मानक अभिक्रिया पूर्णोष्मा: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Enthalpy difference due to chemical reaction, reduced to standard states}} | {{Short description|Enthalpy difference due to chemical reaction, reduced to standard states}} | ||
'''प्रतिक्रिया की मानक तापीय धारिता''' (निरूपित <math>\Delta_{\text {rxn}} H^\ominus</math> या <math>\Delta H_{\text {reaction}}^\ominus</math>) एक [[रासायनिक प्रतिक्रिया|रासायनिक अभिक्रिया]] के लिए कुल अभिकारक और उत्पाद मोलर [[तापीय धारिता]] के बीच का अंतर है, जो पदार्थों के लिए उनकी [[मानक अवस्थाओं|मानक स्थितियों]] में गणना की जाती है। यह बदले में प्रतिक्रिया के दौरान मुक्त या | '''प्रतिक्रिया की मानक तापीय धारिता''' (निरूपित <math>\Delta_{\text {rxn}} H^\ominus</math> या <math>\Delta H_{\text {reaction}}^\ominus</math>) एक [[रासायनिक प्रतिक्रिया|रासायनिक अभिक्रिया]] के लिए कुल अभिकारक और उत्पाद मोलर [[तापीय धारिता]] के बीच का अंतर है, जो पदार्थों के लिए उनकी [[मानक अवस्थाओं|मानक स्थितियों]] में गणना की जाती है। यह बदले में प्रतिक्रिया के दौरान मुक्त या सीमित कुल रासायनिक बंधन ऊर्जा का पूर्वानुमान करने के लिए उपयोग | ||
किया जा सकता है, जब त[[मिश्रण की [[तापीय धारिता|तापीय धा]]] का भी हिसाब लगाया जाता है। | |||
एक सामान्य रासायनिक प्रतिक्रिया के लिए | एक सामान्य रासायनिक प्रतिक्रिया के लिए |
Revision as of 15:21, 1 April 2023
प्रतिक्रिया की मानक तापीय धारिता (निरूपित या ) एक रासायनिक अभिक्रिया के लिए कुल अभिकारक और उत्पाद मोलर तापीय धारिता के बीच का अंतर है, जो पदार्थों के लिए उनकी मानक स्थितियों में गणना की जाती है। यह बदले में प्रतिक्रिया के दौरान मुक्त या सीमित कुल रासायनिक बंधन ऊर्जा का पूर्वानुमान करने के लिए उपयोग
किया जा सकता है, जब त[[मिश्रण की तापीय धा] का भी हिसाब लगाया जाता है।
एक सामान्य रासायनिक प्रतिक्रिया के लिए
प्रतिक्रिया की मानक एन्थैल्पी गठन की मानक एन्थैल्पी से संबंधित है निम्नलिखित समीकरण द्वारा अभिकारकों और उत्पादों के मान:[1]
इस समीकरण में, और प्रत्येक उत्पाद के स्टोइकीओमेट्री # स्टोइकीओमेट्रिक गुणांक और स्टोइकीओमेट्रिक संख्या हैं और प्रतिक्रियाशील . गठन की मानक एन्थैल्पी, जो पदार्थों की एक बड़ी संख्या के लिए निर्धारित की गई है, पदार्थ के 1 मोल के गठन के दौरान उसके घटक तत्वों से, उनके मानक राज्यों में सभी पदार्थों के साथ एन्थैल्पी का परिवर्तन है।
मानक अवस्थाओं को किसी भी तापमान और दबाव पर परिभाषित किया जा सकता है, इसलिए मानक तापमान और दबाव दोनों को हमेशा निर्दिष्ट किया जाना चाहिए। मानक थर्मोकेमिकल डेटा के अधिकांश मूल्यों को या तो (25 डिग्री सेल्सियस, 1 बार) या (25 डिग्री सेल्सियस, 1 एटीएम) पर सारणीबद्ध किया जाता है। [2] जलीय घोल में आयनों के लिए, मानक अवस्था को अक्सर इस तरह चुना जाता है कि जलीय H+ आयन ठीक 1 मोल/लीटर की सांद्रता पर शून्य के बराबर एक मानक गठन एन्थैल्पी है, जो समान मानक सांद्रता पर धनायनों और आयनों के लिए मानक एन्थैल्पी के सारणीकरण को संभव बनाता है। यह सम्मेलन इलेक्ट्रोकैमिस्ट्री के क्षेत्र में मानक हाइड्रोजन इलेक्ट्रोड के उपयोग के अनुरूप है। हालांकि, एच के लिए मानक एकाग्रता सहित कुछ क्षेत्रों में अन्य आम विकल्प हैंठीक 1 मोल/(किग्रा विलायक) का + (रासायनिक इंजीनियरिंग में व्यापक रूप से उपयोग किया जाता है) और तिल/एल (जैव रसायन के क्षेत्र में प्रयोग किया जाता है)। इस कारण से यह नोट करना महत्वपूर्ण है कि कौन से मानक एकाग्रता मूल्य का उपयोग किया जा रहा है जब गठन के एन्थैल्पी की तालिकाओं का परामर्श किया जाता है।
परिचय
दो प्रारंभिक थर्मोडायनामिक सिस्टम, प्रत्येक आंतरिक थर्मोडायनामिक संतुलन के अपने अलग-अलग राज्यों में अलग-अलग होते हैं, एक थर्मोडायनामिक ऑपरेशन द्वारा, एक नए अंतिम पृथक थर्मोडायनामिक सिस्टम में सम्मिलित हो सकते हैं। यदि प्रारंभिक प्रणालियाँ रासायनिक संरचना में भिन्न हैं, तो अंतिम प्रणाली का अंतिम थर्मोडायनामिक संतुलन रासायनिक प्रतिक्रिया का परिणाम हो सकता है। वैकल्पिक रूप से, एक पृथक थर्मोडायनामिक प्रणाली, कुछ उत्प्रेरक की अनुपस्थिति में, एक मेटास्टेबल संतुलन में हो सकती है; एक उत्प्रेरक की शुरूआत, या कुछ अन्य थर्मोडायनामिक ऑपरेशन, जैसे कि एक चिंगारी की रिहाई, एक रासायनिक प्रतिक्रिया को गति प्रदान कर सकती है। रासायनिक प्रतिक्रिया, सामान्य तौर पर, कुछ रासायनिक ऊर्जा को तापीय ऊर्जा में बदल देती है। यदि संयुक्त निकाय को पृथक रखा जाए, तो इसकी आंतरिक ऊर्जा अपरिवर्तित रहती है। हालांकि, इस तरह की थर्मल ऊर्जा संयुक्त प्रणालियों के गैर-रासायनिक राज्य चर (जैसे तापमान, दबाव, मात्रा) में परिवर्तन के साथ-साथ रासायनिक प्रतिक्रिया का वर्णन करने वाले रासायनिक घटकों के तिल संख्या में परिवर्तन में प्रकट होती है।
आंतरिक ऊर्जा को कुछ मानक अवस्था के संबंध में परिभाषित किया गया है। उपयुक्त थर्मोडायनामिक संचालन के अधीन, अंतिम प्रणाली के रासायनिक घटकों को उनके संबंधित मानक राज्यों में लाया जा सकता है, साथ ही ऊर्जा को गर्मी के रूप में या थर्मोडायनामिक कार्य के माध्यम से स्थानांतरित किया जा सकता है, जिसे गैर-रासायनिक राज्य चर के माप से मापा या गणना की जा सकती है। तदनुसार, प्रतिक्रिया की मानक तापीय धारिता की गणना तापीय ऊर्जा में रासायनिक संभावित ऊर्जा के रूपांतरण की मात्रा निर्धारित करने का सबसे स्थापित तरीका है।
परिभाषित और मापी गई मानक स्थितियों के लिए प्रतिक्रिया की एन्थैल्पी
किसी प्रतिक्रिया की मानक एन्थैल्पी को इस प्रकार परिभाषित किया जाता है कि यह केवल उन मानक स्थितियों पर निर्भर करती है जो इसके लिए निर्दिष्ट हैं, न कि केवल उन स्थितियों पर जिनके तहत प्रतिक्रियाएँ वास्तव में घटित होती हैं। दो सामान्य स्थितियाँ हैं जिनके तहत ऊष्मारसायन मापन वास्तव में किए जाते हैं।[3]
- (ए) स्थिर मात्रा और तापमान: गर्मी , कहाँ (कभी-कभी लिखा जाता है ) सिस्टम की आंतरिक ऊर्जा है
- (बी) लगातार दबाव और तापमान: गर्मी , कहाँ सिस्टम की एन्थैल्पी है
इन दोनों स्थितियों में ताप प्रभाव के परिमाण अलग-अलग हैं। पहले मामले में एक बंद और कठोर कंटेनर में प्रतिक्रिया को पूरा करके माप के दौरान सिस्टम की मात्रा स्थिर रखी जाती है, और चूंकि वॉल्यूम में कोई बदलाव नहीं होता है, कोई काम शामिल नहीं होता है। ऊष्मप्रवैगिकी के पहले नियम से, , जहाँ W सिस्टम द्वारा किया गया कार्य है। जब हमारे पास एक प्रक्रिया के लिए केवल विस्तार कार्य संभव है ; इसका तात्पर्य यह है कि निरंतर आयतन पर प्रतिक्रिया की ऊष्मा आंतरिक ऊर्जा में परिवर्तन के बराबर होती है प्रतिक्रिया प्रणाली की।[3]
किसी रासायनिक अभिक्रिया में होने वाला ऊष्मीय परिवर्तन केवल उत्पादों की आंतरिक ऊर्जा के योग और अभिकारकों की आंतरिक ऊर्जा के योग के बीच के अंतर के कारण होता है। अपने पास
यह यह भी दर्शाता है कि स्थिर आयतन पर अवशोषित ऊष्मा की मात्रा को थर्मोडायनामिक मात्रा आंतरिक ऊर्जा में परिवर्तन के साथ पहचाना जा सकता है।
दूसरी ओर निरंतर दबाव में, प्रणाली को या तो वायुमंडल के लिए खुला रखा जाता है या एक कंटेनर के भीतर सीमित कर दिया जाता है, जिस पर एक निरंतर बाहरी दबाव डाला जाता है और इन परिस्थितियों में सिस्टम का आयतन बदल जाता है। एक स्थिर दबाव पर थर्मल परिवर्तन में न केवल सिस्टम की आंतरिक ऊर्जा में परिवर्तन शामिल है बल्कि सिस्टम के विस्तार या संकुचन में किए गए कार्य भी शामिल हैं। सामान्य तौर पर पहले कानून की आवश्यकता होती है
- (काम)
अगर केवल दबाव-आयतन कार्य है|दबाव-आयतन कार्य है, फिर निरंतर दबाव पर[3]
यह मानते हुए कि राज्य चर में परिवर्तन केवल एक रासायनिक प्रतिक्रिया के कारण होता है, हमारे पास है
तापीय धारिता या गर्मी सामग्री द्वारा परिभाषित किया गया है , अपने पास
परिपाटी के अनुसार, प्रत्येक तत्व की एन्थैल्पी को उसकी मानक अवस्था में शून्य मान दिया जाता है।[4] यदि यौगिकों या आयनों की शुद्ध तैयारी संभव नहीं है, तो विशेष परिपाटी परिभाषित की जाती हैं। भले ही, यदि प्रत्येक अभिकारक और उत्पाद अपने संबंधित मानक अवस्था में तैयार किए जा सकते हैं, तो प्रत्येक प्रजाति का योगदान प्रतिक्रिया में इसके स्टोइकोमेट्रिक गुणांक से गुणा किए गए गठन के मोलर एन्थैल्पी के बराबर होता है, और निरंतर (मानक) दबाव पर प्रतिक्रिया की एन्थैल्पी और स्थिर तापमान (आमतौर पर 298 K) को इस रूप में लिखा जा सकता है[4] : जैसा कि ऊपर दिखाया गया है, निरंतर दबाव पर प्रतिक्रिया की गर्मी एन्थैल्पी परिवर्तन के बराबर होती है, , प्रतिक्रिया प्रणाली की।[3]
तापमान या दबाव के साथ भिन्नता
तापमान के साथ प्रतिक्रिया की तापीय धारिता की भिन्नता गुस्ताव_किरचॉफ # किरचॉफ_ऑफ_थर्मोकेमिस्ट्री द्वारा दी गई है। किरचॉफ का थर्मोकैमिस्ट्री का नियम, जो बताता है कि रासायनिक प्रतिक्रिया के लिए ΔH का तापमान व्युत्पन्न उत्पादों के बीच ताप क्षमता (स्थिर दबाव पर) में अंतर द्वारा दिया जाता है। और अभिकारक:
- .
इस समीकरण का एकीकरण दूसरे तापमान पर माप से एक तापमान पर प्रतिक्रिया की गर्मी के मूल्यांकन की अनुमति देता है।[5][6]
मिश्रण के कारण दबाव भिन्नता प्रभाव और सुधार आम तौर पर न्यूनतम होते हैं जब तक कि प्रतिक्रिया में गैर-आदर्श गैसों और/या विलेय शामिल न हों, या अत्यधिक उच्च दबावों पर किया जाता है। आदर्श गैसों के विलयन के लिए मिश्रण की एन्थैल्पी बिल्कुल शून्य होती है; एक प्रतिक्रिया के लिए भी यही सच है जहां अभिकारक और उत्पाद शुद्ध, अमिश्रित घटक हैं। समाधान में विलेय के लिए सांद्रता भिन्नता के कारण प्रतिक्रिया एन्थैल्पी में योगदान आम तौर पर मामले के आधार पर प्रयोगात्मक रूप से निर्धारित किया जाना चाहिए, लेकिन आदर्श समाधान के लिए बिल्कुल शून्य होगा क्योंकि एकाग्रता के कार्य के रूप में समाधान की औसत अंतर-आणविक शक्तियों में कोई परिवर्तन संभव नहीं है। आदर्श समाधान।
उपश्रेणियाँ
प्रत्येक मामले में मानक शब्द का अर्थ है कि सभी अभिकारक और उत्पाद अपने मानक राज्यों में हैं।
- दहन की ऊष्मा एन्थैल्पी परिवर्तन है जब एक कार्बनिक यौगिक का एक मोल आणविक ऑक्सीजन (O2) कार्बन डाइऑक्साइड और तरल पानी बनाने के लिए। उदाहरण के लिए, एटैन गैस के दहन की मानक एन्थैल्पी प्रतिक्रिया सी को संदर्भित करती है2H6 (जी) + (7/2) ओ2 (जी) → 2 सीओ2 (जी) + 3 एच2ओ (एल)।
- गठन की ऊष्मा वह परिवर्तन है जब किसी भी यौगिक का एक मोल उसके घटक तत्वों से उनकी मानक अवस्था में बनता है। इथेन गैस के एक मोल के बनने की तापीय धारिता अभिक्रिया 2C (ग्रेफाइट) + 3H को संदर्भित करती है2 (जी) → सी2H6 (जी)।
- हाइड्रोजनीकरण की मानक एन्थैल्पी को उस एन्थैल्पी परिवर्तन के रूप में परिभाषित किया जाता है जब एक संतृप्त और असंतृप्त यौगिक यौगिक का एक मोल पूरी तरह से संतृप्त होने के लिए हाइड्रोजन की अधिकता के साथ प्रतिक्रिया करता है। एसिटिलीन के एक मोल के हाइड्रोजनीकरण से ईथेन एक उत्पाद के रूप में प्राप्त होता है और इसे समीकरण C द्वारा वर्णित किया जाता है2H2 (जी) + 2 एच2 (जी) → सी2H6 (जी)।
- न्यूट्रलाइजेशन की मानक एन्थैल्पी एन्थैल्पी में परिवर्तन है जो तब होता है जब एक एसिड और बेस पानी के एक मोल बनाने के लिए एक न्यूट्रलाइजेशन रिएक्शन से गुजरते हैं। उदाहरण के लिए जलीय घोल में, हाइड्रोक्लोरिक एसिड और बेस मैग्नेशियम हायड्रॉक्साइड के न्यूट्रलाइजेशन की मानक एन्थैल्पी प्रतिक्रिया HCl (aq) + 1/2 Mg(OH) को संदर्भित करती है।2 → 1/2 MgCl2 (एक्यू) + एच2ओ (एल)।
प्रतिक्रिया उत्साह का मूल्यांकन
प्रतिक्रिया उत्साह के मूल्यों को निर्धारित करने के कई तरीके हैं, जिसमें ब्याज की प्रतिक्रिया पर माप शामिल है या संबंधित प्रतिक्रियाओं के लिए डेटा से गणना शामिल है।
उन अभिक्रियाओं के लिए जो तेजी से पूर्णता की ओर जाती हैं, अक्सर कैलोरीमीटर का उपयोग करके सीधे अभिक्रिया की ऊष्मा को मापना संभव होता है। प्रतिक्रियाओं का एक बड़ा वर्ग जिसके लिए इस तरह के माप आम हैं, आणविक ऑक्सीजन (ओ2) कार्बन डाईऑक्साइड और पानी बनाने के लिए (एच2ओ). दहन की गर्मी को तथाकथित कैलोरीमीटर #बम कैलोरीमीटर से मापा जा सकता है, जिसमें उच्च तापमान पर दहन द्वारा जारी गर्मी परिवेश में खो जाती है क्योंकि सिस्टम अपने प्रारंभिक तापमान पर वापस आ जाता है।[7][8] चूँकि एन्थैल्पी एक अवस्था फलन है, इसका मान दिए गए आरंभिक और अंतिम अवस्थाओं के बीच किसी भी पथ के लिए समान होता है, ताकि मापा गया ΔH वैसा ही हो जैसे दहन के दौरान तापमान स्थिर रहता है।[9] अपूर्ण अभिक्रियाओं के लिए, संतुलन स्थिरांक को तापमान के फलन के रूप में निर्धारित किया जा सकता है। अभिक्रिया की एन्थैल्पी तब वैन 'टी हॉफ समीकरण से पाई जाती है . एक निकट संबंधी तकनीक एक इलेक्ट्रोएनालिटिकल वोल्टाइक सेल का उपयोग है, जिसका उपयोग तापमान के एक समारोह के रूप में कुछ प्रतिक्रियाओं के लिए गिब्स ऊर्जा को मापने के लिए किया जा सकता है, उपज और फिर .[10] कई अन्य प्रतिक्रियाओं की एन्थैल्पी से एक प्रतिक्रिया की एन्थैल्पी का मूल्यांकन करना भी संभव है, जिसका योग ब्याज की प्रतिक्रिया है, और इन्हें गठन की प्रतिक्रिया होने की आवश्यकता नहीं है। यह विधि हेस के नियम पर आधारित है, जिसमें कहा गया है कि रासायनिक प्रतिक्रिया के लिए एन्थैल्पी परिवर्तन समान होता है जो एकल प्रतिक्रिया या कई चरणों में होता है। यदि प्रत्येक चरण के एन्थैल्पी को मापा जा सकता है, तो उनका योग समग्र एकल प्रतिक्रिया की एन्थैल्पी देता है। [11] अंत में बॉन्ड के लिए बॉन्ड ऊर्जा का उपयोग करके रिएक्शन एन्थैल्पी का अनुमान लगाया जा सकता है जो टूट गए हैं और ब्याज की प्रतिक्रिया में बनते हैं। हालाँकि, यह विधि केवल अनुमानित है, क्योंकि रिपोर्ट की गई बॉन्ड ऊर्जा समान तत्वों के बीच बॉन्ड वाले विभिन्न अणुओं के लिए केवल एक औसत मान है।[12]
संदर्भ
- ↑ Petrucci, Ralph H.; Harwood, William S.; Herring, F. Geoffrey (2002). सामान्य रसायन शास्त्र (8th ed.). Prentice Hall. p. 247. ISBN 0-13-014329-4.
- ↑ Tinoco, Ignacio Jr.; Sauer, Kenneth; Wang, James C. (1995). Physical Chemistry: Principles and Applications in Biological Sciences (3rd ed.). Prentice-Hall. p. 125. ISBN 0-13-186545-5.
- ↑ 3.0 3.1 3.2 3.3 Tinoco, Ignacio Jr.; Sauer, Kenneth; Wang, James C. (1995). Physical Chemistry: Principles and Applications in Biological Sciences (3rd ed.). Prentice-Hall. p. 44. ISBN 0-13-186545-5.
- ↑ 4.0 4.1 Tinoco, Ignacio Jr.; Sauer, Kenneth; Wang, James C. (1995). Physical Chemistry: Principles and Applications in Biological Sciences (3rd ed.). Prentice-Hall. p. 48. ISBN 0-13-186545-5.
- ↑ Laidler K.J. and Meiser J.H., "Physical Chemistry" (Benjamin/Cummings 1982), p.62
- ↑ Atkins P. and de Paula J., "Atkins' Physical Chemistry" (8th edn, W.H. Freeman 2006), p.56
- ↑ Petrucci, Ralph H.; Harwood, William S.; Herring, F. Geoffrey (2002). सामान्य रसायन शास्त्र (8th ed.). Prentice Hall. pp. 227–229. ISBN 0-13-014329-4.
- ↑ Engel, Thomas; Reid, Philip (2006). भौतिक रसायन. Pearson Benjamin Cummings. pp. 72–73. ISBN 0-8053-3842-X.
- ↑ Engel and Reid p.65
- ↑ Chang, Raymond; Thoman, Jr., John W. (2014). रासायनिक विज्ञान के लिए भौतिक रसायन. University Science Books. pp. 356–360.
- ↑ Petrucci, Harwood and Herring, pages 241–243
- ↑ Petrucci, Harwood and Herring, pages 422–423