संमिश्रित लैमिनेट: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
व्यक्तिगत परतों में उच्च-[[लोचदार मापांक]], बहुलक, [[धातु]] और सिरेमिक आव्यूह सामग्री में उच्च-शक्ति वाले फाइबर होते हैं। उपयोग किए जाने वाले विशिष्ट फाइबर में [[सेल्यूलोज]], [[ग्रेफाइट]], [[ काँच |काँच]] , बोरॉन और [[ सिलिकन कार्बाइड |सिलिकन कार्बाइड]] सम्मलित हैं और कुछ आव्यूह सामग्री [[epoxy|एपॉक्सी]] , [[पॉलीमाइड]], [[अल्युमीनियम]], [[टाइटेनियम]] और [[अल्यूमिनियम ऑक्साइड]] हैं। | व्यक्तिगत परतों में उच्च-[[लोचदार मापांक]], बहुलक, [[धातु]] और सिरेमिक आव्यूह सामग्री में उच्च-शक्ति वाले फाइबर होते हैं। उपयोग किए जाने वाले विशिष्ट फाइबर में [[सेल्यूलोज]], [[ग्रेफाइट]], [[ काँच |काँच]] , बोरॉन और [[ सिलिकन कार्बाइड |सिलिकन कार्बाइड]] सम्मलित हैं और कुछ आव्यूह सामग्री [[epoxy|एपॉक्सी]] , [[पॉलीमाइड]], [[अल्युमीनियम]], [[टाइटेनियम]] और [[अल्यूमिनियम ऑक्साइड]] हैं। | ||
विभिन्न सामग्रियों की परतों का उपयोग किया जा सकता है, जिसके परिणामस्वरूप संकर टुकड़े टुकड़े हो सकते हैं। व्यक्तिगत परतें सामान्यतः [[ऑर्थोट्रोपिक सामग्री]] होती हैं। अर्थात, ऑर्थोगोनल दिशाओं में प्रमुख गुणों के साथ अनुप्रस्थ[[ समदैशिक | समदैशिक]] अनुप्रस्थ तल में समदैशिक गुणों के टुकड़े के साथ फिर [[एनिस्ट्रोपिक]] प्रमुख गुणों की चर दिशा के साथ, ऑर्थोट्रोपिक अर्ध- प्रदर्शित करती हैं। समदैशिक गुण क्वैसी-समदैशिक लेमिनेट्स समतल प्रतिक्रिया में समदैशिक अर्थात, दिशा से स्वतंत्र प्रदर्शित करते हैं किन्तु समदैशिक बाहर समतल झुकने प्रतिक्रिया तक ही सीमित नहीं हैं। अलग-अलग परतों के स्टैकिंग अनुक्रम के आधार पर, लैमिनेट समतल | विभिन्न सामग्रियों की परतों का उपयोग किया जा सकता है, जिसके परिणामस्वरूप संकर टुकड़े टुकड़े हो सकते हैं। व्यक्तिगत परतें सामान्यतः [[ऑर्थोट्रोपिक सामग्री]] होती हैं। अर्थात, ऑर्थोगोनल दिशाओं में प्रमुख गुणों के साथ अनुप्रस्थ[[ समदैशिक | समदैशिक]] अनुप्रस्थ तल में समदैशिक गुणों के टुकड़े के साथ फिर [[एनिस्ट्रोपिक]] प्रमुख गुणों की चर दिशा के साथ, ऑर्थोट्रोपिक अर्ध- प्रदर्शित करती हैं। समदैशिक गुण क्वैसी-समदैशिक लेमिनेट्स समतल प्रतिक्रिया में समदैशिक अर्थात, दिशा से स्वतंत्र प्रदर्शित करते हैं किन्तु समदैशिक बाहर समतल झुकने प्रतिक्रिया तक ही सीमित नहीं हैं। अलग-अलग परतों के स्टैकिंग अनुक्रम के आधार पर, लैमिनेट समतल और बाहर समतल प्रतिक्रिया के बीच [[युग्मन]] प्रदर्शित कर सकता है। झुकने खींच युग्मन का उदाहरण समतल में लोडिंग के परिणामस्वरूप विकसित होने वाली वक्रता की उपस्थिति है। | ||
== शास्त्रीय टुकड़े टुकड़े विश्लेषण == | == शास्त्रीय टुकड़े टुकड़े विश्लेषण == | ||
समग्र लेमिनेट्स को प्रकार की [[चढ़ाना]] | समग्र लेमिनेट्स को प्रकार की काई पतली-खोल [[चढ़ाना]] संरचना के रूप में माना जा सकता है और इस प्रकार उनकी कठोरता गुणों को टुकड़े टुकड़े की सतह के सामान्य दिशा में समतल में [[तनाव (यांत्रिकी)]] के एकीकरण द्वारा पाया जा सकता है। प्लाई, लेमिना सामग्री का व्यापक बहुमत हूक के नियम का पालन करता है और इसलिए उनके सभी तनाव यांत्रिकी और [[विरूपण (यांत्रिकी)]] रैखिक समीकरणों की प्रणाली से संबंधित हो सकते हैं। मध्य-तल/सतह के तीन उपभेदों और वक्रता में तीन परिवर्तनों को विकसित करके लैमिनेट्स को विकृत माना जाता है। | ||
<math display="block"> \varepsilon ^0 = \begin{bmatrix} \varepsilon^0_x & \varepsilon^0_y & \tau^0_{xy} \end{bmatrix}^T </math> | <math display="block"> \varepsilon ^0 = \begin{bmatrix} \varepsilon^0_x & \varepsilon^0_y & \tau^0_{xy} \end{bmatrix}^T </math> | ||
और | और | ||
<math display="block"> \kappa = \begin{bmatrix} \kappa_x & \kappa_y & \kappa_{xy} \end{bmatrix} ^T </math> | <math display="block"> \kappa = \begin{bmatrix} \kappa_x & \kappa_y & \kappa_{xy} \end{bmatrix} ^T </math> | ||
जहाँ <math>x</math> और <math>y</math> लेमिनेट स्तर पर समन्वय प्रणाली को परिभाषित करें। अलग-अलग प्लाई में स्थानीय समन्वय अक्ष होते हैं जो सामग्री की विशिष्ट दिशाओं के साथ संरेखित होते हैं, जैसे इसकी लोच टेंसर की प्रमुख दिशाएँ। उदाहरण के लिए यूनी-दिशात्मक प्लाई का हमेशा अपना पहला अक्ष सुदृढीकरण की दिशा के साथ संरेखित होता है। लैमिनेट व्यक्तिगत प्लाई का ढेर होता है जिसमें प्लाई अभिविन्यास का समूह होता है | |||
<math display="block"> \begin{bmatrix} \theta_1, & \theta_2, & \dots & \theta_N \end{bmatrix} | <math display="block"> \begin{bmatrix} \theta_1, & \theta_2, & \dots & \theta_N \end{bmatrix} | ||
</math> | </math> | ||
जिनका समग्र रूप से लेमिनेट की कठोरता और मजबूती दोनों पर गहरा प्रभाव पड़ता है। अनिसोट्रोपिक सामग्री को घुमाने से इसकी लोच [[ टेन्सर |टेन्सर]] की भिन्नता होती है। यदि इसके स्थानीय निर्देशांक में | जिनका समग्र रूप से लेमिनेट की कठोरता और मजबूती दोनों पर गहरा प्रभाव पड़ता है। अनिसोट्रोपिक सामग्री को घुमाने से इसकी लोच [[ टेन्सर |टेन्सर]] की भिन्नता होती है। यदि इसके स्थानीय निर्देशांक में तनाव कानून के अनुसार व्यवहार करने के लिए प्लाई माना जाता है। | ||
<math display="block"> [\sigma] = \mathbf{Q}[\varepsilon] </math> | <math display="block"> [\sigma] = \mathbf{Q}[\varepsilon] </math> | ||
फिर | फिर आवर्तन परिवर्तन के अनुसार [[परिवर्तन मैट्रिक्स|परिवर्तन आव्यूह]] इसमें संशोधित लोच की शर्तें हैं | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
Line 28: | Line 28: | ||
Q^*_{26} &= (Q_{11} - Q_{12} - 2 Q_{66})\cos\theta \sin^3 \theta - (Q_{22}-Q_{12}-2Q_{66})\cos^3 \theta \sin \theta | Q^*_{26} &= (Q_{11} - Q_{12} - 2 Q_{66})\cos\theta \sin^3 \theta - (Q_{22}-Q_{12}-2Q_{66})\cos^3 \theta \sin \theta | ||
\end{align}</math> | \end{align}</math> | ||
इस | इस प्रकार | ||
<math display="block"> [\sigma]^* = \mathbf{Q}^*[\varepsilon]^* </math> | <math display="block"> [\sigma]^* = \mathbf{Q}^*[\varepsilon]^* </math> | ||
शास्त्रीय लेमिनेट विश्लेषण के सिद्धांत में महत्वपूर्ण धारणा यह है कि वक्रता से उत्पन्न तनाव मोटाई की दिशा में रैखिक रूप से भिन्न होते हैं | शास्त्रीय लेमिनेट विश्लेषण के सिद्धांत में महत्वपूर्ण धारणा यह है कि वक्रता से उत्पन्न तनाव मोटाई की दिशा में रैखिक रूप से भिन्न होते हैं और यह कि कुल समतल में तनाव झिल्ली भार और झुकने भार से प्राप्त योग हैं। इस प्रकार | ||
<math display="block"> \varepsilon = \varepsilon^0 + \kappa \cdot z </math> | <math display="block"> \varepsilon = \varepsilon^0 + \kappa \cdot z </math> |
Revision as of 14:28, 25 March 2023
सामग्री विज्ञान में समग्र टुकड़े फाइबर समग्र सामग्री की परतों का संयोजन है, जो आवश्यक अभियांत्रिकी गुणों को प्रदान करने के लिए जोड़ा जा सकता है। जिसमें समतल कठोरता में, झुकने की कठोरता, सामग्री की शक्ति और ताप विस्तार प्रसार गुणांक सम्मलित है।
व्यक्तिगत परतों में उच्च-लोचदार मापांक, बहुलक, धातु और सिरेमिक आव्यूह सामग्री में उच्च-शक्ति वाले फाइबर होते हैं। उपयोग किए जाने वाले विशिष्ट फाइबर में सेल्यूलोज, ग्रेफाइट, काँच , बोरॉन और सिलिकन कार्बाइड सम्मलित हैं और कुछ आव्यूह सामग्री एपॉक्सी , पॉलीमाइड, अल्युमीनियम, टाइटेनियम और अल्यूमिनियम ऑक्साइड हैं।
विभिन्न सामग्रियों की परतों का उपयोग किया जा सकता है, जिसके परिणामस्वरूप संकर टुकड़े टुकड़े हो सकते हैं। व्यक्तिगत परतें सामान्यतः ऑर्थोट्रोपिक सामग्री होती हैं। अर्थात, ऑर्थोगोनल दिशाओं में प्रमुख गुणों के साथ अनुप्रस्थ समदैशिक अनुप्रस्थ तल में समदैशिक गुणों के टुकड़े के साथ फिर एनिस्ट्रोपिक प्रमुख गुणों की चर दिशा के साथ, ऑर्थोट्रोपिक अर्ध- प्रदर्शित करती हैं। समदैशिक गुण क्वैसी-समदैशिक लेमिनेट्स समतल प्रतिक्रिया में समदैशिक अर्थात, दिशा से स्वतंत्र प्रदर्शित करते हैं किन्तु समदैशिक बाहर समतल झुकने प्रतिक्रिया तक ही सीमित नहीं हैं। अलग-अलग परतों के स्टैकिंग अनुक्रम के आधार पर, लैमिनेट समतल और बाहर समतल प्रतिक्रिया के बीच युग्मन प्रदर्शित कर सकता है। झुकने खींच युग्मन का उदाहरण समतल में लोडिंग के परिणामस्वरूप विकसित होने वाली वक्रता की उपस्थिति है।
शास्त्रीय टुकड़े टुकड़े विश्लेषण
समग्र लेमिनेट्स को प्रकार की काई पतली-खोल चढ़ाना संरचना के रूप में माना जा सकता है और इस प्रकार उनकी कठोरता गुणों को टुकड़े टुकड़े की सतह के सामान्य दिशा में समतल में तनाव (यांत्रिकी) के एकीकरण द्वारा पाया जा सकता है। प्लाई, लेमिना सामग्री का व्यापक बहुमत हूक के नियम का पालन करता है और इसलिए उनके सभी तनाव यांत्रिकी और विरूपण (यांत्रिकी) रैखिक समीकरणों की प्रणाली से संबंधित हो सकते हैं। मध्य-तल/सतह के तीन उपभेदों और वक्रता में तीन परिवर्तनों को विकसित करके लैमिनेट्स को विकृत माना जाता है।
यह भी देखें
- कार्बन-फाइबर-प्रबलित बहुलक
- समग्र सामग्री
- डेकोरेटिव_टुकड़े टुकड़े में #हाई-प्रेशर_लेमिनेट_.28एचपीएल.29|हाई-प्रेशर लैमिनेट
- लैमिनेट
- ले-अप प्रक्रिया
- शून्य (समग्र)
संदर्भ
- ↑ Gürdal et al. (1999), Design and optimisation of laminated composite materials, Wiley, ISBN 978-0471252764