असीम तर्क: Difference between revisions
No edit summary |
No edit summary |
||
Line 29: | Line 29: | ||
== पूर्णता, सम्पूर्णता, और मजबूत पूर्णता == | == पूर्णता, सम्पूर्णता, और मजबूत पूर्णता == | ||
एक सिद्धांत वाक्यों का कोई सेट है। मॉडलों में कथनो की सच्चाई प्रतिवर्तन द्वारा परिभाषित की जाती है और अंतिम तर्क के लिए परिभाषा से सहमत होगी जहां दोनों परिभाषित हैं। एक सिद्धांत T दिए जाने पर एक वाक्य को सिद्धांत T के लिए मान्य | एक सिद्धांत वाक्यों का कोई सेट है। मॉडलों में कथनो की सच्चाई प्रतिवर्तन द्वारा परिभाषित की जाती है और अंतिम तर्क के लिए परिभाषा से सहमत होगी जहां दोनों परिभाषित हैं। एक सिद्धांत T दिए जाने पर एक वाक्य को सिद्धांत T के लिए मान्य है। यदि यह T के सभी मॉडलों में सत्य है। | ||
भाषा में एक तर्क <math>L_{\alpha , \beta}</math> यदि प्रत्येक मॉडल में मान्य प्रत्येक वाक्य S के लिए S का प्रमाण मौजूद है तो यह पूर्ण है। यह पूरी तरह से पूर्ण है यदि किसी भी सिद्धांत के लिए T में मान्य प्रत्येक वाक्य S के लिए T से S का प्रमाण है। दृढ़ता से पूर्ण हुए बिना एक असीम तर्क पूर्ण हो सकता है। | भाषा में एक तर्क <math>L_{\alpha , \beta}</math> यदि प्रत्येक मॉडल में मान्य प्रत्येक वाक्य S के लिए S का प्रमाण मौजूद है तो यह पूर्ण है। यह पूरी तरह से पूर्ण है यदि किसी भी सिद्धांत के लिए T में मान्य प्रत्येक वाक्य S के लिए T से S का प्रमाण है। दृढ़ता से पूर्ण हुए बिना एक असीम तर्क पूर्ण हो सकता है। | ||
Line 37: | Line 37: | ||
[[असीम तर्क में अभिव्यक्त अवधारणाएँ]] | [[असीम तर्क में अभिव्यक्त अवधारणाएँ]] | ||
सिद्धांत की भाषा में निम्नलिखित कथन नींव व्यक्त करता | सिद्धांत की भाषा में निम्नलिखित कथन नींव व्यक्त करता है। | ||
:<math>\forall_{\gamma < \omega}{V_{\gamma}:} \neg \land_{\gamma < \omega}{V_{\gamma +} \in V_{\gamma}}.\,</math> | :<math>\forall_{\gamma < \omega}{V_{\gamma}:} \neg \land_{\gamma < \omega}{V_{\gamma +} \in V_{\gamma}}.\,</math> | ||
नींव के स्वयंसिद्ध के विपरीत, यह कथन गैर-मानक व्याख्याओं को स्वीकार नहीं करता है। [[अच्छी तरह से स्थापित]] होने की अवधारणा को केवल एक तर्क में व्यक्त किया जा सकता | नींव के स्वयंसिद्ध के विपरीत, यह कथन गैर-मानक व्याख्याओं को स्वीकार नहीं करता है। [[अच्छी तरह से स्थापित]] होने की अवधारणा को केवल एक तर्क में व्यक्त किया जा सकता है।जो एक व्यक्तिगत बयान में असीम रूप से कई मात्रात्मक की अनुमति देता है। एक परिणाम के रूप में पीनो अंकगणित सहित कई सिद्धांत, जो अंतिम तर्क में ठीक से स्वयंसिद्ध नहीं हो सकते, एक उपयुक्त अनंत तर्क में हो सकते हैं। अन्य उदाहरणों में गैर-आर्किमिडीयन क्षेत्रों और मरोड़-मुक्त समूहों के सिद्धांत शामिल हैं।<ref>{{cite journal| last=Rosinger| first=Elemer| title=गणित और भौतिकी में चार विभाग| year=2010| arxiv=1003.0360| citeseerx=10.1.1.760.6726}}</ref>{{better source|date=January 2021}} इन तीन सिद्धांतों को अनंत परिमाणीकरण के उपयोग के बिना परिभाषित किया जा सकता है; केवल अनंत संगम<ref>{{cite journal| journal=Notre Dame Journal of Formal Logic| volume=XXI| number=1| pages=111–118| last=Bennett| first=David| title=जंक्शनों| year=1980| url=https://projecteuclid.org/download/pdf_1/euclid.ndjfl/1093882943| doi=10.1305/ndjfl/1093882943| doi-access=free}}</ref> जरूरत है। | ||
== पूर्णअसीमित तर्क == | == पूर्णअसीमित तर्क == |
Revision as of 00:43, 4 April 2023
एक असीम तर्क एक ऐसा तर्क है जो एक असीम रूप से लंबे कथनो या असीम रूप से लंबे प्रमाणों की अनुमति देता है।[1] कुछ असीम तर्क में स्तर प्रथम-क्रम तर्क से भिन्न गुण हो सकते हैं। विशेष रूप से,असीमित तर्क सम्पूर्णता या पूर्ण होने में में विफल हो सकते हैं। कॉम्पैक्टनेस और पूर्णता की धारणाएं, जो कभी-कभी परिमित तर्क में समान होती हैं,अनंत तर्क में नहीं होती हैं। इसलिए असीमित तर्क के लिए, मजबूत कॉम्पैक्टनेस और मजबूत पूर्णता की धारणाएं परिभाषित की गई हैं। यह लेख हिल्बर्ट प्रणाली असीम तर्क को संबोधित करता है, क्योंकि इनका बड़े पैमाने पर अध्ययन किया है और यह अंतिम तर्क के सबसे सीधे विस्तार का गठन करता है। हालाँकि, ये केवल असीम तर्क नहीं हैं जिन्हें तैयार या अध्ययन किया गया है।
यह विचार करते हुए कि क्या Ω-तर्क नामक एक निश्चित असीमित तर्क पूर्ण कथन हैं[2] निरंतर परिकल्पना पर प्रकाश डालने के लिए।
अंकन पर एक शब्द और पसंद का स्वयंसिद्ध
चूंकि अनंत रूप से लंबे सूत्रों वाली भाषा प्रस्तुत की जा रही है, ऐसे सूत्रों को स्पष्ट रूप से लिखना संभव नहीं है। इस समस्या को हल करने के लिए कई सांकेतिक सुविधाएं, जो वास्तव में नियमानुसार भाषा का हिस्सा नहीं हैं, का उपयोग किया जाता है। एक अभिव्यक्ति को संकेत करने के लिए प्रयोग किया जाता है जो असीम रूप से लंबा है। जहां यह स्पष्ट नहीं है, अनुक्रम की लंबाई बाद में नोट की जाती है। जहां यह संकेतन अस्पष्ट या भ्रामक हो जाता है, वहाँ प्रत्यय जैसे का उपयोग गणनांक के सूत्रों के एक सेट पर एक अनंत तार्किक संयोजन को संकेत करने के लिए उपयोग किया जाता है।उदाहरण के लिए मात्रात्मक पर एक ही संकेतन लागू किया जा सकता है . यह मात्रात्मक के अनंत अनुक्रम का प्रतिनिधित्व करने के लिए है: प्रत्येक के लिए मात्रात्मक जहां .
प्रत्यय के सभी उपयोग नहीं हैं और औपचारिक क्रिया के साधारण भाषाओं का हिस्सा हैं।
चयन का स्वयंसिद्ध माना जाता है (जैसा कि अनंत तर्क पर चर्चा करते समय अक्सर किया जाता है) क्योंकि उचित वितरण नियम के लिए यह आवश्यक है।
हिल्बर्ट-प्रकार असीमित तर्क की परिभाषा
एक प्रथम-क्रम अनंत भाषा Lα,β, α नियमित , β = 0 या ω ≤ β ≤ α, में अंतिम तर्क के रूप में प्रतीकों का एक ही सेट होता है और कुछ अतिरिक्त नियमों के साथ अंतिम तर्क के सूत्रों का निर्माण करने के लिए सभी नियमों का उपयोग कर सकता है।
- सूत्रों के एक सेट को देखते हुए, सूत्र और हैं। (प्रत्येक मामले में अनुक्रम की लंबाई है।)
- चर और सूत्र के एक सेट को देखते हुए, सूत्र और हैं। (प्रत्येक मामले में परिमाणकों के अनुक्रम की लंबाई है। )
मुक्त और परिबद्ध चरों की संकल्पनाएँ उसी प्रकार से अनंत सूत्रों पर लागू होती हैं। ठीक वैसे ही जैसे परिमित तर्क में, एक सूत्र जिसके सभी चर बंधे होते हैं उसे वाक्य कहा जाता है।
अनंत भाषा में एक सिद्धांत (गणितीय तर्क) T तर्क में वाक्यों का एक समूह है। एक सिद्धांत T से असीम तर्क में एक प्रमाण कथनो का एक (संभवतः अनंत) अनुक्रम है जो निम्नलिखित शर्तों का पालन करता है: प्रत्येक कथन या तो एक तार्किक स्वयंसिद्ध है,T का एक तत्व है, या अनुमान के नियम का उपयोग करके पिछले कथनो से निकाला जाता है। पहले की तरह, परिमित तर्क में परिणाम के सभी नियमों का उपयोग एक अतिरिक्त के साथ किया जा सकता है:
- कथनो का एक सेट दिया जो पहले प्रमाण में हुआ हो फिर कथन यह निष्कर्ष निकाला जा सकता है।[3]
असीम तर्क के लिए विशिष्ट तार्किक स्वयंसिद्ध स्कीमेता नीचे प्रस्तुत किया गया है। वैश्विक स्कीमेता चर: और ऐसा है कि .
- प्रत्येक के लिए ,
- चांग के वितरण नियम (प्रत्येक के लिए ): , कहाँ या , और
- के लिए , , कहाँ का एक अच्छा क्रम है
अंतिम दो स्वयंसिद्ध स्कीमेता को पसंद के स्वयंसिद्ध की आवश्यकता होती है क्योंकि कुछ सेट अच्छी तरह से व्यवस्थित होने चाहिए। अंतिम स्वयंसिद्ध आकार सख्ती से अनावश्यक कथन है, जैसा कि चांग के वितरण नियम का अर्थ है,[4] हालांकि इसे तर्क को प्राकृतिक शिथिलन की अनुमति देने के प्राकृतिक तरीके के रूप में शामिल किया गया है।
पूर्णता, सम्पूर्णता, और मजबूत पूर्णता
एक सिद्धांत वाक्यों का कोई सेट है। मॉडलों में कथनो की सच्चाई प्रतिवर्तन द्वारा परिभाषित की जाती है और अंतिम तर्क के लिए परिभाषा से सहमत होगी जहां दोनों परिभाषित हैं। एक सिद्धांत T दिए जाने पर एक वाक्य को सिद्धांत T के लिए मान्य है। यदि यह T के सभी मॉडलों में सत्य है।
भाषा में एक तर्क यदि प्रत्येक मॉडल में मान्य प्रत्येक वाक्य S के लिए S का प्रमाण मौजूद है तो यह पूर्ण है। यह पूरी तरह से पूर्ण है यदि किसी भी सिद्धांत के लिए T में मान्य प्रत्येक वाक्य S के लिए T से S का प्रमाण है। दृढ़ता से पूर्ण हुए बिना एक असीम तर्क पूर्ण हो सकता है।
एक हिंज कमजोर रूप से सघन हिंज है जब प्रत्येक सिद्धांत T के लिए अधिक से अधिक युक्त कई सूत्र, यदि प्रत्येक S गणनांक T का T से कम एक मॉडल है, तो T का एक मॉडल है। एक हिंज दृढ़ता से सघन हिंज है जब प्रत्येक सिद्धांत T के लिए , आकार पर प्रतिबंध के बिना, यदि प्रत्येक S गणनांक T का T से कम एक मॉडल है, तो T का एक मॉडल है।
असीम तर्क में अभिव्यक्त अवधारणाएँ
सिद्धांत की भाषा में निम्नलिखित कथन नींव व्यक्त करता है।
नींव के स्वयंसिद्ध के विपरीत, यह कथन गैर-मानक व्याख्याओं को स्वीकार नहीं करता है। अच्छी तरह से स्थापित होने की अवधारणा को केवल एक तर्क में व्यक्त किया जा सकता है।जो एक व्यक्तिगत बयान में असीम रूप से कई मात्रात्मक की अनुमति देता है। एक परिणाम के रूप में पीनो अंकगणित सहित कई सिद्धांत, जो अंतिम तर्क में ठीक से स्वयंसिद्ध नहीं हो सकते, एक उपयुक्त अनंत तर्क में हो सकते हैं। अन्य उदाहरणों में गैर-आर्किमिडीयन क्षेत्रों और मरोड़-मुक्त समूहों के सिद्धांत शामिल हैं।[5][better source needed] इन तीन सिद्धांतों को अनंत परिमाणीकरण के उपयोग के बिना परिभाषित किया जा सकता है; केवल अनंत संगम[6] जरूरत है।
पूर्णअसीमित तर्क
दो असीमित तर्क अपनी संपूर्णता में स्पष्ट दिखाई देते हैं। ये तर्क हैं और . पूर्व मानक अंतिम प्रथम-क्रम तर्क है और बाद वाला एक असीम तर्क है जो केवल गणनीय आकार के कथनो की अनुमति देता है।
तर्क दृढ़ता से पूर्ण, सघन और दृढ़ता से सघन है।
तर्क सघन होने में विफल रहता है, लेकिन यह पूर्ण है (ऊपर दिए गए सिद्धांतों के तहत)। इसके अलावा, यह क्रेग प्रक्षेप गुण के एक प्रकार को संतुष्ट करता है।
अगर तर्क दृढ़ता से पूर्ण है (ऊपर दिए गए स्वयंसिद्धों के तहत) तब दृढ़ता से सघन है (क्योंकि इन तर्क में प्रमाण का उपयोग नहीं किया जा सकता है या दिए गए स्वयंसिद्धों में से अधिक)।
संदर्भ
- ↑ Moore, Gregory (1997). "The Prehistory of Infinitary Logic: 1885–1955". pp. 105–123. doi:10.1007/978-94-017-0538-7_7. ISBN 978-90-481-4787-8.
{{cite book}}
:|journal=
ignored (help); Missing or empty|title=
(help) - ↑ Woodin, W. Hugh (2009). "The Continuum Hypothesis, the generic-multiverse of sets, and the Ω Conjecture" (PDF). Harvard University Logic Colloquium.
- ↑ Karp, Carol (1964). "Chapter 5 Infinitary Propositional Logic". अनंत लंबाई की अभिव्यक्तियों वाली भाषाएँ. pp. 39–54. doi:10.1016/S0049-237X(08)70423-3. ISBN 9780444534019.
{{cite book}}
:|journal=
ignored (help) - ↑ Chang, Chen-Chung (1955). "बीजगणित और संख्या का सिद्धांत" (PDF). Bulletin of the American Mathematical Society. 61: 325–326.
- ↑ Rosinger, Elemer (2010). "गणित और भौतिकी में चार विभाग". arXiv:1003.0360. CiteSeerX 10.1.1.760.6726.
{{cite journal}}
: Cite journal requires|journal=
(help) - ↑ Bennett, David (1980). "जंक्शनों". Notre Dame Journal of Formal Logic. XXI (1): 111–118. doi:10.1305/ndjfl/1093882943.
- Karp, Carol R. (1964), Languages with expressions of infinite length, Amsterdam: North-Holland Publishing Co., MR 0176910
- Barwise, Kenneth Jon (1969), "Infinitary logic and admissible sets", Journal of Symbolic Logic, 34 (2): 226–252, doi:10.2307/2271099, JSTOR 2271099, MR 0406760, S2CID 38740720