक चार्ज का उत्पादन करता है।<sup>0 डिग्री सेल्सियस पर हवा में विकिरणित आयतन का 3</sup> और आयनीकरण पूर्ण होने पर सामान्य वायुमंडलीय दबाव।<ref>{{cite journal|last=Ardashnikov|first=S. N.|author2=Chetverikov, N. S. |title=The definition of the roentgen in the "Recommendations of the International Commission on Radiological Units. 1953"|journal=Atomic Energy|year=1957|volume=3|issue=9|pages=1027–1032|doi=10.1007/BF01515739|s2cid=95827816}}</ref> खुराक से भौतिक खुराक के भेद ने भ्रम पैदा किया, जिनमें से कुछ ने कैंट्रिल और पार्कर की रिपोर्ट का नेतृत्व किया हो सकता है कि ऊतक के 83 ergs प्रति ग्राम (0.0083 ग्रे (यूनिट)) के लिए रेंटजेन शॉर्टहैंड बन गया था।<ref>{{cite report |last1= Cantrill MD |first1= S.T. |last2= Parker |first2=H.M. |title= सहिष्णुता की खुराक|date= 1945-01-05 |url=https://apps.dtic.mil/sti/citations/ADA322447 |archive-url=https://web.archive.org/web/20210407155417/https://apps.dtic.mil/sti/citations/ADA322447 |url-status=live |archive-date=April 7, 2021 |access-date= 14 May 2012 |publisher= US Atomic Energy Commission, Argonne National Laboratory}}</ref> ICR roentgen से अलग करने के लिए उन्होंने इस व्युत्पन्न मात्रा को roentgen समकक्ष भौतिक (rep) नाम दिया।
[[ सोवियत संघ | सोवियत संघ]] [[मानकों की अखिल-संघ समिति]] (GOST) ने इस बीच 1934 में रेंटजेन की काफी अलग परिभाषा को अपनाया था। GOST मानक 7623 ने इसे एक्स-रे की भौतिक खुराक के रूप में परिभाषित किया है जो प्रति सेमी परिमाण में इलेक्ट्रोस्टैटिक इकाई के प्रत्येक चार्ज का उत्पादन करता है।<sup>0 डिग्री सेल्सियस पर हवा में विकिरणित आयतन का 3</sup> और आयनीकरण पूर्ण होने पर सामान्य वायुमंडलीय दबाव।<ref>{{cite journal|last=Ardashnikov|first=S. N.|author2=Chetverikov, N. S. |title=The definition of the roentgen in the "Recommendations of the International Commission on Radiological Units. 1953"|journal=Atomic Energy|year=1957|volume=3|issue=9|pages=1027–1032|doi=10.1007/BF01515739|s2cid=95827816}}</ref> खुराक से भौतिक खुराक के भेद ने भ्रम पैदा किया, जिनमें से कुछ ने कैंट्रिल और पार्कर की रिपोर्ट का नेतृत्व किया हो सकता है कि ऊतक के 83 ergs प्रति ग्राम (0.0083 ग्रे (यूनिट)) के लिए रेंटजेन शॉर्टहैंड बन गया था।<ref>{{cite report |last1= Cantrill MD |first1= S.T. |last2= Parker |first2=H.M. |title= सहिष्णुता की खुराक|date= 1945-01-05 |url=https://apps.dtic.mil/sti/citations/ADA322447 |archive-url=https://web.archive.org/web/20210407155417/https://apps.dtic.mil/sti/citations/ADA322447 |url-status=live |archive-date=April 7, 2021 |access-date= 14 May 2012 |publisher= US Atomic Energy Commission, Argonne National Laboratory}}</ref> ICR roentgen से अलग करने के लिए उन्होंने इस व्युत्पन्न मात्रा को roentgen समकक्ष भौतिक (rep) नाम दिया।


=== आईसीआरपी परिभाषा ===
=== आईसीआरपी परिभाषा ===
Line 71: Line 71:
|title=Council Directive 71/354/EEC: On the approximation of the laws of the Member States relating to units of measurement |publisher=The Council of the European Communities
|title=Council Directive 71/354/EEC: On the approximation of the laws of the Member States relating to units of measurement |publisher=The Council of the European Communities
|date=18 October 1971
|date=18 October 1971
|access-date=19 May 2012}}</ref> निर्देश में [[ क्यूरी (इकाई) ]], रेड (यूनिट), [[ वास्तविक (इकाई) ]] और रेंटजेन को अनुमेय इकाइयों के रूप में शामिल किया गया था, लेकिन यह आवश्यक था कि रेड, रेम और रेंटजेन के उपयोग की 31 दिसंबर 1977 से पहले समीक्षा की जाए। इस दस्तावेज़ ने रेंटजेन को परिभाषित किया बिल्कुल 2.58 × 10<sup>-4</sup> C/kg, ICRU की सिफारिश के अनुसार। मापन निर्देशों की यूरोपीय इकाइयाँ | निर्देश 80/181/EEC, दिसंबर 1979 में प्रकाशित, जिसने निर्देश 71/354/EEC को प्रतिस्थापित किया, इस उद्देश्य के लिए स्पष्ट रूप से ग्रे (यूनिट), [[ Becquerel ]] और सीवर्ट को सूचीबद्ध किया और आवश्यक किया कि क्यूरी, रेड, रेम और रॉन्टजेन को 31 दिसंबर 1985 तक समाप्त कर दिया जाएगा।<ref>{{cite web
|access-date=19 May 2012}}</ref> निर्देश में [[ क्यूरी (इकाई) |क्यूरी (इकाई)]] , रेड (यूनिट), [[ वास्तविक (इकाई) |वास्तविक (इकाई)]] और रेंटजेन को अनुमेय इकाइयों के रूप में शामिल किया गया था, लेकिन यह आवश्यक था कि रेड, रेम और रेंटजेन के उपयोग की 31 दिसंबर 1977 से पहले समीक्षा की जाए। इस दस्तावेज़ ने रेंटजेन को परिभाषित किया बिल्कुल 2.58 × 10<sup>-4</sup> C/kg, ICRU की सिफारिश के अनुसार। मापन निर्देशों की यूरोपीय इकाइयाँ | निर्देश 80/181/EEC, दिसंबर 1979 में प्रकाशित, जिसने निर्देश 71/354/EEC को प्रतिस्थापित किया, इस उद्देश्य के लिए स्पष्ट रूप से ग्रे (यूनिट), [[ Becquerel |Becquerel]] और सीवर्ट को सूचीबद्ध किया और आवश्यक किया कि क्यूरी, रेड, रेम और रॉन्टजेन को 31 दिसंबर 1985 तक समाप्त कर दिया जाएगा।<ref>{{cite web
| url = http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31980L0181:EN:NOT
| url = http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31980L0181:EN:NOT
| author = The Council of the European Communities
| author = The Council of the European Communities
Line 84: Line 84:


== प्रतिस्थापन रेडियोमेट्रिक मात्राओं का विकास ==
== प्रतिस्थापन रेडियोमेट्रिक मात्राओं का विकास ==
[[File:Dose quantities and units.png|thumb|400px|रेडियोलॉजिकल सुरक्षा में उपयोग की जाने वाली बाहरी आधुनिक विकिरण मात्रा]]हालांकि एक वायु आयन कक्ष के साथ मापने के लिए एक सुविधाजनक मात्रा, रेंटजेन का नुकसान था कि यह एक्स-रे की तीव्रता या उनके अवशोषण का प्रत्यक्ष माप नहीं था, बल्कि एक्स-रे के आयनिंग प्रभाव का माप था एक विशिष्ट परिस्थिति; जो 0 डिग्री सेल्सियस पर शुष्क हवा थी और दबाव का 1 [[मानक दबाव]] था।<ref name=Lovell4>{{cite book
[[File:Dose quantities and units.png|thumb|400px|रेडियोलॉजिकल सुरक्षा में उपयोग की जाने वाली बाहरी आधुनिक विकिरण मात्रा]]हालांकि वायु आयन कक्ष के साथ मापने के लिए सुविधाजनक मात्रा, रेंटजेन का नुकसान था कि यह एक्स-रे की तीव्रता या उनके अवशोषण का प्रत्यक्ष माप नहीं था, बल्कि एक्स-रे के आयनिंग प्रभाव का माप था विशिष्ट परिस्थिति; जो 0 डिग्री सेल्सियस पर शुष्क हवा थी और दबाव का 1 [[मानक दबाव]] था।<ref name=Lovell4>{{cite book
|chapter-url =https://books.google.com/books?id=lK48AAAAIAAJ&q=roentgen+defined&pg=PA56
|chapter-url =https://books.google.com/books?id=lK48AAAAIAAJ&q=roentgen+defined&pg=PA56
|title = An introduction to Radiation Dosimetry
|title = An introduction to Radiation Dosimetry
Line 95: Line 95:
|publisher = Cambridge University Press
|publisher = Cambridge University Press
|access-date = 2012-05-15}}</ref>
|access-date = 2012-05-15}}</ref>
इस वजह से रेंटजेन का लक्ष्य सामग्री में प्रति इकाई द्रव्यमान में अवशोषित ऊर्जा की मात्रा के लिए एक चर संबंध था, क्योंकि विभिन्न सामग्रियों में अलग-अलग अवशोषण विशेषताएँ होती हैं। जैसा कि विकिरण डोसिमेट्री का विज्ञान विकसित हुआ, इसे एक गंभीर कमी के रूप में देखा गया।
इस वजह से रेंटजेन का लक्ष्य सामग्री में प्रति इकाई द्रव्यमान में अवशोषित ऊर्जा की मात्रा के लिए चर संबंध था, क्योंकि विभिन्न सामग्रियों में अलग-अलग अवशोषण विशेषताएँ होती हैं। जैसा कि विकिरण डोसिमेट्री का विज्ञान विकसित हुआ, इसे गंभीर कमी के रूप में देखा गया।


1940 में, [[लुई हेरोल्ड ग्रे]], जो मानव ऊतक पर न्यूट्रॉन क्षति के प्रभाव का अध्ययन कर रहे थे, [[विलियम वेलेंटाइन मेनॉर्ड]] और रेडियोबायोलॉजिस्ट जॉन रीड के साथ मिलकर एक पेपर प्रकाशित किया जिसमें माप की एक इकाई ने ग्राम रेंटजेन (प्रतीक: जीआर) को डब किया। न्यूट्रॉन विकिरण की उस मात्रा के रूप में परिभाषित किया गया है जो विकिरण के एक रेंटजेन द्वारा पानी की इकाई मात्रा में उत्पादित ऊर्जा की वृद्धि के बराबर ऊतक की इकाई मात्रा में ऊर्जा में वृद्धि का उत्पादन करती है।<ref name="Gupta2009">{{cite book|last=Gupta|first=S. V. |title=Units of Measurement: Past, Present and Future : International System of Units|chapter-url=https://books.google.com/books?id=pHiKycrLmEQC&pg=PA144|access-date=2012-05-14|date=2009-11-19|publisher=Springer|isbn=978-3-642-00737-8|page=144|chapter=Louis Harold Gray}}</ref> प्रस्तावित किया गया था। यह इकाई हवा में 88 ergs के बराबर पाई गई। 1953 में ICRU ने अवशोषित विकिरण के माप की नई इकाई के रूप में 100 erg/g के बराबर रेड (यूनिट) की सिफारिश की। रेड को सुसंगत [[सीजीएस प्रणाली]] इकाइयों में व्यक्त किया गया था।<ref>Guill, JH; Moteff, John (June 1960). "Dosimetry in Europe and the USSR". Third Pacific Area Meeting Papers — Materials in Nuclear Applications. Symposium on Radiation Effects and Dosimetry - Third Pacific Area Meeting American Society for Testing Materials, October 1959, San Francisco, 12–16 October 1959. American Society Technical Publication. 276. ASTM International. p. 64. LCCN 60014734. Retrieved 2012-05-15.</ref>
1940 में, [[लुई हेरोल्ड ग्रे]], जो मानव ऊतक पर न्यूट्रॉन क्षति के प्रभाव का अध्ययन कर रहे थे, [[विलियम वेलेंटाइन मेनॉर्ड]] और रेडियोबायोलॉजिस्ट जॉन रीड के साथ मिलकर पेपर प्रकाशित किया जिसमें माप की इकाई ने ग्राम रेंटजेन (प्रतीक: जीआर) को डब किया। न्यूट्रॉन विकिरण की उस मात्रा के रूप में परिभाषित किया गया है जो विकिरण के रेंटजेन द्वारा पानी की इकाई मात्रा में उत्पादित ऊर्जा की वृद्धि के बराबर ऊतक की इकाई मात्रा में ऊर्जा में वृद्धि का उत्पादन करती है।<ref name="Gupta2009">{{cite book|last=Gupta|first=S. V. |title=Units of Measurement: Past, Present and Future : International System of Units|chapter-url=https://books.google.com/books?id=pHiKycrLmEQC&pg=PA144|access-date=2012-05-14|date=2009-11-19|publisher=Springer|isbn=978-3-642-00737-8|page=144|chapter=Louis Harold Gray}}</ref> प्रस्तावित किया गया था। यह इकाई हवा में 88 ergs के बराबर पाई गई। 1953 में ICRU ने अवशोषित विकिरण के माप की नई इकाई के रूप में 100 erg/g के बराबर रेड (यूनिट) की सिफारिश की। रेड को सुसंगत [[सीजीएस प्रणाली]] इकाइयों में व्यक्त किया गया था।<ref>Guill, JH; Moteff, John (June 1960). "Dosimetry in Europe and the USSR". Third Pacific Area Meeting Papers — Materials in Nuclear Applications. Symposium on Radiation Effects and Dosimetry - Third Pacific Area Meeting American Society for Testing Materials, October 1959, San Francisco, 12–16 October 1959. American Society Technical Publication. 276. ASTM International. p. 64. LCCN 60014734. Retrieved 2012-05-15.</ref>
1950 के दशक के उत्तरार्ध में वजन और माप पर सामान्य सम्मेलन (सीजीपीएम) ने आईसीआरयू को अन्य वैज्ञानिक निकायों में शामिल होने के लिए आमंत्रित किया ताकि वे इकाइयों की एक प्रणाली के विकास में वजन और माप के लिए अंतर्राष्ट्रीय समिति (सीआईपीएम) के साथ काम कर सकें जो कि कई पर लगातार इस्तेमाल किया जा सकता है। विषयों। यह निकाय, जिसे शुरू में इकाइयों की प्रणाली के लिए आयोग के रूप में जाना जाता था, जिसका नाम 1964 में इकाइयों के लिए सलाहकार समिति (CCU) के रूप में बदल दिया गया, अंतर्राष्ट्रीय प्रणाली इकाइयों (SI) के विकास की देखरेख के लिए जिम्मेदार था।<ref>{{cite web
1950 के दशक के उत्तरार्ध में वजन और माप पर सामान्य सम्मेलन (सीजीपीएम) ने आईसीआरयू को अन्य वैज्ञानिक निकायों में शामिल होने के लिए आमंत्रित किया ताकि वे इकाइयों की प्रणाली के विकास में वजन और माप के लिए अंतर्राष्ट्रीय समिति (सीआईपीएम) के साथ काम कर सकें जो कि कई पर लगातार इस्तेमाल किया जा सकता है। विषयों। यह निकाय, जिसे शुरू में इकाइयों की प्रणाली के लिए आयोग के रूप में जाना जाता था, जिसका नाम 1964 में इकाइयों के लिए सलाहकार समिति (CCU) के रूप में बदल दिया गया, अंतर्राष्ट्रीय प्रणाली इकाइयों (SI) के विकास की देखरेख के लिए जिम्मेदार था।<ref>{{cite web
|url = http://www.bipm.org/en/committees/cc/ccu/
|url = http://www.bipm.org/en/committees/cc/ccu/
|title = CCU: Consultative Committee for Units
|title = CCU: Consultative Committee for Units
Line 136: Line 136:
* [[परिमाण के आदेश (विकिरण)]]
* [[परिमाण के आदेश (विकिरण)]]
* रेड (इकाई) - अवशोषित खुराक की सीजीएस इकाई
* रेड (इकाई) - अवशोषित खुराक की सीजीएस इकाई
* रॉन्टगन समतुल्य मैन, या रेम - विकिरण खुराक समतुल्य की एक इकाई
* रॉन्टगन समतुल्य मैन, या रेम - विकिरण खुराक समतुल्य की इकाई
* सीवर्ट (प्रतीक: Sv) - खुराक के बराबर की SI व्युत्पन्न इकाई
* सीवर्ट (प्रतीक: Sv) - खुराक के बराबर की SI व्युत्पन्न इकाई
* विल्हेम रॉन्टगन
* विल्हेम रॉन्टगन
Line 147: Line 147:
*[https://physics.nist.gov/cuu/Units/outside.html NIST: Units outside the SI]
*[https://physics.nist.gov/cuu/Units/outside.html NIST: Units outside the SI]
*[http://www.hps.org/publicinformation/ate/faqs/radiationdoses.html Radiation Dose Units] – Health Physics Society
*[http://www.hps.org/publicinformation/ate/faqs/radiationdoses.html Radiation Dose Units] – Health Physics Society
{{Radiation protection|state=uncollapsed}}


{{DEFAULTSORT:Roentgen}}[[Category: विकिरण खुराक की इकाइयाँ]] [[Category: गैर-एसआई मीट्रिक इकाइयाँ]]  
{{DEFAULTSORT:Roentgen}}[[Category: विकिरण खुराक की इकाइयाँ]] [[Category: गैर-एसआई मीट्रिक इकाइयाँ]]  

Revision as of 18:29, 10 April 2023

Roentgen
Dosimeter ablesung.jpg
Display of quartz fiber dosimeter, in units of roentgen.[1]
General information
इकाई प्रणालीLegacy unit
की इकाईExposure to ionizing radiation
चिन्ह, प्रतीकR
नाम के बादWilhelm Röntgen
Conversions
1 R in ...... is equal to ...
   SI base units   2.58×10−4 As/kg

रेंटजेन या रेंटजेन (/ˈrɜːntɡən/; प्रतीक आर) एक्स-रे और गामा किरणों के विकिरण जोखिम के लिए माप की विरासत इकाई है, और इसे उस हवा के द्रव्यमान से विभाजित हवा की निर्दिष्ट मात्रा में इस तरह के विकिरण द्वारा मुक्त विद्युत आवेश के रूप में परिभाषित किया गया है (statcoulomb प्रति किलोग्राम) . 1928 में, इसे विकिरण सुरक्षा के लिए परिभाषित किए जाने वाले आयनीकरण विकिरण के लिए पहली अंतर्राष्ट्रीय माप मात्रा के रूप में अपनाया गया था, क्योंकि तब यह आयन कक्षों का उपयोग करके वायु आयनीकरण को मापने की सबसे आसानी से दोहराई जाने वाली विधि थी।[2] इसका नाम जर्मनी के भौतिक विज्ञानी विल्हेम रॉन्टगन के नाम पर रखा गया है, जिन्होंने एक्स-रे की खोज की थी और इस खोज के लिए उन्हें भौतिकी का पहला नोबेल पुरस्कार दिया गया था।

हालांकि, हालांकि यह विकिरण मापन के मानकीकरण में बड़ा कदम था, रेंटजेन का नुकसान यह है कि यह केवल वायु आयनीकरण का उपाय है, और अन्य सामग्रियों में विकिरण अवशोषण का प्रत्यक्ष उपाय नहीं है, जैसे कि मानव ऊतक के विभिन्न रूप। उदाहरण के लिए, रॉन्टजेन जमा 0.00877 grays (0.877 rads) शुष्क हवा में अवशोषित खुराक, या 0.0096 Gy (0.96 rad) कोमल ऊतक में।[2]एक्स-रे का रॉन्टजेन कहीं से भी जमा हो सकता है 0.01 to 0.04 Gy (1.0 to 4.0 rad) बीम ऊर्जा के आधार पर हड्डी में।[3] जैसा कि विकिरण मात्रामापी का विज्ञान विकसित हुआ, यह महसूस किया गया कि आयनीकरण प्रभाव, और इसलिए ऊतक क्षति, अवशोषित ऊर्जा से जुड़ी थी, न कि केवल विकिरण जोखिम से। नतीजतन, विकिरण सुरक्षा के लिए नई रेडियोमेट्रिक इकाइयां परिभाषित की गईं, जिन्होंने इसे ध्यान में रखा। 1953 में रेडिएशन यूनिट्स एंड मेजरमेंट्स (ICRU) पर अंतर्राष्ट्रीय आयोग ने नई विकिरण मात्रा अवशोषित खुराक के माप की इकाई के रूप में 100 erg/g के बराबर रेड की सिफारिश की। रेड को इकाइयों की सुसंगत सेंटीमीटर-ग्राम-दूसरी प्रणाली में व्यक्त किया गया था।[4] 1975 में यूनिट ग्रे (इकाई) को अवशोषित खुराक की एसआई इकाई के रूप में नामित किया गया था। 1 ग्रे 1 जूल/किग्रा (अर्थात 100 रेड) के बराबर है। इसके अतिरिक्त, नई मात्रा, केर्मा (भौतिकी), को वायु आयनीकरण के लिए उपकरण अंशांकन के लिए जोखिम के रूप में परिभाषित किया गया था, और इससे अवशोषित खुराक की गणना विशिष्ट लक्ष्य सामग्री के लिए ज्ञात गुणांक का उपयोग करके की जा सकती है। आज, विकिरण सुरक्षा के लिए, आधुनिक इकाइयां, ऊर्जा अवशोषण के लिए अवशोषित खुराक और स्टोकेस्टिक प्रभाव के लिए समतुल्य खुराक (सीवर्ट) का अत्यधिक उपयोग किया जाता है, और रेंटजेन का उपयोग शायद ही कभी किया जाता है। बाट और माप की अंतर्राष्ट्रीय समिति (CIPM) ने कभी भी रॉन्टजेन के उपयोग को स्वीकार नहीं किया है।

रॉन्टजेन को वर्षों से पुनर्परिभाषित किया गया है। इसे आखिरी बार 1998 में यू.एस. के राष्ट्रीय मानक और प्रौद्योगिकी संस्थान (एनआईएसटी) द्वारा परिभाषित किया गया था 2.58×10−4 C/kg, इस अनुशंसा के साथ कि हर उस दस्तावेज़ में परिभाषा दी जाए जहाँ रेंटजेन का उपयोग किया जाता है।[5]


इतिहास

रेंटजेन की जड़ें 1908 में अमेरिकन रॉन्टजेन रे सोसाइटी द्वारा परिभाषित विलार्ड इकाई में हैं, जो विकिरण की मात्रा के रूप में है, जो आयनीकरण द्वारा प्रति घन सेंटीमीटर बिजली का स्टेटकूलम्ब मुक्त करता है|सेमीतापमान और दबाव की सामान्य परिस्थितियों में 3 हवा।[6][7] 1 esu ≈ 3.33564 का उपयोग करना×10−10 C और हवा का घनत्व ~1.293 किग्रा/मीटर3 0 °C और 101 kPa पर, यह 2.58 × 10 में बदल जाता है−4 C/kg, जो NIST द्वारा दिया गया आधुनिक मान है।

1esu/cm3 × 3.33564 × 10−10C/esu × 1,000,000 cm3/m3 ÷ 1.293 kg/m3 = 2.58 × 10-4</सुप>C/kg

अगले 20 वर्षों के लिए इस परिभाषा का उपयोग विभिन्न नामों (ई, आर, और विकिरण की जर्मन इकाई) के तहत किया गया था। इस बीच, फ्रांसीसी रोएंटजेन को अलग परिभाषा दी गई, जो 0.444 जर्मन आर की राशि थी।

आईसीआर परिभाषाएं

1928 में, रेडियोलॉजी की अंतर्राष्ट्रीय कांग्रेस (आईसीआर) ने एक्स-विकिरण की मात्रा के रूप में रॉन्टजेन को परिभाषित किया, जो कि जब द्वितीयक इलेक्ट्रॉनों का पूरी तरह से उपयोग किया जाता है और कक्ष की दीवार के प्रभाव से बचा जाता है, तो 0 डिग्री पर वायुमंडलीय हवा के 1 सीसी में उत्पादन होता है। C और 76 सेमी पारा दबाव इस तरह की चालकता की डिग्री है कि 1esu आवेश को संतृप्त धारा में मापा जाता है।[6]बताई गई 1cc हवा का द्रव्यमान 1.293 g होगा, इसलिए 1937 में ICR ने आयतन, तापमान और दबाव के बजाय हवा के इस द्रव्यमान के संदर्भ में यह परिभाषा लिखी।[8] 1937 की परिभाषा को गामा किरणों तक भी बढ़ाया गया था, लेकिन बाद में 1950 में इसे 3 MeV तक सीमित कर दिया गया।

गोस्ट परिभाषा

सोवियत संघ मानकों की अखिल-संघ समिति (GOST) ने इस बीच 1934 में रेंटजेन की काफी अलग परिभाषा को अपनाया था। GOST मानक 7623 ने इसे एक्स-रे की भौतिक खुराक के रूप में परिभाषित किया है जो प्रति सेमी परिमाण में इलेक्ट्रोस्टैटिक इकाई के प्रत्येक चार्ज का उत्पादन करता है।0 डिग्री सेल्सियस पर हवा में विकिरणित आयतन का 3 और आयनीकरण पूर्ण होने पर सामान्य वायुमंडलीय दबाव।[9] खुराक से भौतिक खुराक के भेद ने भ्रम पैदा किया, जिनमें से कुछ ने कैंट्रिल और पार्कर की रिपोर्ट का नेतृत्व किया हो सकता है कि ऊतक के 83 ergs प्रति ग्राम (0.0083 ग्रे (यूनिट)) के लिए रेंटजेन शॉर्टहैंड बन गया था।[10] ICR roentgen से अलग करने के लिए उन्होंने इस व्युत्पन्न मात्रा को roentgen समकक्ष भौतिक (rep) नाम दिया।

आईसीआरपी परिभाषा

रॉन्टजेन मापन इकाई की शुरूआत, जो हवा के आयनीकरण को मापने पर निर्भर थी, ने पहले कम सटीक प्रथाओं को बदल दिया जो समयबद्ध जोखिम, फिल्म जोखिम या प्रतिदीप्ति पर निर्भर थी।[11] इसने जोखिम सीमा निर्धारित करने का मार्ग प्रशस्त किया, और संयुक्त राज्य अमेरिका के विकिरण संरक्षण और माप पर राष्ट्रीय परिषद ने 1931 में प्रति दिन 0.1 रॉन्टजेन के रूप में पहली औपचारिक खुराक सीमा स्थापित की।[12] अंतर्राष्ट्रीय एक्स-रे और रेडियम संरक्षण समिति, जिसे अब रेडियोलॉजिकल प्रोटेक्शन (ICRP) पर अंतर्राष्ट्रीय आयोग के रूप में जाना जाता है, ने जल्द ही 1934 में प्रति दिन 0.2 रेंटजेन की सीमा का पालन किया।[13] 1950 में, ICRP ने पूरे शरीर के जोखिम के लिए उनकी अनुशंसित सीमा को घटाकर प्रति सप्ताह 0.3 रेंटजेन कर दिया।

विकिरण इकाइयों और मापन पर अंतर्राष्ट्रीय आयोग (ICRU) ने 1950 में रेंटजेन की परिभाषा को अपने हाथ में ले लिया, इसे X या γ-विकिरण की मात्रा के रूप में परिभाषित किया, जैसे कि हवा में प्रति 0.001293 ग्राम वायु से संबंधित कॉर्पसकुलर उत्सर्जन, हवा में, आयनों को ले जाता है। किसी भी संकेत की बिजली की मात्रा की 1 इलेक्ट्रोस्टैटिक इकाई।[14] 3 मेव कैप अब परिभाषा का हिस्सा नहीं था, लेकिन उच्च बीम ऊर्जा पर इस इकाई की निम्नीकृत उपयोगिता का उल्लेख साथ के पाठ में किया गया था। इस बीच, रॉन्टजेन समतुल्य पुरुष (रेम) की नई अवधारणा विकसित की गई थी।

1957 से शुरू होकर, ICRP ने रेम के संदर्भ में अपनी सिफारिशें प्रकाशित करना शुरू किया, और रॉन्टजेन अनुपयोगी हो गया। चिकित्सा इमेजिंग समुदाय को अभी भी आयनीकरण माप की आवश्यकता है, लेकिन वे धीरे-धीरे सी / किग्रा का उपयोग करने के लिए परिवर्तित हो गए क्योंकि विरासत उपकरण को बदल दिया गया था।[15] ICRU ने रेंटजेन को ठीक 2.58 × 10 के रूप में पुनर्परिभाषित करने की सिफारिश की−4 C/kg 1971 में।[16]


यूरोपीय संघ

1971 में यूरोपीय आर्थिक समुदाय, माप निर्देशों की यूरोपीय इकाइयों में। निर्देश 71/354/EEC, माप की उन इकाइयों को सूचीबद्ध करता है जिनका उपयोग ... सार्वजनिक स्वास्थ्य ... उद्देश्यों के लिए किया जा सकता है।[17] निर्देश में क्यूरी (इकाई) , रेड (यूनिट), वास्तविक (इकाई) और रेंटजेन को अनुमेय इकाइयों के रूप में शामिल किया गया था, लेकिन यह आवश्यक था कि रेड, रेम और रेंटजेन के उपयोग की 31 दिसंबर 1977 से पहले समीक्षा की जाए। इस दस्तावेज़ ने रेंटजेन को परिभाषित किया बिल्कुल 2.58 × 10-4 C/kg, ICRU की सिफारिश के अनुसार। मापन निर्देशों की यूरोपीय इकाइयाँ | निर्देश 80/181/EEC, दिसंबर 1979 में प्रकाशित, जिसने निर्देश 71/354/EEC को प्रतिस्थापित किया, इस उद्देश्य के लिए स्पष्ट रूप से ग्रे (यूनिट), Becquerel और सीवर्ट को सूचीबद्ध किया और आवश्यक किया कि क्यूरी, रेड, रेम और रॉन्टजेन को 31 दिसंबर 1985 तक समाप्त कर दिया जाएगा।[18]


एनआईएसटी परिभाषा

आज रॉन्टजेन का उपयोग शायद ही कभी किया जाता है, और वज़न और माप के लिए अंतर्राष्ट्रीय समिति (सीआईपीएम) ने रॉन्टजेन के उपयोग को कभी स्वीकार नहीं किया। 1977 से 1998 तक, US NIST के SI ब्रोशर के अनुवाद में कहा गया है कि CIPM ने अस्थायी रूप से 1969 से SI इकाइयों के साथ roentgen (और अन्य रेडियोलॉजी इकाइयों) के उपयोग को स्वीकार कर लिया है।[19] हालांकि, परिशिष्ट में दिखाया गया एकमात्र संबंधित सीआईपीएम निर्णय 1964 में क्यूरी (यूनिट) के संबंध में है। एनआईएसटी ब्रोशर ने रेंटजेन को 2.58 × 10 के रूप में परिभाषित किया है।−4 C/kg, x या γ विकिरण के जोखिम के साथ नियोजित किया जाना है, लेकिन आयनित होने के माध्यम को नहीं बताया। सीआईपीएम का वर्तमान एसआई ब्रोशर एसआई के साथ उपयोग के लिए स्वीकृत गैर-एसआई इकाइयों की तालिका से रेंटजेन को बाहर करता है।[20] यूएस एनआईएसटी ने 1998 में स्पष्ट किया कि वह एसआई प्रणाली की अपनी व्याख्या प्रदान कर रहा था, जिससे उसने एसआई के साथ अमेरिका में उपयोग के लिए रॉन्टजेन को स्वीकार किया, जबकि यह स्वीकार किया कि सीआईपीएम ने नहीं किया।[21] तब तक, एक्स और γ विकिरण की सीमा हटा दी गई थी। एनआईएसटी अनुशंसा करता है कि जहां इस इकाई का उपयोग किया जाता है वहां प्रत्येक दस्तावेज़ में रॉन्टजेन को परिभाषित किया जाए।[5] एनआईएसटी द्वारा रॉन्टजेन के निरंतर उपयोग को दृढ़ता से हतोत्साहित किया जाता है।[22]


प्रतिस्थापन रेडियोमेट्रिक मात्राओं का विकास

रेडियोलॉजिकल सुरक्षा में उपयोग की जाने वाली बाहरी आधुनिक विकिरण मात्रा

हालांकि वायु आयन कक्ष के साथ मापने के लिए सुविधाजनक मात्रा, रेंटजेन का नुकसान था कि यह एक्स-रे की तीव्रता या उनके अवशोषण का प्रत्यक्ष माप नहीं था, बल्कि एक्स-रे के आयनिंग प्रभाव का माप था विशिष्ट परिस्थिति; जो 0 डिग्री सेल्सियस पर शुष्क हवा थी और दबाव का 1 मानक दबाव था।[23]

इस वजह से रेंटजेन का लक्ष्य सामग्री में प्रति इकाई द्रव्यमान में अवशोषित ऊर्जा की मात्रा के लिए चर संबंध था, क्योंकि विभिन्न सामग्रियों में अलग-अलग अवशोषण विशेषताएँ होती हैं। जैसा कि विकिरण डोसिमेट्री का विज्ञान विकसित हुआ, इसे गंभीर कमी के रूप में देखा गया।

1940 में, लुई हेरोल्ड ग्रे, जो मानव ऊतक पर न्यूट्रॉन क्षति के प्रभाव का अध्ययन कर रहे थे, विलियम वेलेंटाइन मेनॉर्ड और रेडियोबायोलॉजिस्ट जॉन रीड के साथ मिलकर पेपर प्रकाशित किया जिसमें माप की इकाई ने ग्राम रेंटजेन (प्रतीक: जीआर) को डब किया। न्यूट्रॉन विकिरण की उस मात्रा के रूप में परिभाषित किया गया है जो विकिरण के रेंटजेन द्वारा पानी की इकाई मात्रा में उत्पादित ऊर्जा की वृद्धि के बराबर ऊतक की इकाई मात्रा में ऊर्जा में वृद्धि का उत्पादन करती है।[24] प्रस्तावित किया गया था। यह इकाई हवा में 88 ergs के बराबर पाई गई। 1953 में ICRU ने अवशोषित विकिरण के माप की नई इकाई के रूप में 100 erg/g के बराबर रेड (यूनिट) की सिफारिश की। रेड को सुसंगत सीजीएस प्रणाली इकाइयों में व्यक्त किया गया था।[25] 1950 के दशक के उत्तरार्ध में वजन और माप पर सामान्य सम्मेलन (सीजीपीएम) ने आईसीआरयू को अन्य वैज्ञानिक निकायों में शामिल होने के लिए आमंत्रित किया ताकि वे इकाइयों की प्रणाली के विकास में वजन और माप के लिए अंतर्राष्ट्रीय समिति (सीआईपीएम) के साथ काम कर सकें जो कि कई पर लगातार इस्तेमाल किया जा सकता है। विषयों। यह निकाय, जिसे शुरू में इकाइयों की प्रणाली के लिए आयोग के रूप में जाना जाता था, जिसका नाम 1964 में इकाइयों के लिए सलाहकार समिति (CCU) के रूप में बदल दिया गया, अंतर्राष्ट्रीय प्रणाली इकाइयों (SI) के विकास की देखरेख के लिए जिम्मेदार था।[26] उसी समय यह तेजी से स्पष्ट होता जा रहा था कि रेंटजेन की परिभाषा गलत थी, और 1962 में इसे फिर से परिभाषित किया गया।[27] CCU ने अवशोषित विकिरण की SI इकाई को प्रति इकाई द्रव्यमान ऊर्जा के रूप में परिभाषित करने का निर्णय लिया, जो MKS इकाइयों में J/kg था। इसकी पुष्टि 1975 में 15वें सीजीपीएम द्वारा की गई थी, और यूनिट का नाम लुई हेरोल्ड ग्रे के सम्मान में ग्रे रखा गया था, जिनकी मृत्यु 1965 में हुई थी। ग्रे 100 रेड के बराबर था। रॉन्टजन की परिभाषा में हवा में फोटॉनों को परिभाषित करने के लिए अपेक्षाकृत सरल होने का आकर्षण था, लेकिन ग्रे प्राथमिक आयनीकरण विकिरण प्रकार से स्वतंत्र है, और इसका उपयोग केर्मा और अवशोषित खुराक दोनों के लिए व्यापक श्रेणी के मामले में किया जा सकता है।[28] बाहरी जोखिम के कारण मानव में अवशोषित खुराक को मापते समय, एसआई इकाई ग्रे (यूनिट), या संबंधित गैर-एसआई रेड (यूनिट) का उपयोग किया जाता है। इनमें से अलग-अलग विकिरण प्रकारों और लक्ष्य सामग्री से जैविक प्रभावों पर विचार करने के लिए खुराक समकक्ष विकसित किए जा सकते हैं। ये समकक्ष खुराक और प्रभावी खुराक (विकिरण) हैं जिसके लिए एसआई यूनिट सीवर्ट या गैर-एसआई रेंटजेन समकक्ष मैन का उपयोग किया जाता है।

विकिरण-संबंधी मात्राएँ

निम्न तालिका एसआई और गैर-एसआई इकाइयों में विकिरण मात्रा दर्शाती है:

Ionizing radiation related quantities view  talk  edit
Quantity Unit Symbol Derivation Year SI equivalent
Activity (A) becquerel Bq s−1 1974 SI unit
curie Ci 3.7 × 1010 s−1 1953 3.7×1010 Bq
rutherford Rd 106 s−1 1946 1,000,000 Bq
Exposure (X) coulomb per kilogram C/kg C⋅kg−1 of air 1974 SI unit
röntgen R esu / 0.001293 g of air 1928 2.58 × 10−4 C/kg
Absorbed dose (D) gray Gy J⋅kg−1 1974 SI unit
erg per gram erg/g erg⋅g−1 1950 1.0 × 10−4 Gy
rad rad 100 erg⋅g−1 1953 0.010 Gy
Equivalent dose (H) sievert Sv J⋅kg−1 × WR 1977 SI unit
röntgen equivalent man rem 100 erg⋅g−1 × WR 1971 0.010 Sv
Effective dose (E) sievert Sv J⋅kg−1 × WR × WT 1977 SI unit
röntgen equivalent man rem 100 erg⋅g−1 × WR × WT 1971 0.010 Sv

यह भी देखें

  • ग्रे (यूनिट) - अवशोषित खुराक की एसआई इकाई
  • परिमाण के आदेश (विकिरण)
  • रेड (इकाई) - अवशोषित खुराक की सीजीएस इकाई
  • रॉन्टगन समतुल्य मैन, या रेम - विकिरण खुराक समतुल्य की इकाई
  • सीवर्ट (प्रतीक: Sv) - खुराक के बराबर की SI व्युत्पन्न इकाई
  • विल्हेम रॉन्टगन

संदर्भ

  1. Frame, Paul (2007-07-25). "Pocket Chambers and Pocket Dosimeters". Health physics historical instrument museum collection. Oak Ridge Associated Universities. Retrieved 2021-10-07.
  2. 2.0 2.1 "Princeton Radiation Safety Guide, Appendix E: Roentgens, RADs, REMs, and other Units". Archived from the original on 2015-02-22. Retrieved 10 May 2012.
  3. Sprawls, Perry. "विकिरण मात्रा और इकाइयां". The Physical Principles of Medical Imaging, 2nd Ed. Retrieved 10 May 2012.
  4. Guill, JH; Moteff, John (June 1960). "Dosimetry in Europe and the USSR". Third Pacific Area Meeting Papers — Materials in Nuclear Applications. Symposium on Radiation Effects and Dosimetry - Third Pacific Area Meeting American Society for Testing Materials, October 1959, San Francisco, 12–16 October 1959. American Society Technical Publication. Vol. 276. ASTM International. p. 64. LCCN 60014734. Retrieved 2012-05-15.
  5. 5.0 5.1 Hebner, Robert E. (1998-07-28). "Metric System of Measurement: Interpretation of the International System of Units for the United States" (PDF). Federal Register. US Office of the Federal Register. 63 (144): 40339. Retrieved 9 May 2012.
  6. 6.0 6.1 Van Loon, R.; and Van Tiggelen, R., Radiation Dosimetry in Medical Exposure: A Short Historical Overview Archived 2007-10-24 at the Wayback Machine, 2004>
  7. "Instruments de mesure à lecture directe pour les rayons x. Substitution de la méthode électrométrique aux autres méthodes de mesure en radiologie. Scleromètre et quantimètre". Archives d'électricité médicale. Bordeaux. 16: 692–699. 1908.
  8. Guill, JH; Moteff, John (June 1960). यूरोप और यूएसएसआर में डोसिमेट्री. Symposium on Radiation Effects and Dosimetry. Baltimore: ASTM International. p. 64. LCCN 60-14734. Retrieved 15 May 2012.
  9. Ardashnikov, S. N.; Chetverikov, N. S. (1957). "The definition of the roentgen in the "Recommendations of the International Commission on Radiological Units. 1953"". Atomic Energy. 3 (9): 1027–1032. doi:10.1007/BF01515739. S2CID 95827816.
  10. Cantrill MD, S.T.; Parker, H.M. (1945-01-05). सहिष्णुता की खुराक (Report). US Atomic Energy Commission, Argonne National Laboratory. Archived from the original on April 7, 2021. Retrieved 14 May 2012.
  11. Mutscheller, A. (1925). Physical standards of protection against Roentgen ray dangers, AJR. American Journal of Roentgenology, 13, 65–69.
  12. Meinhold, Charles B. (April 1996). One Hundred Years of X Rays and Radioactivity – Radiation Protection: Then and Now (PDF). International Congress. Vienna, Austria: International Radiation Protection Association. Retrieved 14 May 2012.
  13. Clarke, R.H.; J. Valentin (2009). "ICRP का इतिहास और इसकी नीतियों का विकास" (PDF). Annals of the ICRP. ICRP Publication 109. 39 (1): 75–110. doi:10.1016/j.icrp.2009.07.009. S2CID 71278114. Retrieved 12 May 2012.
  14. रेडियोलॉजिकल प्रोटेक्शन पर अंतर्राष्ट्रीय आयोग और रेडियोलॉजिकल यूनिट्स पर अंतर्राष्ट्रीय आयोग की सिफारिशें (PDF). National Bureau of Standards Handbook. Vol. 47. US Department of Commerce. 1950. Retrieved 14 November 2012.
  15. Carlton, Richard R.; Adler, Arlene McKenna (1 January 2012). "Radiation Protection Concepts and Equipment". Principles of Radiographic Imaging: An Art and a Science (5th ed.). Cengage Learning. p. 145. ISBN 978-1-4390-5872-5. Retrieved 12 May 2012.
  16. ICRU Report 19, 1971
  17. "Council Directive 71/354/EEC: On the approximation of the laws of the Member States relating to units of measurement". The Council of the European Communities. 18 October 1971. Retrieved 19 May 2012.
  18. The Council of the European Communities (1979-12-21). "Council Directive 80/181/EEC of 20 December 1979 on the approximation of the laws of the Member States relating to Unit of measurement and on the repeal of Directive 71/354/EEC". Retrieved 19 May 2012.
  19. International Bureau of Weights and Measures (1977). United States National Bureau of Standards (ed.). इकाइयों की अंतर्राष्ट्रीय प्रणाली (एसआई). NBS Special Publication 330. Dept. of Commerce, National Bureau of Standards. p. 12. Retrieved 18 May 2012.
  20. International Bureau of Weights and Measures (2006), The International System of Units (SI) (PDF) (8th ed.), ISBN 92-822-2213-6, archived (PDF) from the original on 2021-06-04, retrieved 2021-12-16
  21. Lyons, John W. (1990-12-20). "Metric System of Measurement: Interpretation of the International System of Units for the United States". Federal Register. US Office of the Federal Register. 55 (245): 52242–52245.
  22. Thompson, Ambler; Taylor, Barry N. (2008). इकाइयों की अंतर्राष्ट्रीय प्रणाली (एसआई) के उपयोग के लिए मार्गदर्शिका (2008 ed.). Gaithersburg, MD: National Institute of Standards and Technology. p. 10. SP811. Archived from the original on 16 May 2008. Retrieved 28 November 2012.
  23. Lovell, S (1979). "4: Dosimetric quantities and units". An introduction to Radiation Dosimetry. Cambridge University Press. pp. 52–64. ISBN 0-521-22436-5. Retrieved 2012-05-15.
  24. Gupta, S. V. (2009-11-19). "Louis Harold Gray". Units of Measurement: Past, Present and Future : International System of Units. Springer. p. 144. ISBN 978-3-642-00737-8. Retrieved 2012-05-14.
  25. Guill, JH; Moteff, John (June 1960). "Dosimetry in Europe and the USSR". Third Pacific Area Meeting Papers — Materials in Nuclear Applications. Symposium on Radiation Effects and Dosimetry - Third Pacific Area Meeting American Society for Testing Materials, October 1959, San Francisco, 12–16 October 1959. American Society Technical Publication. 276. ASTM International. p. 64. LCCN 60014734. Retrieved 2012-05-15.
  26. "CCU: Consultative Committee for Units". International Bureau of Weights and Measures (BIPM). Retrieved 2012-05-18.
  27. Anderson, Pauline C; Pendleton, Alice E (2000). "14 Dental Radiography". The Dental Assistant (7th ed.). Delmar. p. 554. ISBN 0-7668-1113-1.
  28. Lovell, S (1979). "3. The effects of ionizing radiation on matter in bulk". An introduction to Radiation Dosimetry. Cambridge University Press. pp. 43–51. ISBN 0-521-22436-5. Retrieved 2012-05-15.


बाहरी संबंध