संमिश्रित लैमिनेट: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
[[File:Composite laminate specimen.JPG|thumb|एयरोस्पेस ग्रेड कार्बन-फाइबर/एपॉक्सी लैमिनेट का एक छोटा सा नमूना]]सामग्री विज्ञान में, एक समग्र टुकड़े टुकड़े [[फाइबर]] [[समग्र सामग्री]] की परतों का एक संयोजन है जो आवश्यक [[अभियांत्रिकी]] गुणों को प्रदान करने के लिए जोड़ा जा सकता है, जिसमें इन-प्लेन कठोरता, [[झुकने की कठोरता]], [[सामग्री की ताकत]] और थर्मल विस्तार का गुणांक शामिल है।
[[File:Composite laminate specimen.JPG|thumb|एयरोस्पेस ग्रेड कार्बन-फाइबर/एपॉक्सी लैमिनेट का छोटा सा नमूना]]सामग्री विज्ञान में, समग्र टुकड़े टुकड़े [[फाइबर]] [[समग्र सामग्री]] की परतों का संयोजन है जो आवश्यक [[अभियांत्रिकी]] गुणों को प्रदान करने के लिए जोड़ा जा सकता है, जिसमें इन-प्लेन कठोरता, [[झुकने की कठोरता]], [[सामग्री की ताकत]] और थर्मल विस्तार का गुणांक शामिल है।


व्यक्तिगत परतों में उच्च-[[लोचदार मापांक]], बहुलक, [[धातु]] या सिरेमिक मैट्रिक्स सामग्री में उच्च-शक्ति वाले फाइबर होते हैं। उपयोग किए जाने वाले विशिष्ट फाइबर में [[सेल्यूलोज]], [[ग्रेफाइट]], [[ काँच ]], बोरॉन और [[ सिलिकन कार्बाइड ]] शामिल हैं, और कुछ मैट्रिक्स सामग्री [[epoxy]], [[polyimide]], [[अल्युमीनियम]], [[टाइटेनियम]] और [[अल्यूमिनियम ऑक्साइड]] हैं।
व्यक्तिगत परतों में उच्च-[[लोचदार मापांक]], बहुलक, [[धातु]] या सिरेमिक मैट्रिक्स सामग्री में उच्च-शक्ति वाले फाइबर होते हैं। उपयोग किए जाने वाले विशिष्ट फाइबर में [[सेल्यूलोज]], [[ग्रेफाइट]], [[ काँच ]], बोरॉन और [[ सिलिकन कार्बाइड ]] शामिल हैं, और कुछ मैट्रिक्स सामग्री [[epoxy]], [[polyimide]], [[अल्युमीनियम]], [[टाइटेनियम]] और [[अल्यूमिनियम ऑक्साइड]] हैं।


विभिन्न सामग्रियों की परतों का उपयोग किया जा सकता है, जिसके परिणामस्वरूप एक संकर टुकड़े टुकड़े हो सकते हैं। व्यक्तिगत परतें आम तौर पर [[ऑर्थोट्रोपिक सामग्री]] होती हैं (अर्थात, ऑर्थोगोनल दिशाओं में प्रमुख गुणों के साथ) या ट्रांसवर्सली [[ समदैशिक ]] (अनुप्रस्थ तल में आइसोट्रोपिक गुणों के साथ) टुकड़े टुकड़े के साथ फिर [[एनिस्ट्रोपिक]] (प्रमुख गुणों की चर दिशा के साथ), ऑर्थोट्रोपिक, या अर्ध- प्रदर्शित करती हैं। आइसोट्रोपिक गुण। क्वैसी-आइसोट्रोपिक लेमिनेट्स इनप्लेन प्रतिक्रिया में आइसोट्रोपिक (अर्थात, दिशा से स्वतंत्र) प्रदर्शित करते हैं लेकिन आइसोट्रोपिक आउट-ऑफ-प्लेन (झुकने) प्रतिक्रिया तक ही सीमित नहीं हैं। अलग-अलग परतों के स्टैकिंग अनुक्रम के आधार पर, लैमिनेट इनप्लेन और आउट-ऑफ़-प्लेन प्रतिक्रिया के बीच [[युग्मन]] प्रदर्शित कर सकता है। बेंडिंग-स्ट्रेचिंग कपलिंग का एक उदाहरण इन-प्लेन लोडिंग के परिणामस्वरूप विकसित होने वाली वक्रता की उपस्थिति है।
विभिन्न सामग्रियों की परतों का उपयोग किया जा सकता है, जिसके परिणामस्वरूप संकर टुकड़े टुकड़े हो सकते हैं। व्यक्तिगत परतें आम तौर पर [[ऑर्थोट्रोपिक सामग्री]] होती हैं (अर्थात, ऑर्थोगोनल दिशाओं में प्रमुख गुणों के साथ) या ट्रांसवर्सली [[ समदैशिक ]] (अनुप्रस्थ तल में आइसोट्रोपिक गुणों के साथ) टुकड़े टुकड़े के साथ फिर [[एनिस्ट्रोपिक]] (प्रमुख गुणों की चर दिशा के साथ), ऑर्थोट्रोपिक, या अर्ध- प्रदर्शित करती हैं। आइसोट्रोपिक गुण। क्वैसी-आइसोट्रोपिक लेमिनेट्स इनप्लेन प्रतिक्रिया में आइसोट्रोपिक (अर्थात, दिशा से स्वतंत्र) प्रदर्शित करते हैं लेकिन आइसोट्रोपिक आउट-ऑफ-प्लेन (झुकने) प्रतिक्रिया तक ही सीमित नहीं हैं। अलग-अलग परतों के स्टैकिंग अनुक्रम के आधार पर, लैमिनेट इनप्लेन और आउट-ऑफ़-प्लेन प्रतिक्रिया के बीच [[युग्मन]] प्रदर्शित कर सकता है। बेंडिंग-स्ट्रेचिंग कपलिंग का उदाहरण इन-प्लेन लोडिंग के परिणामस्वरूप विकसित होने वाली वक्रता की उपस्थिति है।


== शास्त्रीय टुकड़े टुकड़े विश्लेषण ==
== शास्त्रीय टुकड़े टुकड़े विश्लेषण ==
समग्र लेमिनेट्स को एक प्रकार की [[चढ़ाना]] या पतली-खोल संरचना के रूप में माना जा सकता है, और इस तरह उनकी कठोरता गुणों को टुकड़े टुकड़े की सतह के सामान्य दिशा में इन-प्लेन [[तनाव (यांत्रिकी)]] के एकीकरण द्वारा पाया जा सकता है। प्लाई या लेमिना सामग्री का व्यापक बहुमत हूक के नियम का पालन करता है और इसलिए उनके सभी तनाव (यांत्रिकी) और [[विरूपण (यांत्रिकी)]] रैखिक समीकरणों की एक प्रणाली से संबंधित हो सकते हैं। मध्य-तल/सतह के तीन उपभेदों और वक्रता में तीन परिवर्तनों को विकसित करके लैमिनेट्स को विकृत माना जाता है
समग्र लेमिनेट्स को प्रकार की [[चढ़ाना]] या पतली-खोल संरचना के रूप में माना जा सकता है, और इस तरह उनकी कठोरता गुणों को टुकड़े टुकड़े की सतह के सामान्य दिशा में इन-प्लेन [[तनाव (यांत्रिकी)]] के एकीकरण द्वारा पाया जा सकता है। प्लाई या लेमिना सामग्री का व्यापक बहुमत हूक के नियम का पालन करता है और इसलिए उनके सभी तनाव (यांत्रिकी) और [[विरूपण (यांत्रिकी)]] रैखिक समीकरणों की प्रणाली से संबंधित हो सकते हैं। मध्य-तल/सतह के तीन उपभेदों और वक्रता में तीन परिवर्तनों को विकसित करके लैमिनेट्स को विकृत माना जाता है


<math display="block">  \varepsilon ^0  =  \begin{bmatrix} \varepsilon^0_x & \varepsilon^0_y & \tau^0_{xy} \end{bmatrix}^T    </math>
<math display="block">  \varepsilon ^0  =  \begin{bmatrix} \varepsilon^0_x & \varepsilon^0_y & \tau^0_{xy} \end{bmatrix}^T    </math>
और
और
<math display="block"> \kappa  =  \begin{bmatrix} \kappa_x & \kappa_y & \kappa_{xy} \end{bmatrix} ^T  </math>
<math display="block"> \kappa  =  \begin{bmatrix} \kappa_x & \kappa_y & \kappa_{xy} \end{bmatrix} ^T  </math>
कहाँ <math>x</math> और <math>y</math> लेमिनेट स्तर पर समन्वय प्रणाली को परिभाषित करें। अलग-अलग प्लाई में स्थानीय समन्वय अक्ष होते हैं जो सामग्री की विशिष्ट दिशाओं के साथ संरेखित होते हैं; जैसे इसकी लोच टेंसर की प्रमुख दिशाएँ। उदाहरण के लिए यूनी-डायरेक्शनल प्लाई का हमेशा अपना पहला अक्ष सुदृढीकरण की दिशा के साथ संरेखित होता है। लैमिनेट व्यक्तिगत प्लाई का ढेर होता है जिसमें प्लाई ओरिएंटेशन का एक सेट होता है
कहाँ <math>x</math> और <math>y</math> लेमिनेट स्तर पर समन्वय प्रणाली को परिभाषित करें। अलग-अलग प्लाई में स्थानीय समन्वय अक्ष होते हैं जो सामग्री की विशिष्ट दिशाओं के साथ संरेखित होते हैं; जैसे इसकी लोच टेंसर की प्रमुख दिशाएँ। उदाहरण के लिए यूनी-डायरेक्शनल प्लाई का हमेशा अपना पहला अक्ष सुदृढीकरण की दिशा के साथ संरेखित होता है। लैमिनेट व्यक्तिगत प्लाई का ढेर होता है जिसमें प्लाई ओरिएंटेशन का सेट होता है


<math display="block"> \begin{bmatrix} \theta_1, & \theta_2, & \dots & \theta_N \end{bmatrix}
<math display="block"> \begin{bmatrix} \theta_1, & \theta_2, & \dots & \theta_N \end{bmatrix}
</math>
</math>
जिनका समग्र रूप से लेमिनेट की कठोरता और मजबूती दोनों पर गहरा प्रभाव पड़ता है। अनिसोट्रोपिक सामग्री को घुमाने से इसकी लोच [[ टेन्सर ]] की भिन्नता होती है। यदि इसके स्थानीय निर्देशांक में तनाव-तनाव कानून के अनुसार व्यवहार करने के लिए एक प्लाई माना जाता है
जिनका समग्र रूप से लेमिनेट की कठोरता और मजबूती दोनों पर गहरा प्रभाव पड़ता है। अनिसोट्रोपिक सामग्री को घुमाने से इसकी लोच [[ टेन्सर ]] की भिन्नता होती है। यदि इसके स्थानीय निर्देशांक में तनाव-तनाव कानून के अनुसार व्यवहार करने के लिए प्लाई माना जाता है


<math display="block"> [\sigma] = \mathbf{Q}[\varepsilon] </math>
<math display="block"> [\sigma] = \mathbf{Q}[\varepsilon] </math>
फिर एक रोटेशन परिवर्तन के तहत ([[परिवर्तन मैट्रिक्स]] देखें) इसमें संशोधित लोच की शर्तें हैं
फिर रोटेशन परिवर्तन के तहत ([[परिवर्तन मैट्रिक्स]] देखें) इसमें संशोधित लोच की शर्तें हैं


<math display="block">\begin{align}
<math display="block">\begin{align}
Line 31: Line 31:


<math display="block"> [\sigma]^* = \mathbf{Q}^*[\varepsilon]^* </math>
<math display="block"> [\sigma]^* = \mathbf{Q}^*[\varepsilon]^* </math>
शास्त्रीय लेमिनेट विश्लेषण के सिद्धांत में एक महत्वपूर्ण धारणा यह है कि वक्रता से उत्पन्न तनाव मोटाई की दिशा में रैखिक रूप से भिन्न होते हैं, और यह कि कुल इन-प्लेन तनाव झिल्ली भार और झुकने भार से प्राप्त योग हैं। इस तरह
शास्त्रीय लेमिनेट विश्लेषण के सिद्धांत में महत्वपूर्ण धारणा यह है कि वक्रता से उत्पन्न तनाव मोटाई की दिशा में रैखिक रूप से भिन्न होते हैं, और यह कि कुल इन-प्लेन तनाव झिल्ली भार और झुकने भार से प्राप्त योग हैं। इस तरह


<math display="block"> \varepsilon = \varepsilon^0 + \kappa \cdot z </math>
<math display="block"> \varepsilon = \varepsilon^0 + \kappa \cdot z </math>
इसके अलावा, एक त्रि-आयामी तनाव क्षेत्र को छह तनाव परिणामकों द्वारा प्रतिस्थापित किया जाता है; तीन झिल्ली बल (प्रति इकाई लंबाई बल) और प्रति इकाई लंबाई झुकने वाले क्षण। यह माना जाता है कि यदि ये तीन मात्राएँ किसी स्थान (x,y) पर ज्ञात हैं तो उनसे तनावों की गणना की जा सकती है। एक बार लेमिनेट का एक हिस्सा रूपांतरित लोच को मोटाई की दिशा के एक टुकड़े के रूप में कार्य के रूप में माना जाता है, इसलिए एकीकरण ऑपरेशन को परिमित श्रृंखला के योग के रूप में माना जा सकता है, जिससे<ref>Gürdal ''et al.'' (1999), ''Design and optimisation of laminated composite materials'', Wiley, {{ISBN|978-0471252764}}</ref>
इसके अलावा, त्रि-आयामी तनाव क्षेत्र को छह तनाव परिणामकों द्वारा प्रतिस्थापित किया जाता है; तीन झिल्ली बल (प्रति इकाई लंबाई बल) और प्रति इकाई लंबाई झुकने वाले क्षण। यह माना जाता है कि यदि ये तीन मात्राएँ किसी स्थान (x,y) पर ज्ञात हैं तो उनसे तनावों की गणना की जा सकती है। बार लेमिनेट का हिस्सा रूपांतरित लोच को मोटाई की दिशा के टुकड़े के रूप में कार्य के रूप में माना जाता है, इसलिए एकीकरण ऑपरेशन को परिमित श्रृंखला के योग के रूप में माना जा सकता है, जिससे<ref>Gürdal ''et al.'' (1999), ''Design and optimisation of laminated composite materials'', Wiley, {{ISBN|978-0471252764}}</ref>


<math display="block"> \begin{bmatrix}
<math display="block"> \begin{bmatrix}

Revision as of 23:43, 24 March 2023

एयरोस्पेस ग्रेड कार्बन-फाइबर/एपॉक्सी लैमिनेट का छोटा सा नमूना

सामग्री विज्ञान में, समग्र टुकड़े टुकड़े फाइबर समग्र सामग्री की परतों का संयोजन है जो आवश्यक अभियांत्रिकी गुणों को प्रदान करने के लिए जोड़ा जा सकता है, जिसमें इन-प्लेन कठोरता, झुकने की कठोरता, सामग्री की ताकत और थर्मल विस्तार का गुणांक शामिल है।

व्यक्तिगत परतों में उच्च-लोचदार मापांक, बहुलक, धातु या सिरेमिक मैट्रिक्स सामग्री में उच्च-शक्ति वाले फाइबर होते हैं। उपयोग किए जाने वाले विशिष्ट फाइबर में सेल्यूलोज, ग्रेफाइट, काँच , बोरॉन और सिलिकन कार्बाइड शामिल हैं, और कुछ मैट्रिक्स सामग्री epoxy, polyimide, अल्युमीनियम, टाइटेनियम और अल्यूमिनियम ऑक्साइड हैं।

विभिन्न सामग्रियों की परतों का उपयोग किया जा सकता है, जिसके परिणामस्वरूप संकर टुकड़े टुकड़े हो सकते हैं। व्यक्तिगत परतें आम तौर पर ऑर्थोट्रोपिक सामग्री होती हैं (अर्थात, ऑर्थोगोनल दिशाओं में प्रमुख गुणों के साथ) या ट्रांसवर्सली समदैशिक (अनुप्रस्थ तल में आइसोट्रोपिक गुणों के साथ) टुकड़े टुकड़े के साथ फिर एनिस्ट्रोपिक (प्रमुख गुणों की चर दिशा के साथ), ऑर्थोट्रोपिक, या अर्ध- प्रदर्शित करती हैं। आइसोट्रोपिक गुण। क्वैसी-आइसोट्रोपिक लेमिनेट्स इनप्लेन प्रतिक्रिया में आइसोट्रोपिक (अर्थात, दिशा से स्वतंत्र) प्रदर्शित करते हैं लेकिन आइसोट्रोपिक आउट-ऑफ-प्लेन (झुकने) प्रतिक्रिया तक ही सीमित नहीं हैं। अलग-अलग परतों के स्टैकिंग अनुक्रम के आधार पर, लैमिनेट इनप्लेन और आउट-ऑफ़-प्लेन प्रतिक्रिया के बीच युग्मन प्रदर्शित कर सकता है। बेंडिंग-स्ट्रेचिंग कपलिंग का उदाहरण इन-प्लेन लोडिंग के परिणामस्वरूप विकसित होने वाली वक्रता की उपस्थिति है।

शास्त्रीय टुकड़े टुकड़े विश्लेषण

समग्र लेमिनेट्स को प्रकार की चढ़ाना या पतली-खोल संरचना के रूप में माना जा सकता है, और इस तरह उनकी कठोरता गुणों को टुकड़े टुकड़े की सतह के सामान्य दिशा में इन-प्लेन तनाव (यांत्रिकी) के एकीकरण द्वारा पाया जा सकता है। प्लाई या लेमिना सामग्री का व्यापक बहुमत हूक के नियम का पालन करता है और इसलिए उनके सभी तनाव (यांत्रिकी) और विरूपण (यांत्रिकी) रैखिक समीकरणों की प्रणाली से संबंधित हो सकते हैं। मध्य-तल/सतह के तीन उपभेदों और वक्रता में तीन परिवर्तनों को विकसित करके लैमिनेट्स को विकृत माना जाता है

और
कहाँ और लेमिनेट स्तर पर समन्वय प्रणाली को परिभाषित करें। अलग-अलग प्लाई में स्थानीय समन्वय अक्ष होते हैं जो सामग्री की विशिष्ट दिशाओं के साथ संरेखित होते हैं; जैसे इसकी लोच टेंसर की प्रमुख दिशाएँ। उदाहरण के लिए यूनी-डायरेक्शनल प्लाई का हमेशा अपना पहला अक्ष सुदृढीकरण की दिशा के साथ संरेखित होता है। लैमिनेट व्यक्तिगत प्लाई का ढेर होता है जिसमें प्लाई ओरिएंटेशन का सेट होता है

जिनका समग्र रूप से लेमिनेट की कठोरता और मजबूती दोनों पर गहरा प्रभाव पड़ता है। अनिसोट्रोपिक सामग्री को घुमाने से इसकी लोच टेन्सर की भिन्नता होती है। यदि इसके स्थानीय निर्देशांक में तनाव-तनाव कानून के अनुसार व्यवहार करने के लिए प्लाई माना जाता है

फिर रोटेशन परिवर्तन के तहत (परिवर्तन मैट्रिक्स देखें) इसमें संशोधित लोच की शर्तें हैं