एकात्मक संचालक: Difference between revisions
No edit summary |
(→उदाहरण) |
||
Line 12: | Line 12: | ||
== परिभाषा == | == परिभाषा == | ||
परिभाषा 1. एकात्मक संचालिका एक [[परिबद्ध रैखिक संचालिका]] है {{math|''U'' : ''H'' → ''H''}} हिल्बर्ट स्पेस पर {{mvar|H}} को संतुष्ट करता है {{math|1=''U''*''U'' = ''UU''* = ''I''}}, जहाँ {{math|''U''*}} का हर्मिटियन जोड़ है {{mvar|U}}, और {{math|''I'' : ''H'' → ''H''}} [[पहचान (गणित)]] | परिभाषा 1. एकात्मक संचालिका एक [[परिबद्ध रैखिक संचालिका]] है {{math|''U'' : ''H'' → ''H''}} हिल्बर्ट स्पेस पर {{mvar|H}} को संतुष्ट करता है {{math|1=''U''*''U'' = ''UU''* = ''I''}}, जहाँ {{math|''U''*}} का हर्मिटियन जोड़ है {{mvar|U}}, और {{math|''I'' : ''H'' → ''H''}} [[पहचान (गणित)]] संकारक है। | ||
कमजोर स्थिति {{math|1=''U''*''U'' = ''I''}} एक [[आइसोमेट्री]] को परिभाषित करता है। दूसरी शर्त, {{math|1=''UU''* = ''I''}}, को आइसोमेट्री को परिभाषित करता है। इस प्रकार एकात्मक संकारक परिबद्ध रेखीय संकारक होता है जो सममिति और सहसममिति दोनों होता है,<ref>{{harvnb|Halmos|1982|loc=Sect. 127, page 69}}</ref> या, समतुल्य रूप से, एक विशेषण फलन आइसोमेट्री।<ref>{{harvnb|Conway|1990|loc=Proposition I.5.2}}</ref> | कमजोर स्थिति {{math|1=''U''*''U'' = ''I''}} एक [[आइसोमेट्री]] को परिभाषित करता है। दूसरी शर्त, {{math|1=''UU''* = ''I''}}, को आइसोमेट्री को परिभाषित करता है। इस प्रकार एकात्मक संकारक परिबद्ध रेखीय संकारक होता है जो सममिति और सहसममिति दोनों होता है,<ref>{{harvnb|Halmos|1982|loc=Sect. 127, page 69}}</ref> या, समतुल्य रूप से, एक विशेषण फलन आइसोमेट्री।<ref>{{harvnb|Conway|1990|loc=Proposition I.5.2}}</ref> | ||
Line 38: | Line 38: | ||
* घुमाव में {{math|'''R'''<sup>2</sup>}} एकात्मक संचालकों का सबसे सरल गैर-तुच्छ उदाहरण है। घुमाव किसी सदिश की लंबाई या दो सदिशों के बीच के कोण को नहीं बदलता है। इस उदाहरण को {{math|'''R'''<sup>3</sup>}} तक विस्तार किया जा सकता है | * घुमाव में {{math|'''R'''<sup>2</sup>}} एकात्मक संचालकों का सबसे सरल गैर-तुच्छ उदाहरण है। घुमाव किसी सदिश की लंबाई या दो सदिशों के बीच के कोण को नहीं बदलता है। इस उदाहरण को {{math|'''R'''<sup>3</sup>}} तक विस्तार किया जा सकता है | ||
* वेक्टर स्पेस पर {{math|'''C'''}} सम्मिश्र संख्याओं का, निरपेक्ष मान की संख्या से गुणा {{math|1}}, यानी फॉर्म की संख्या {{math|''e<sup>iθ</sup>''}} के लिए {{math|''θ'' ∈ '''R'''}}, एकात्मक संकारक है। {{mvar|θ}} को चरण के रूप में संदर्भित किया जाता है, और इस गुणन को चरण द्वारा गुणा के रूप में संदर्भित किया जाता है। ध्यान दें कि का मान {{mvar|θ}} मापांक {{math|2''π''}} गुणन के परिणाम को प्रभावित नहीं करता है, और इसलिए स्वतंत्र एकात्मक संकारक प्रारंभ होते हैं {{math|'''C'''}} वृत्त द्वारा पैरामीट्रिज्ड हैं। संगत समूह, जो एक समुच्चय के रूप में वृत्त है, {{math|[[U(1)]]}} कहलाता है | * वेक्टर स्पेस पर {{math|'''C'''}} सम्मिश्र संख्याओं का, निरपेक्ष मान की संख्या से गुणा {{math|1}}, यानी फॉर्म की संख्या {{math|''e<sup>iθ</sup>''}} के लिए {{math|''θ'' ∈ '''R'''}}, एकात्मक संकारक है। {{mvar|θ}} को चरण के रूप में संदर्भित किया जाता है, और इस गुणन को चरण द्वारा गुणा के रूप में संदर्भित किया जाता है। ध्यान दें कि का मान {{mvar|θ}} मापांक {{math|2''π''}} गुणन के परिणाम को प्रभावित नहीं करता है, और इसलिए स्वतंत्र एकात्मक संकारक प्रारंभ होते हैं {{math|'''C'''}} वृत्त द्वारा पैरामीट्रिज्ड हैं। संगत समूह, जो एक समुच्चय के रूप में वृत्त है, {{math|[[U(1)]]}} कहलाता है | ||
* अधिक सामान्यतः, [[एकात्मक मैट्रिक्स]] परिमित-आयामी हिल्बर्ट रिक्त स्थान पर सही रूप से एकात्मक | * अधिक सामान्यतः, [[एकात्मक मैट्रिक्स]] परिमित-आयामी हिल्बर्ट रिक्त स्थान पर सही रूप से एकात्मक संकारक होते हैं, इसलिए एकात्मक संकारक की धारणा एकात्मक मैट्रिक्स की धारणा का सामान्यीकरण है। [[ऑर्थोगोनल मैट्रिक्स]] एकात्मक मैट्रिसेस का विशेष स्थिति है जिसमें सभी प्रविष्टियाँ वास्तविक हैं। वे {{math|'''R'''<sup>''n''</sup>}} पर एकात्मक संचालक हैं | ||
* [[पूर्णांक]] द्वारा अनुक्रमित अनुक्रम स्थान एकात्मक {{math|''ℓ''<sup>2</sup>}} द्विपक्षीय बदलाव एकात्मक है। सामान्यतः हिल्बर्ट स्पेस में कोई भी | * [[पूर्णांक]] द्वारा अनुक्रमित अनुक्रम स्थान एकात्मक {{math|''ℓ''<sup>2</sup>}} द्विपक्षीय बदलाव एकात्मक है। सामान्यतः हिल्बर्ट स्पेस में कोई भी संकारक जो असामान्य आधार को अनुमति देकर कार्य करता है, वह एकात्मक है। परिमित आयामी स्थिति में, ऐसे संकारक क्रमचय मैट्रिक्स हैं। | ||
* एकतरफा शिफ्ट (दांया शिफ्ट) एक आइसोमेट्री है; इसका संयुग्म (बायाँ शिफ्ट) एक कोइज़ोमेट्री है। | * एकतरफा शिफ्ट (दांया शिफ्ट) एक आइसोमेट्री है; इसका संयुग्म (बायाँ शिफ्ट) एक कोइज़ोमेट्री है। | ||
* [[फूरियर ऑपरेटर]] एकात्मक | * [[फूरियर ऑपरेटर|फूरियर संकारक]] एकात्मक संकारक है, यानी संकारक जो [[फूरियर रूपांतरण]] (उचित सामान्यीकरण के साथ) करता है। यह पारसेवल के प्रमेय से आता है। | ||
* एकात्मक संचालकों का उपयोग एकात्मक अभ्यावेदन में किया जाता है। | * एकात्मक संचालकों का उपयोग एकात्मक अभ्यावेदन में किया जाता है। | ||
* [[क्वांटम लॉजिक गेट]] एकात्मक संचालक हैं। सभी गेट [[हर्मिटियन मैट्रिक्स]] नहीं हैं। | * [[क्वांटम लॉजिक गेट]] एकात्मक संचालक हैं। सभी गेट [[हर्मिटियन मैट्रिक्स]] नहीं हैं। | ||
Line 61: | Line 61: | ||
== गुण == | == गुण == | ||
* एकात्मक | * एकात्मक संकारक {{mvar|U}} का [[स्पेक्ट्रम (कार्यात्मक विश्लेषण)|स्पेक्ट्रम यूनिट सर्कल पर स्थित है।]] स्पेक्ट्रम में, किसी भी जटिल संख्या {{mvar|λ}} के लिए '''{{mvar|λ}}''' स्पेक्ट्रम में, एक के पास {{math|{{!}}''λ''{{!}} {{=}} 1}} होता है यह [[सामान्य ऑपरेटर|सामान्य संकारक]] के लिए [[वर्णक्रमीय प्रमेय]] के परिणाम के रूप में देखा जा सकता है। प्रमेय के अनुसार कुछ परिमित माप स्थान {{math|(''X'', ''μ'')}}.के लिए ''L''<sup>2</sup>(''μ'') पर बोरेल-मापने योग्य f द्वारा गुणन के समतुल्य है।अब {{math|''UU''* {{=}} ''I''}} का अर्थ |''f''(''x'')|<sup>2</sup> = 1, μ-a.e इससे पता चलता है कि {{mvar|f}} की आवश्यक सीमा {{mvar|f}}, इसलिए {{mvar|U}} का स्पेक्ट्रम यूनिट सर्कल पर स्थित है। | ||
* रेखीय मानचित्र एकात्मक होता है यदि वह आच्छादक और सममितीय हो। (केवल अगर भाग दिखाने के लिए [[ध्रुवीकरण पहचान]] का उपयोग करें।) | * रेखीय मानचित्र एकात्मक होता है यदि वह आच्छादक और सममितीय हो। (केवल अगर भाग दिखाने के लिए [[ध्रुवीकरण पहचान]] का उपयोग करें।) | ||
Revision as of 00:27, 6 April 2023
कार्यात्मक विश्लेषण में, एकात्मक संचालक हिल्बर्ट अंतरिक्ष पर एक विशेषण फलन परिबद्ध संचालिका है जो आंतरिक उत्पाद को संरक्षित करता है। एकात्मक संचालकों को सामान्यतः हिल्बर्ट स्पेस में ऑन पर संचालन के रूप में लिया जाता है, लेकिन यही धारणा हिल्बर्ट स्पेस के बीच समाकृतिकता की अवधारणा को परिभाषित करने का काम करती है।
एकात्मक तत्व एकात्मक संकारक का सामान्यीकरण है। इकाई बीजगणित में, तत्व को एकात्मक तत्व कहा जाता है यदि U*U = UU* = I,
जहाँ I पहचान तत्व है।[1]
परिभाषा
परिभाषा 1. एकात्मक संचालिका एक परिबद्ध रैखिक संचालिका है U : H → H हिल्बर्ट स्पेस पर H को संतुष्ट करता है U*U = UU* = I, जहाँ U* का हर्मिटियन जोड़ है U, और I : H → H पहचान (गणित) संकारक है।
कमजोर स्थिति U*U = I एक आइसोमेट्री को परिभाषित करता है। दूसरी शर्त, UU* = I, को आइसोमेट्री को परिभाषित करता है। इस प्रकार एकात्मक संकारक परिबद्ध रेखीय संकारक होता है जो सममिति और सहसममिति दोनों होता है,[2] या, समतुल्य रूप से, एक विशेषण फलन आइसोमेट्री।[3]
समकक्ष परिभाषा निम्नलिखित है:
परिभाषा 2. एक एकात्मक संचालिका एक परिबद्ध रेखीय संचालिका है U : H → H हिल्बर्ट स्पेस पर H जिसके लिए निम्नलिखित धारण करते है:
- U विशेषण कार्य है, और
- U हिल्बर्ट अंतरिक्ष के आंतरिक उत्पाद को संरक्षित करता है, H. दूसरे शब्दों में, सभी सदिश स्थानों के लिए x और y में H अपने पास:
हिल्बर्ट रिक्त स्थान के श्रेणी सिद्धांत में समरूपता की धारणा पर कब्जा कर लिया जाता है यदि डोमेन और श्रेणी को इस परिभाषा में भिन्न होने की अनुमति दी जाती है। आइसोमेट्रिज कॉची अनुक्रमों को संरक्षित करते हैं, इसलिए हिल्बर्ट रिक्त स्थान की पूर्ण मीट्रिक अंतरिक्ष संपत्ति संरक्षित है[4]
निम्नलिखित, प्रतीत होता है कमजोर, परिभाषा भी समतुल्य है:
परिभाषा 3. एकात्मक संचालिका हिल्बर्ट स्पेस पर H पर परिबद्ध रेखीय संचालिका है U : H → H जिसके लिए निम्नलिखित धारण करते है:
- U की श्रेणी, H में सघन सेट है और
- U हिल्बर्ट अंतरिक्ष H. के आंतरिक उत्पाद को संरक्षित करता है, दूसरे शब्दों में H , सभी वैक्टरों के लिए x और y के लिए अपने पास है
यह देखने के लिए कि परिभाषाएँ 1 और 3 समतुल्य हैं, ध्यान दें की U आंतरिक उत्पाद के संरक्षण का तात्पर्य है की U एक आइसोमेट्री है (इस प्रकार, एक परिबद्ध रैखिक आपरेटर)। यह तथ्य कि U की सघन सीमा सुनिश्चित करती है कि इसका परिबद्ध व्युत्क्रम है U−1. यह स्पष्ट है कि U−1 = U*.
इस प्रकार, एकात्मक संचालक हिल्बर्ट रिक्त स्थान के केवल ऑटोमोर्फिज़्म हैं, अर्थात, वे उस स्थान की संरचना (रैखिक अंतरिक्ष संरचना, आंतरिक उत्पाद, और इसलिए टोपोलॉजी) को संरक्षित करते हैं, जिस पर वे कार्य करते हैं। किसी दिए गए हिल्बर्ट स्थान H से सभी एकात्मक संचालकों का समूह स्वयं को कभी-कभी H हिल्बर्ट समूह के रूप में संदर्भित किया जाता है जिसे Hilb(H) और U(H) कहा जाता है
उदाहरण
- पहचान फलन तुच्छ रूप से एकात्मक संकारक है।
- घुमाव में R2 एकात्मक संचालकों का सबसे सरल गैर-तुच्छ उदाहरण है। घुमाव किसी सदिश की लंबाई या दो सदिशों के बीच के कोण को नहीं बदलता है। इस उदाहरण को R3 तक विस्तार किया जा सकता है
- वेक्टर स्पेस पर C सम्मिश्र संख्याओं का, निरपेक्ष मान की संख्या से गुणा 1, यानी फॉर्म की संख्या eiθ के लिए θ ∈ R, एकात्मक संकारक है। θ को चरण के रूप में संदर्भित किया जाता है, और इस गुणन को चरण द्वारा गुणा के रूप में संदर्भित किया जाता है। ध्यान दें कि का मान θ मापांक 2π गुणन के परिणाम को प्रभावित नहीं करता है, और इसलिए स्वतंत्र एकात्मक संकारक प्रारंभ होते हैं C वृत्त द्वारा पैरामीट्रिज्ड हैं। संगत समूह, जो एक समुच्चय के रूप में वृत्त है, U(1) कहलाता है
- अधिक सामान्यतः, एकात्मक मैट्रिक्स परिमित-आयामी हिल्बर्ट रिक्त स्थान पर सही रूप से एकात्मक संकारक होते हैं, इसलिए एकात्मक संकारक की धारणा एकात्मक मैट्रिक्स की धारणा का सामान्यीकरण है। ऑर्थोगोनल मैट्रिक्स एकात्मक मैट्रिसेस का विशेष स्थिति है जिसमें सभी प्रविष्टियाँ वास्तविक हैं। वे Rn पर एकात्मक संचालक हैं
- पूर्णांक द्वारा अनुक्रमित अनुक्रम स्थान एकात्मक ℓ2 द्विपक्षीय बदलाव एकात्मक है। सामान्यतः हिल्बर्ट स्पेस में कोई भी संकारक जो असामान्य आधार को अनुमति देकर कार्य करता है, वह एकात्मक है। परिमित आयामी स्थिति में, ऐसे संकारक क्रमचय मैट्रिक्स हैं।
- एकतरफा शिफ्ट (दांया शिफ्ट) एक आइसोमेट्री है; इसका संयुग्म (बायाँ शिफ्ट) एक कोइज़ोमेट्री है।
- फूरियर संकारक एकात्मक संकारक है, यानी संकारक जो फूरियर रूपांतरण (उचित सामान्यीकरण के साथ) करता है। यह पारसेवल के प्रमेय से आता है।
- एकात्मक संचालकों का उपयोग एकात्मक अभ्यावेदन में किया जाता है।
- क्वांटम लॉजिक गेट एकात्मक संचालक हैं। सभी गेट हर्मिटियन मैट्रिक्स नहीं हैं।
रैखिकता
एकात्मक संकारक की परिभाषा में रैखिकता की आवश्यकता को बिना अर्थ बदले गिराया जा सकता है क्योंकि यह अदिश गुणनफल की रैखिकता और सकारात्मक-निश्चितता से प्राप्त किया जा सकता है:
समान रूप से आप प्राप्त करते हैं
गुण
- एकात्मक संकारक U का स्पेक्ट्रम यूनिट सर्कल पर स्थित है। स्पेक्ट्रम में, किसी भी जटिल संख्या λ के लिए λ स्पेक्ट्रम में, एक के पास |λ| = 1 होता है यह सामान्य संकारक के लिए वर्णक्रमीय प्रमेय के परिणाम के रूप में देखा जा सकता है। प्रमेय के अनुसार कुछ परिमित माप स्थान (X, μ).के लिए L2(μ) पर बोरेल-मापने योग्य f द्वारा गुणन के समतुल्य है।अब UU* = I का अर्थ |f(x)|2 = 1, μ-a.e इससे पता चलता है कि f की आवश्यक सीमा f, इसलिए U का स्पेक्ट्रम यूनिट सर्कल पर स्थित है।
- रेखीय मानचित्र एकात्मक होता है यदि वह आच्छादक और सममितीय हो। (केवल अगर भाग दिखाने के लिए ध्रुवीकरण पहचान का उपयोग करें।)
यह भी देखें
फुटनोट्स
- ↑ Doran & Belfi 1986, p. 55
- ↑ Halmos 1982, Sect. 127, page 69
- ↑ Conway 1990, Proposition I.5.2
- ↑ Conway 1990, Definition I.5.1
संदर्भ
- Conway, J. B. (1990). A Course in Functional Analysis. Graduate Texts in Mathematics. Vol. 96. Springer Verlag. ISBN 0-387-97245-5.
- Doran, Robert S.; Belfi (1986). Characterizations of C*-Algebras: The Gelfand-Naimark Theorems. New York: Marcel Dekker. ISBN 0-8247-7569-4.
- Halmos, Paul (1982). A Hilbert space problem book. Graduate Texts in Mathematics. Vol. 19 (2nd ed.). Springer Verlag. ISBN 978-0387906850.
- Lang, Serge (1972). Differential manifolds. Reading, Mass.–London–Don Mills, Ont.: Addison-Wesley Publishing Co., Inc. ISBN 978-0387961132.